Defining parameters
Level: | \( N \) | \(=\) | \( 32490 = 2 \cdot 3^{2} \cdot 5 \cdot 19^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 32490.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 178 \) | ||
Sturm bound: | \(13680\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(32490))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 7000 | 567 | 6433 |
Cusp forms | 6681 | 567 | 6114 |
Eisenstein series | 319 | 0 | 319 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(19\) | Fricke | Total | Cusp | Eisenstein | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All | New | Old | All | New | Old | All | New | Old | ||||||||
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(425\) | \(24\) | \(401\) | \(406\) | \(24\) | \(382\) | \(19\) | \(0\) | \(19\) | |||
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(449\) | \(33\) | \(416\) | \(429\) | \(33\) | \(396\) | \(20\) | \(0\) | \(20\) | |||
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(445\) | \(32\) | \(413\) | \(425\) | \(32\) | \(393\) | \(20\) | \(0\) | \(20\) | |||
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(431\) | \(24\) | \(407\) | \(411\) | \(24\) | \(387\) | \(20\) | \(0\) | \(20\) | |||
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(445\) | \(40\) | \(405\) | \(425\) | \(40\) | \(385\) | \(20\) | \(0\) | \(20\) | |||
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(431\) | \(45\) | \(386\) | \(411\) | \(45\) | \(366\) | \(20\) | \(0\) | \(20\) | |||
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(435\) | \(41\) | \(394\) | \(415\) | \(41\) | \(374\) | \(20\) | \(0\) | \(20\) | |||
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(439\) | \(45\) | \(394\) | \(419\) | \(45\) | \(374\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(435\) | \(32\) | \(403\) | \(415\) | \(32\) | \(383\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(441\) | \(24\) | \(417\) | \(421\) | \(24\) | \(397\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(435\) | \(24\) | \(411\) | \(415\) | \(24\) | \(391\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(439\) | \(33\) | \(406\) | \(419\) | \(33\) | \(386\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(435\) | \(40\) | \(395\) | \(415\) | \(40\) | \(375\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(439\) | \(45\) | \(394\) | \(419\) | \(45\) | \(374\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(445\) | \(49\) | \(396\) | \(425\) | \(49\) | \(376\) | \(20\) | \(0\) | \(20\) | |||
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(431\) | \(36\) | \(395\) | \(411\) | \(36\) | \(375\) | \(20\) | \(0\) | \(20\) | |||
Plus space | \(+\) | \(3464\) | \(258\) | \(3206\) | \(3305\) | \(258\) | \(3047\) | \(159\) | \(0\) | \(159\) | ||||||
Minus space | \(-\) | \(3536\) | \(309\) | \(3227\) | \(3376\) | \(309\) | \(3067\) | \(160\) | \(0\) | \(160\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(32490))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 3 | 5 | 19 | |||||||
32490.2.a.a | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-5\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-5q^{7}-q^{8}+q^{10}+\cdots\) | |
32490.2.a.b | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-5\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-5q^{7}-q^{8}+q^{10}+\cdots\) | |
32490.2.a.c | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-4q^{7}-q^{8}+q^{10}+\cdots\) | |
32490.2.a.d | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-3q^{7}-q^{8}+q^{10}+\cdots\) | |
32490.2.a.e | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\) | |
32490.2.a.f | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(-2\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}-2q^{7}-q^{8}+q^{10}+\cdots\) | |
32490.2.a.g | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $-$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}-2q^{11}+\cdots\) | |
32490.2.a.h | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(0\) | $+$ | $+$ | $+$ | $+$ | \(q-q^{2}+q^{4}-q^{5}-q^{8}+q^{10}+4q^{11}+\cdots\) | |
32490.2.a.i | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(2\) | $+$ | $+$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}+2q^{7}-q^{8}+q^{10}+\cdots\) | |
32490.2.a.j | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(-1\) | \(2\) | $+$ | $-$ | $+$ | $-$ | \(q-q^{2}+q^{4}-q^{5}+2q^{7}-q^{8}+q^{10}+\cdots\) | |
32490.2.a.k | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-5\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-5q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.l | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $+$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.m | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.n | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-4\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-4q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.o | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-2q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.p | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-2q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.q | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.r | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.s | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.t | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(-1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.u | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(0\) | $+$ | $+$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}-q^{8}-q^{10}-4q^{11}+\cdots\) | |
