Properties

Label 3240.2.q.bg.1081.1
Level $3240$
Weight $2$
Character 3240.1081
Analytic conductor $25.872$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3240,2,Mod(1081,3240)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3240, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3240.1081"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3240.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-4,0,-2,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(25.8715302549\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.3887771904.9
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 26x^{6} + 217x^{4} + 672x^{2} + 576 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1081.1
Root \(-1.16910i\) of defining polynomial
Character \(\chi\) \(=\) 3240.1081
Dual form 3240.2.q.bg.2161.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(-1.95058 - 3.37850i) q^{7} +(3.04760 + 5.27859i) q^{11} +(1.01247 - 1.75365i) q^{13} -2.46199 q^{17} +3.33820 q^{19} +(-0.415449 + 0.719580i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-1.31555 - 2.27859i) q^{29} +(-0.915449 + 1.58560i) q^{31} +3.90115 q^{35} +5.58789 q^{37} +(-3.32802 + 5.76430i) q^{41} +(-5.52600 - 9.57131i) q^{43} +(-0.0834961 - 0.144619i) q^{47} +(-4.10949 + 7.11785i) q^{49} +12.0234 q^{53} -6.09520 q^{55} +(0.866025 - 1.50000i) q^{59} +(6.65815 + 11.5322i) q^{61} +(1.01247 + 1.75365i) q^{65} +(-6.63109 + 11.4854i) q^{67} +10.8829 q^{71} +1.87621 q^{73} +(11.8891 - 20.5926i) q^{77} +(-3.73205 - 6.46410i) q^{79} +(-3.40010 - 5.88914i) q^{83} +(1.23100 - 2.13215i) q^{85} +12.1493 q^{89} -7.89961 q^{91} +(-1.66910 + 2.89097i) q^{95} +(0.331953 + 0.574960i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{5} - 2 q^{7} - 4 q^{11} - 4 q^{17} - 10 q^{23} - 4 q^{25} + 4 q^{29} - 14 q^{31} + 4 q^{35} + 28 q^{37} - 4 q^{41} - 22 q^{43} - 10 q^{49} - 16 q^{53} + 8 q^{55} - 4 q^{61} - 24 q^{67} + 56 q^{71}+ \cdots + 10 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −1.95058 3.37850i −0.737248 1.27695i −0.953730 0.300665i \(-0.902791\pi\)
0.216481 0.976287i \(-0.430542\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 3.04760 + 5.27859i 0.918885 + 1.59156i 0.801111 + 0.598516i \(0.204243\pi\)
0.117774 + 0.993040i \(0.462424\pi\)
\(12\) 0 0
\(13\) 1.01247 1.75365i 0.280809 0.486375i −0.690775 0.723070i \(-0.742731\pi\)
0.971584 + 0.236694i \(0.0760639\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.46199 −0.597121 −0.298560 0.954391i \(-0.596506\pi\)
−0.298560 + 0.954391i \(0.596506\pi\)
\(18\) 0 0
\(19\) 3.33820 0.765836 0.382918 0.923782i \(-0.374919\pi\)
0.382918 + 0.923782i \(0.374919\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.415449 + 0.719580i −0.0866272 + 0.150043i −0.906083 0.423099i \(-0.860942\pi\)
0.819456 + 0.573142i \(0.194276\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.31555 2.27859i −0.244291 0.423124i 0.717641 0.696413i \(-0.245222\pi\)
−0.961932 + 0.273289i \(0.911889\pi\)
\(30\) 0 0
\(31\) −0.915449 + 1.58560i −0.164420 + 0.284783i −0.936449 0.350804i \(-0.885908\pi\)
0.772029 + 0.635587i \(0.219242\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 3.90115 0.659415
\(36\) 0 0
\(37\) 5.58789 0.918644 0.459322 0.888270i \(-0.348092\pi\)
0.459322 + 0.888270i \(0.348092\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −3.32802 + 5.76430i −0.519749 + 0.900232i 0.479987 + 0.877275i \(0.340641\pi\)
