Properties

Label 32490.2.a.cx
Level $32490$
Weight $2$
Character orbit 32490.a
Self dual yes
Analytic conductor $259.434$
Dimension $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32490,2,Mod(1,32490)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32490.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32490, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 32490 = 2 \cdot 3^{2} \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 32490.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,2,0,2,-2,0,-4,2,0,-2,-1,0,5,-4,0,2,9,0,0,-2,0,-1,1,0,2,5,0, -4,0,0,5,2,0,9,4,0,13,0,0,-2,6,0,-7,-1,0,1,11,0,-6,2,0,5,0,0,1,-4,0,0, -19,0,4,5,0,2,-5,0,5,9,0,4,-16,0,-4,13,0,0,2,0,4,-2,0,6,2,0,-9,-7,0,-1, 18,0,-10,1,0,11,0,0,-14,-6,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(None)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(259.433956167\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Twist minimal: not computed
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 2 q + 2 q^{2} + 2 q^{4} - 2 q^{5} - 4 q^{7} + 2 q^{8} - 2 q^{10} - q^{11} + 5 q^{13} - 4 q^{14} + 2 q^{16} + 9 q^{17} - 2 q^{20} - q^{22} + q^{23} + 2 q^{25} + 5 q^{26} - 4 q^{28} + 5 q^{31} + 2 q^{32}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( +1 \)
\(19\) \( -1 \)

Inner twists

Inner twists of this newform have not been computed.

Twists

Twists of this newform have not been computed.