32490.2.a.v | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(1\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}+q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.w | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(2\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.x | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(2\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.y | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(2\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}+2q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.z | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(3\) | $+$ | $-$ | $-$ | $+$ | \(q-q^{2}+q^{4}+q^{5}+3q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.ba | $1$ | $259.434$ | \(\Q\) | None | \(-1\) | \(0\) | \(1\) | \(4\) | $+$ | $-$ | $-$ | $-$ | \(q-q^{2}+q^{4}+q^{5}+4q^{7}-q^{8}-q^{10}+\cdots\) | |
32490.2.a.bb | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-5\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-5q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.bc | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-5\) | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-5q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.bd | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-4\) | $-$ | $+$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-4q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.be | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}-3q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.bf | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.bg | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-2q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.bh | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(-1\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}-q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.bi | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(0\) | $-$ | $-$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+q^{8}-q^{10}-2q^{11}+\cdots\) | |
32490.2.a.bj | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(0\) | $-$ | $+$ | $+$ | $+$ | \(q+q^{2}+q^{4}-q^{5}+q^{8}-q^{10}+4q^{11}+\cdots\) | |
32490.2.a.bk | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(4\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.bl | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(-1\) | \(4\) | $-$ | $-$ | $+$ | $-$ | \(q+q^{2}+q^{4}-q^{5}+4q^{7}+q^{8}-q^{10}+\cdots\) | |
32490.2.a.bm | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-5\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-5q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bn | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-5\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-5q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bo | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-4\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-4q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bp | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-2\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-2q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bq | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-2\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-2q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.br | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bs | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bt | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(-1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}-q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bu | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-4q^{11}+\cdots\) | |
32490.2.a.bv | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(0\) | $-$ | $+$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+q^{8}+q^{10}-4q^{11}+\cdots\) | |
32490.2.a.bw | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(1\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bx | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.by | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.bz | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | $+$ | \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.ca | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(2\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.cb | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(2\) | $-$ | $+$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+2q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.cc | $1$ | $259.434$ | \(\Q\) | None | \(1\) | \(0\) | \(1\) | \(3\) | $-$ | $-$ | $-$ | $-$ | \(q+q^{2}+q^{4}+q^{5}+3q^{7}+q^{8}+q^{10}+\cdots\) | |
