Properties

Label 3248.1.ei.b
Level 32483248
Weight 11
Character orbit 3248.ei
Analytic conductor 1.6211.621
Analytic rank 00
Dimension 1212
Projective image D28D_{28}
CM discriminant -7
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3248,1,Mod(13,3248)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3248.13"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3248, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([0, 21, 14, 18])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: N N == 3248=24729 3248 = 2^{4} \cdot 7 \cdot 29
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3248.ei (of order 2828, degree 1212, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,2,0,0,0,0,0,0,12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.620963161031.62096316103
Analytic rank: 00
Dimension: 1212
Coefficient field: Q(ζ28)\Q(\zeta_{28})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x12x10+x8x6+x4x2+1 x^{12} - x^{10} + x^{8} - x^{6} + x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D28D_{28}
Projective field: Galois closure of Q[x]/(x28)\mathbb{Q}[x]/(x^{28} - \cdots)

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ283q2+ζ286q4ζ2813q7+ζ289q8+ζ285q9+(ζ2811+1)q11+ζ282q14+ζ2812q16+ζ288q18++(ζ285ζ282)q99+O(q100) q + \zeta_{28}^{3} q^{2} + \zeta_{28}^{6} q^{4} - \zeta_{28}^{13} q^{7} + \zeta_{28}^{9} q^{8} + \zeta_{28}^{5} q^{9} + (\zeta_{28}^{11} + 1) q^{11} + \zeta_{28}^{2} q^{14} + \zeta_{28}^{12} q^{16} + \zeta_{28}^{8} q^{18} + \cdots + (\zeta_{28}^{5} - \zeta_{28}^{2}) q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+2q4+12q11+2q142q162q1812q222q372q43+2q44+2q492q502q532q56+2q582q63+2q64+2q6712q72+2q99+O(q100) 12 q + 2 q^{4} + 12 q^{11} + 2 q^{14} - 2 q^{16} - 2 q^{18} - 12 q^{22} - 2 q^{37} - 2 q^{43} + 2 q^{44} + 2 q^{49} - 2 q^{50} - 2 q^{53} - 2 q^{56} + 2 q^{58} - 2 q^{63} + 2 q^{64} + 2 q^{67} - 12 q^{72}+ \cdots - 2 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3248Z)×\left(\mathbb{Z}/3248\mathbb{Z}\right)^\times.

