gp: [N,k,chi] = [3248,1,Mod(13,3248)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3248.13");
S:= CuspForms(chi, 1);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3248, base_ring=CyclotomicField(28))
chi = DirichletCharacter(H, H._module([0, 21, 14, 18]))
B = ModularForms(chi, 1).cuspidal_submodule().basis()
N = [B[i] for i in range(len(B))]
Newform invariants
sage: traces = [12,0,0,2,0,0,0,0,0,0,12]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
The q q q -expansion and trace form are shown below.
Character values
We give the values of χ \chi χ on generators for ( Z / 3248 Z ) × \left(\mathbb{Z}/3248\mathbb{Z}\right)^\times ( Z / 3 2 4 8 Z ) × .
n n n
465 465 4 6 5
785 785 7 8 5
2031 2031 2 0 3 1
2437 2437 2 4 3 7
χ ( n ) \chi(n) χ ( n )
− 1 -1 − 1
− ζ 28 8 -\zeta_{28}^{8} − ζ 2 8 8
1 1 1
− ζ 28 7 -\zeta_{28}^{7} − ζ 2 8 7
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the kernel of the linear operator
T 11 12 − 12 T 11 11 + 65 T 11 10 − 210 T 11 9 + 451 T 11 8 − 680 T 11 7 + ⋯ + 1 T_{11}^{12} - 12 T_{11}^{11} + 65 T_{11}^{10} - 210 T_{11}^{9} + 451 T_{11}^{8} - 680 T_{11}^{7} + \cdots + 1 T 1 1 1 2 − 1 2 T 1 1 1 1 + 6 5 T 1 1 1 0 − 2 1 0 T 1 1 9 + 4 5 1 T 1 1 8 − 6 8 0 T 1 1 7 + ⋯ + 1
T11^12 - 12*T11^11 + 65*T11^10 - 210*T11^9 + 451*T11^8 - 680*T11^7 + 741*T11^6 - 590*T11^5 + 341*T11^4 - 140*T11^3 + 39*T11^2 - 6*T11 + 1
acting on S 1 n e w ( 3248 , [ χ ] ) S_{1}^{\mathrm{new}}(3248, [\chi]) S 1 n e w ( 3 2 4 8 , [ χ ] ) .
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 12 − T 10 + ⋯ + 1 T^{12} - T^{10} + \cdots + 1 T 1 2 − T 1 0 + ⋯ + 1
T^12 - T^10 + T^8 - T^6 + T^4 - T^2 + 1
3 3 3
T 12 T^{12} T 1 2
T^12
5 5 5
T 12 T^{12} T 1 2
T^12
7 7 7
T 12 − T 10 + ⋯ + 1 T^{12} - T^{10} + \cdots + 1 T 1 2 − T 1 0 + ⋯ + 1
T^12 - T^10 + T^8 - T^6 + T^4 - T^2 + 1
11 11 1 1
T 12 − 12 T 11 + ⋯ + 1 T^{12} - 12 T^{11} + \cdots + 1 T 1 2 − 1 2 T 1 1 + ⋯ + 1
T^12 - 12*T^11 + 65*T^10 - 210*T^9 + 451*T^8 - 680*T^7 + 741*T^6 - 590*T^5 + 341*T^4 - 140*T^3 + 39*T^2 - 6*T + 1
13 13 1 3
T 12 T^{12} T 1 2
T^12
17 17 1 7
T 12 T^{12} T 1 2
T^12
19 19 1 9
T 12 T^{12} T 1 2
T^12
23 23 2 3
( T 6 + 7 T 2 − 14 T + 7 ) 2 (T^{6} + 7 T^{2} - 14 T + 7)^{2} ( T 6 + 7 T 2 − 1 4 T + 7 ) 2
(T^6 + 7*T^2 - 14*T + 7)^2
29 29 2 9
T 12 − T 10 + ⋯ + 1 T^{12} - T^{10} + \cdots + 1 T 1 2 − T 1 0 + ⋯ + 1
T^12 - T^10 + T^8 - T^6 + T^4 - T^2 + 1
31 31 3 1
T 12 T^{12} T 1 2
T^12
37 37 3 7
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 2*T^10 - 4*T^8 + 20*T^7 + 48*T^6 + 54*T^5 + 61*T^4 + 14*T^3 + 4*T^2 - 6*T + 1
41 41 4 1
T 12 T^{12} T 1 2
T^12
43 43 4 3
T 12 + 2 T 11 + ⋯ + 64 T^{12} + 2 T^{11} + \cdots + 64 T 1 2 + 2 T 1 1 + ⋯ + 6 4
T^12 + 2*T^11 + 2*T^10 - 4*T^8 - 8*T^7 - 8*T^6 - 16*T^5 - 16*T^4 + 32*T^2 + 64*T + 64
47 47 4 7
T 12 T^{12} T 1 2
T^12
53 53 5 3
T 12 + 2 T 11 + ⋯ + 1 T^{12} + 2 T^{11} + \cdots + 1 T 1 2 + 2 T 1 1 + ⋯ + 1
T^12 + 2*T^11 + 2*T^10 - 4*T^8 - 22*T^7 - T^6 + 40*T^5 + 82*T^4 + 84*T^3 + 39*T^2 + 8*T + 1
59 59 5 9
T 12 T^{12} T 1 2
T^12
61 61 6 1
T 12 T^{12} T 1 2
T^12
67 67 6 7
T 12 − 2 T 11 + ⋯ + 1 T^{12} - 2 T^{11} + \cdots + 1 T 1 2 − 2 T 1 1 + ⋯ + 1
T^12 - 2*T^11 + 2*T^10 - 4*T^8 + 22*T^7 - T^6 - 40*T^5 + 82*T^4 - 84*T^3 + 39*T^2 - 8*T + 1
71 71 7 1
T 12 − 4 T 10 + ⋯ + 1 T^{12} - 4 T^{10} + \cdots + 1 T 1 2 − 4 T 1 0 + ⋯ + 1
T^12 - 4*T^10 + 2*T^8 + 6*T^6 + 25*T^4 - 2*T^2 + 1
73 73 7 3
T 12 T^{12} T 1 2
T^12
79 79 7 9
T 12 + 3 T 10 + ⋯ + 1 T^{12} + 3 T^{10} + \cdots + 1 T 1 2 + 3 T 1 0 + ⋯ + 1
T^12 + 3*T^10 + 9*T^8 - T^6 + 25*T^4 - 9*T^2 + 1
83 83 8 3
T 12 T^{12} T 1 2
T^12
89 89 8 9
T 12 T^{12} T 1 2
T^12
97 97 9 7
T 12 T^{12} T 1 2
T^12
show more
show less