32490.2.a.cd | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-4\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.ce | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.cf | $2$ | $259.434$ | \(\Q(\sqrt{73}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.cg | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-2\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.ch | $2$ | $259.434$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(-2\) | \(-1\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.ci | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(0\) | $+$ | $+$ | $+$ | $+$ | ||
32490.2.a.cj | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(-2\) | \(1\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.ck | $2$ | $259.434$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(-2\) | \(2\) | $+$ | $+$ | $+$ | $-$ | ||
32490.2.a.cl | $2$ | $259.434$ | \(\Q(\sqrt{6}) \) | None | \(-2\) | \(0\) | \(-2\) | \(2\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.cm | $2$ | $259.434$ | \(\Q(\sqrt{6}) \) | None | \(-2\) | \(0\) | \(-2\) | \(4\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.cn | $2$ | $259.434$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(-2\) | \(5\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.co | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.cp | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.cq | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.cr | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.cs | $2$ | $259.434$ | \(\Q(\sqrt{7}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.ct | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $+$ | $-$ | $+$ | ||
32490.2.a.cu | $2$ | $259.434$ | \(\Q(\sqrt{19}) \) | None | \(-2\) | \(0\) | \(2\) | \(0\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.cv | $2$ | $259.434$ | \(\Q(\sqrt{17}) \) | None | \(-2\) | \(0\) | \(2\) | \(3\) | $+$ | $-$ | $-$ | $+$ | ||
32490.2.a.cw | $2$ | $259.434$ | \(\Q(\sqrt{3}) \) | None | \(-2\) | \(0\) | \(2\) | \(4\) | $+$ | $+$ | $-$ | $-$ | ||
32490.2.a.cx | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(-4\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.cy | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.cz | $2$ | $259.434$ | \(\Q(\sqrt{73}) \) | None | \(2\) | \(0\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.da | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(-2\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.db | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(0\) | $-$ | $+$ | $+$ | $+$ | ||
32490.2.a.dc | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(-2\) | \(1\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.dd | $2$ | $259.434$ | \(\Q(\sqrt{6}) \) | None | \(2\) | \(0\) | \(-2\) | \(2\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.de | $2$ | $259.434$ | \(\Q(\sqrt{3}) \) | None | \(2\) | \(0\) | \(-2\) | \(4\) | $-$ | $+$ | $+$ | $-$ | ||
32490.2.a.df | $2$ | $259.434$ | \(\Q(\sqrt{6}) \) | None | \(2\) | \(0\) | \(-2\) | \(4\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.dg | $2$ | $259.434$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(-2\) | \(5\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.dh | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(-2\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.di | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(-2\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.dj | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.dk | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.dl | $2$ | $259.434$ | \(\Q(\sqrt{5}) \) | None | \(2\) | \(0\) | \(2\) | \(0\) | $-$ | $+$ | $-$ | $+$ | ||
32490.2.a.dm | $2$ | $259.434$ | \(\Q(\sqrt{7}) \) | None | \(2\) | \(0\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.dn | $2$ | $259.434$ | \(\Q(\sqrt{19}) \) | None | \(2\) | \(0\) | \(2\) | \(0\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.do | $2$ | $259.434$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(2\) | \(2\) | $-$ | $+$ | $-$ | $-$ | ||
32490.2.a.dp | $2$ | $259.434$ | \(\Q(\sqrt{17}) \) | None | \(2\) | \(0\) | \(2\) | \(3\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.dq | $3$ | $259.434$ | 3.3.3144.1 | None | \(-3\) | \(0\) | \(-3\) | \(-3\) | $+$ | $+$ | $+$ | $+$ | ||
32490.2.a.dr | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(-3\) | \(-3\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.ds | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(-3\) | \(0\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.dt | $3$ | $259.434$ | 3.3.3144.1 | None | \(-3\) | \(0\) | \(-3\) | \(1\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.du | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(-3\) | \(3\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.dv | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(3\) | \(-9\) | $+$ | $-$ | $-$ | $+$ | ||
32490.2.a.dw | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(3\) | \(-3\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.dx | $3$ | $259.434$ | 3.3.3144.1 | None | \(-3\) | \(0\) | \(3\) | \(-3\) | $+$ | $+$ | $-$ | $-$ | ||
32490.2.a.dy | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(3\) | \(-3\) | $+$ | $-$ | $-$ | $+$ | ||
32490.2.a.dz | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(3\) | \(3\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.ea | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(3\) | \(6\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.eb | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(-3\) | \(0\) | \(3\) | \(6\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.ec | $3$ | $259.434$ | 3.3.3144.1 | None | \(3\) | \(0\) | \(-3\) | \(-3\) | $-$ | $+$ | $+$ | $-$ | ||
