Properties

Label 32490.2.a.gu
Level $32490$
Weight $2$
Character orbit 32490.a
Self dual yes
Analytic conductor $259.434$
Dimension $12$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32490,2,Mod(1,32490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32490.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 32490 = 2 \cdot 3^{2} \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 32490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,12,0,12,12,0,0,12,0,12,2,0,-6,0,0,12,-12,0,0,12,0,2,-8,0, 12,-6,0,0,-20,0,-24,12,0,-12,0,0,-26,0,0,12,-32,0,4,2,0,-8,-12,0,-4,12, 0,-6,-8,0,2,0,0,-20,-8,0,-8,-24,0,12,-6,0,-38,-12,0,0,0,0,-44,-26,0,0, -20,0,-36,12,0,-32,0,0,-12,4,0,2,-28,0,-80,-8,0,-12,0,0,-24,-4,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(259.433956167\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 11 x^{10} + 100 x^{9} - 20 x^{8} - 516 x^{7} + 471 x^{6} + 846 x^{5} - 1190 x^{4} + \cdots + 1 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 12 q + 12 q^{2} + 12 q^{4} + 12 q^{5} + 12 q^{8} + 12 q^{10} + 2 q^{11} - 6 q^{13} + 12 q^{16} - 12 q^{17} + 12 q^{20} + 2 q^{22} - 8 q^{23} + 12 q^{25} - 6 q^{26} - 20 q^{29} - 24 q^{31} + 12 q^{32} - 12 q^{34}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(19\) \( +1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.