nn 465465 785785 20312031 24372437
χ(n)\chi(n) 1-1 ζ288-\zeta_{28}^{8} 11 ζ287-\zeta_{28}^{7}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
13.1
0.781831 0.623490i
−0.781831 0.623490i
0.974928 + 0.222521i
0.433884 + 0.900969i
−0.974928 + 0.222521i
0.433884 0.900969i
−0.781831 + 0.623490i
0.781831 + 0.623490i
−0.974928 0.222521i
−0.433884 0.900969i
0.974928 0.222521i
−0.433884 + 0.900969i
−0.433884 0.900969i 0 −0.623490 + 0.781831i 0 0 0.781831 + 0.623490i 0.974928 + 0.222521i −0.974928 + 0.222521i 0
125.1 0.433884 0.900969i 0 −0.623490 0.781831i 0 0 −0.781831 + 0.623490i −0.974928 + 0.222521i 0.974928 + 0.222521i 0
237.1 0.781831 + 0.623490i 0 0.222521 + 0.974928i 0 0 0.974928 0.222521i −0.433884 + 0.900969i 0.433884 + 0.900969i 0
573.1 −0.974928 0.222521i 0 0.900969 + 0.433884i 0 0 0.433884 0.900969i −0.781831 0.623490i 0.781831 0.623490i 0
1021.1 −0.781831 + 0.623490i 0 0.222521 0.974928i 0 0 −0.974928 0.222521i 0.433884 + 0.900969i −0.433884 + 0.900969i 0
1077.1 −0.974928 + 0.222521i 0 0.900969 0.433884i 0 0 0.433884 + 0.900969i −0.781831 + 0.623490i 0.781831 + 0.623490i 0
1637.1 0.433884 + 0.900969i 0 −0.623490 + 0.781831i 0 0 −0.781831 0.623490i −0.974928 0.222521i 0.974928 0.222521i 0
1749.1 −0.433884 + 0.900969i 0 −0.623490 0.781831i 0 0 0.781831 0.623490i 0.974928 0.222521i −0.974928 0.222521i 0
1861.1 −0.781831 0.623490i 0 0.222521 + 0.974928i 0 0 −0.974928 + 0.222521i 0.433884 0.900969i −0.433884 0.900969i 0
2197.1 0.974928 + 0.222521i 0 0.900969 + 0.433884i 0 0 −0.433884 + 0.900969i 0.781831 + 0.623490i −0.781831 + 0.623490i 0
2645.1 0.781831 0.623490i 0 0.222521 0.974928i 0 0 0.974928 + 0.222521i −0.433884 0.900969i 0.433884 0.900969i 0
2701.1 0.974928 0.222521i 0 0.900969 0.433884i 0 0 −0.433884 0.900969i 0.781831 0.623490i −0.781831 0.623490i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 13.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 CM by Q(7)\Q(\sqrt{-7})
464.bj even 28 1 inner
3248.ei odd 28 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3248.1.ei.b yes 12
7.b odd 2 1 CM 3248.1.ei.b yes 12
16.e even 4 1 3248.1.ei.a 12
29.e even 14 1 3248.1.ei.a 12
112.l odd 4 1 3248.1.ei.a 12
203.o odd 14 1 3248.1.ei.a 12
464.bj even 28 1 inner 3248.1.ei.b yes 12
3248.ei odd 28 1 inner 3248.1.ei.b yes 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3248.1.ei.a 12 16.e even 4 1
3248.1.ei.a 12 29.e even 14 1
3248.1.ei.a 12 112.l odd 4 1
3248.1.ei.a 12 203.o odd 14 1
3248.1.ei.b yes 12 1.a even 1 1 trivial
3248.1.ei.b yes 12 7.b odd 2 1 CM
3248.1.ei.b yes 12 464.bj even 28 1 inner
3248.1.ei.b yes 12 3248.ei odd 28 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T111212T1111+65T1110210T119+451T118680T117++1 T_{11}^{12} - 12 T_{11}^{11} + 65 T_{11}^{10} - 210 T_{11}^{9} + 451 T_{11}^{8} - 680 T_{11}^{7} + \cdots + 1 acting on S1new(3248,[χ])S_{1}^{\mathrm{new}}(3248, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T12T10++1 T^{12} - T^{10} + \cdots + 1 Copy content Toggle raw display
33 T12 T^{12} Copy content Toggle raw display
55 T12 T^{12} Copy content Toggle raw display
77 T12T10++1 T^{12} - T^{10} + \cdots + 1 Copy content Toggle raw display
1111 T1212T11++1 T^{12} - 12 T^{11} + \cdots + 1 Copy content Toggle raw display
1313 T12 T^{12} Copy content Toggle raw display
1717 T12 T^{12} Copy content Toggle raw display
1919 T12 T^{12} Copy content Toggle raw display
2323 (T6+7T214T+7)2 (T^{6} + 7 T^{2} - 14 T + 7)^{2} Copy content Toggle raw display
2929 T12T10++1 T^{12} - T^{10} + \cdots + 1 Copy content Toggle raw display
3131 T12 T^{12} Copy content Toggle raw display
3737 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
4141 T12 T^{12} Copy content Toggle raw display
4343 T12+2T11++64 T^{12} + 2 T^{11} + \cdots + 64 Copy content Toggle raw display
4747 T12 T^{12} Copy content Toggle raw display
5353 T12+2T11++1 T^{12} + 2 T^{11} + \cdots + 1 Copy content Toggle raw display
5959 T12 T^{12} Copy content Toggle raw display
6161 T12 T^{12} Copy content Toggle raw display
6767 T122T11++1 T^{12} - 2 T^{11} + \cdots + 1 Copy content Toggle raw display
7171 T124T10++1 T^{12} - 4 T^{10} + \cdots + 1 Copy content Toggle raw display
7373 T12 T^{12} Copy content Toggle raw display
7979 T12+3T10++1 T^{12} + 3 T^{10} + \cdots + 1 Copy content Toggle raw display
8383 T12 T^{12} Copy content Toggle raw display
8989 T12 T^{12} Copy content Toggle raw display
9797 T12 T^{12} Copy content Toggle raw display
show more
show less