32490.2.a.ed | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(-3\) | \(-3\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.ee | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(-3\) | \(0\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.ef | $3$ | $259.434$ | 3.3.3144.1 | None | \(3\) | \(0\) | \(-3\) | \(1\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.eg | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(-3\) | \(3\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.eh | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(3\) | \(-9\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.ei | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(3\) | \(-3\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.ej | $3$ | $259.434$ | 3.3.3144.1 | None | \(3\) | \(0\) | \(3\) | \(-3\) | $-$ | $+$ | $-$ | $+$ | ||
32490.2.a.ek | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(3\) | \(-3\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.el | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(3\) | \(3\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.em | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(3\) | \(6\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.en | $3$ | $259.434$ | \(\Q(\zeta_{18})^+\) | None | \(3\) | \(0\) | \(3\) | \(6\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.eo | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(-4\) | \(-10\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.ep | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(-4\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.eq | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(-4\) | \(-2\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.er | $4$ | $259.434$ | 4.4.5225.1 | None | \(-4\) | \(0\) | \(-4\) | \(3\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.es | $4$ | $259.434$ | 4.4.76400.1 | None | \(-4\) | \(0\) | \(-4\) | \(4\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.et | $4$ | $259.434$ | 4.4.12400.1 | None | \(-4\) | \(0\) | \(-4\) | \(6\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.eu | $4$ | $259.434$ | 4.4.7600.1 | None | \(-4\) | \(0\) | \(-4\) | \(6\) | $+$ | $+$ | $+$ | $-$ | ||
32490.2.a.ev | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(-4\) | \(8\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.ew | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(4\) | \(-2\) | $+$ | $-$ | $-$ | $+$ | ||
32490.2.a.ex | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(4\) | \(-2\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.ey | $4$ | $259.434$ | \(\Q(\sqrt{5}, \sqrt{6})\) | None | \(-4\) | \(0\) | \(4\) | \(0\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.ez | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(4\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
32490.2.a.fa | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(-4\) | \(0\) | \(4\) | \(4\) | $+$ | $-$ | $-$ | $+$ | ||
32490.2.a.fb | $4$ | $259.434$ | 4.4.7600.1 | None | \(-4\) | \(0\) | \(4\) | \(6\) | $+$ | $+$ | $-$ | $+$ | ||
32490.2.a.fc | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(-4\) | \(-10\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.fd | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(-4\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.fe | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(-4\) | \(-2\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.ff | $4$ | $259.434$ | 4.4.5225.1 | None | \(4\) | \(0\) | \(-4\) | \(3\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.fg | $4$ | $259.434$ | 4.4.76400.1 | None | \(4\) | \(0\) | \(-4\) | \(4\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.fh | $4$ | $259.434$ | 4.4.7600.1 | None | \(4\) | \(0\) | \(-4\) | \(6\) | $-$ | $+$ | $+$ | $+$ | ||
32490.2.a.fi | $4$ | $259.434$ | 4.4.12400.1 | None | \(4\) | \(0\) | \(-4\) | \(6\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.fj | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(-4\) | \(8\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.fk | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(4\) | \(-2\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.fl | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(4\) | \(-2\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.fm | $4$ | $259.434$ | \(\Q(\sqrt{5}, \sqrt{6})\) | None | \(4\) | \(0\) | \(4\) | \(0\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.fn | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(4\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.fo | $4$ | $259.434$ | \(\Q(\zeta_{20})^+\) | None | \(4\) | \(0\) | \(4\) | \(4\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.fp | $4$ | $259.434$ | 4.4.7600.1 | None | \(4\) | \(0\) | \(4\) | \(6\) | $-$ | $+$ | $-$ | $-$ | ||
32490.2.a.fq | $6$ | $259.434$ | 6.6.7978176.1 | None | \(-6\) | \(0\) | \(-6\) | \(-6\) | $+$ | $+$ | $+$ | $+$ | ||
32490.2.a.fr | $6$ | $259.434$ | 6.6.6357609.1 | None | \(-6\) | \(0\) | \(-6\) | \(-3\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.fs | $6$ | $259.434$ | 6.6.59778000.1 | None | \(-6\) | \(0\) | \(-6\) | \(0\) | $+$ | $+$ | $+$ | $-$ | ||
32490.2.a.ft | $6$ | $259.434$ | 6.6.364498000.1 | None | \(-6\) | \(0\) | \(-6\) | \(0\) | $+$ | $+$ | $+$ | $-$ | ||
32490.2.a.fu | $6$ | $259.434$ | 6.6.42889257.1 | None | \(-6\) | \(0\) | \(-6\) | \(3\) | $+$ | $-$ | $+$ | $+$ | ||
32490.2.a.fv | $6$ | $259.434$ | 6.6.7978176.1 | None | \(-6\) | \(0\) | \(6\) | \(-6\) | $+$ | $+$ | $-$ | $-$ | ||
32490.2.a.fw | $6$ | $259.434$ | 6.6.15536448.1 | None | \(-6\) | \(0\) | \(6\) | \(-6\) | $+$ | $-$ | $-$ | $-$ | ||
32490.2.a.fx | $6$ | $259.434$ | 6.6.364498000.1 | None | \(-6\) | \(0\) | \(6\) | \(0\) | $+$ | $+$ | $-$ | $-$ | ||
32490.2.a.fy | $6$ | $259.434$ | 6.6.59778000.1 | None | \(-6\) | \(0\) | \(6\) | \(0\) | $+$ | $+$ | $-$ | $-$ | ||
32490.2.a.fz | $6$ | $259.434$ | 6.6.23153769.1 | None | \(-6\) | \(0\) | \(6\) | \(6\) | $+$ | $-$ | $-$ | $+$ | ||
32490.2.a.ga | $6$ | $259.434$ | 6.6.7978176.1 | None | \(6\) | \(0\) | \(-6\) | \(-6\) | $-$ | $+$ | $+$ | $-$ | ||
32490.2.a.gb | $6$ | $259.434$ | 6.6.6357609.1 | None | \(6\) | \(0\) | \(-6\) | \(-3\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.gc | $6$ | $259.434$ | 6.6.364498000.1 | None | \(6\) | \(0\) | \(-6\) | \(0\) | $-$ | $+$ | $+$ | $-$ | ||
32490.2.a.gd | $6$ | $259.434$ | 6.6.59778000.1 | None | \(6\) | \(0\) | \(-6\) | \(0\) | $-$ | $+$ | $+$ | $-$ | ||
32490.2.a.ge | $6$ | $259.434$ | 6.6.42889257.1 | None | \(6\) | \(0\) | \(-6\) | \(3\) | $-$ | $-$ | $+$ | $-$ | ||
32490.2.a.gf | $6$ | $259.434$ | 6.6.7978176.1 | None | \(6\) | \(0\) | \(6\) | \(-6\) | $-$ | $+$ | $-$ | $+$ | ||
32490.2.a.gg | $6$ | $259.434$ | 6.6.15536448.1 | None | \(6\) | \(0\) | \(6\) | \(-6\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.gh | $6$ | $259.434$ | 6.6.59778000.1 | None | \(6\) | \(0\) | \(6\) | \(0\) | $-$ | $+$ | $-$ | $-$ | ||
32490.2.a.gi | $6$ | $259.434$ | 6.6.364498000.1 | None | \(6\) | \(0\) | \(6\) | \(0\) | $-$ | $+$ | $-$ | $-$ | ||
32490.2.a.gj | $6$ | $259.434$ | 6.6.23153769.1 | None | \(6\) | \(0\) | \(6\) | \(6\) | $-$ | $-$ | $-$ | $-$ | ||
32490.2.a.gk | $8$ | $259.434$ | 8.8.\(\cdots\).1 | None | \(-8\) | \(0\) | \(8\) | \(2\) | $+$ | $-$ | $-$ | $+$ | ||
32490.2.a.gl | $8$ | $259.434$ | 8.8.\(\cdots\).1 | None | \(8\) | \(0\) | \(8\) | \(2\) | $-$ | $-$ | $-$ | $+$ | ||
32490.2.a.gm | $9$ | $259.434$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(-9\) | \(0\) | \(-9\) | \(0\) | $+$ | $-$ | $+$ | $-$ | ||
32490.2.a.gn | $9$ | $259.434$ | \(\mathbb{Q}[x]/(x^{9} - \cdots)\) | None | \(9\) | \(0\) | \(-9\) | \(0\) | $-$ | $-$ | $+$ | $+$ | ||
32490.2.a.go | $12$ | $259.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(-12\) | \(0\) | $+$ | $+$ | $+$ | $+$ | ||
32490.2.a.gp | $12$ | $259.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(-12\) | \(6\) | $+$ | $+$ | $+$ | $-$ | ||
32490.2.a.gq | $12$ | $259.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(12\) | \(0\) | $+$ | $+$ | $-$ | $+$ | ||
32490.2.a.gr | $12$ | $259.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(-12\) | \(0\) | \(12\) | \(6\) | $+$ | $+$ | $-$ | $+$ | ||
32490.2.a.gs | $12$ | $259.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(-12\) | \(0\) | $-$ | $+$ | $+$ | $+$ | ||
32490.2.a.gt | $12$ | $259.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(-12\) | \(6\) | $-$ | $+$ | $+$ | $+$ | ||
32490.2.a.gu | $12$ | $259.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(12\) | \(0\) | $-$ | $+$ | $-$ | $+$ | ||
32490.2.a.gv | $12$ | $259.434$ | \(\mathbb{Q}[x]/(x^{12} - \cdots)\) | None | \(12\) | \(0\) | \(12\) | \(6\) | $-$ | $+$ | $-$ | $-$ |
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(32490))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(32490)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(19))\)\(^{\oplus 24}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(38))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(45))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(57))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(90))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(95))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(114))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(171))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(190))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(285))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(342))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(361))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(570))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(722))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(855))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1083))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1710))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1805))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2166))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3249))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3610))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(5415))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(6498))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(10830))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(16245))\)\(^{\oplus 2}\)