−0.999736 + 0.0229565i \(0.992692\pi\)
\(42\) 0 0
\(43\) −5.52600 9.57131i −0.842707 1.45961i −0.887598 0.460619i \(-0.847628\pi\)
0.0448914 0.998992i \(-0.485706\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −0.0834961 0.144619i −0.0121792 0.0210949i 0.859872 0.510510i \(-0.170544\pi\)
−0.872051 + 0.489415i \(0.837210\pi\)
\(48\) 0 0
\(49\) −4.10949 + 7.11785i −0.587070 + 1.01684i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.0234 1.65154 0.825770 0.564006i \(-0.190741\pi\)
0.825770 + 0.564006i \(0.190741\pi\)
\(54\) 0 0
\(55\) −6.09520 −0.821876
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.866025 1.50000i 0.112747 0.195283i −0.804130 0.594454i \(-0.797368\pi\)
0.916877 + 0.399170i \(0.130702\pi\)
\(60\) 0 0
\(61\) 6.65815 + 11.5322i 0.852488 + 1.47655i 0.878956 + 0.476903i \(0.158241\pi\)
−0.0264678 + 0.999650i \(0.508426\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.01247 + 1.75365i 0.125582 + 0.217514i
\(66\) 0 0
\(67\) −6.63109 + 11.4854i −0.810117 + 1.40316i 0.102665 + 0.994716i \(0.467263\pi\)
−0.912782 + 0.408448i \(0.866070\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.8829 1.29156 0.645781 0.763523i \(-0.276532\pi\)
0.645781 + 0.763523i \(0.276532\pi\)
\(72\) 0 0
\(73\) 1.87621 0.219594 0.109797 0.993954i \(-0.464980\pi\)
0.109797 + 0.993954i \(0.464980\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 11.8891 20.5926i 1.35489 2.34674i
\(78\) 0 0
\(79\) −3.73205 6.46410i −0.419889 0.727268i 0.576039 0.817422i \(-0.304597\pi\)
−0.995928 + 0.0901537i \(0.971264\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.40010 5.88914i −0.373209 0.646417i 0.616848 0.787082i \(-0.288409\pi\)
−0.990057 + 0.140665i \(0.955076\pi\)
\(84\) 0 0
\(85\) 1.23100 2.13215i 0.133520 0.231264i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 12.1493 1.28782 0.643912 0.765100i \(-0.277310\pi\)
0.643912 + 0.765100i \(0.277310\pi\)
\(90\) 0 0
\(91\) −7.89961 −0.828104
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −1.66910 + 2.89097i −0.171246 + 0.296607i
\(96\) 0 0
\(97\) 0.331953 + 0.574960i 0.0337048 + 0.0583784i 0.882386 0.470527i \(-0.155936\pi\)
−0.848681 + 0.528905i \(0.822603\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 9.68080 + 16.7676i 0.963276 + 1.66844i 0.714178 + 0.699964i \(0.246801\pi\)
0.249097 + 0.968478i \(0.419866\pi\)
\(102\) 0 0
\(103\) 6.64567 11.5106i 0.654818 1.13418i −0.327122 0.944982i \(-0.606079\pi\)
0.981939 0.189195i \(-0.0605879\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6.39230 0.617967 0.308984 0.951067i \(-0.400011\pi\)
0.308984 + 0.951067i \(0.400011\pi\)
\(108\) 0 0
\(109\) 7.29500 0.698734 0.349367 0.936986i \(-0.386397\pi\)
0.349367 + 0.936986i \(0.386397\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1.62485 2.81431i 0.152853 0.264748i −0.779422 0.626499i \(-0.784487\pi\)
0.932275 + 0.361750i \(0.117821\pi\)
\(114\) 0 0
\(115\) −0.415449 0.719580i −0.0387409 0.0671011i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 4.80230 + 8.31783i 0.440226 + 0.762495i
\(120\) 0 0
\(121\) −13.0757 + 22.6478i −1.18870 + 2.05889i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 14.8294 1.31589 0.657946 0.753065i \(-0.271425\pi\)
0.657946 + 0.753065i \(0.271425\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 6.52417 11.3002i 0.570019 0.987303i −0.426544 0.904467i \(-0.640269\pi\)
0.996563 0.0828357i \(-0.0263977\pi\)
\(132\) 0 0
\(133\) −6.51142 11.2781i −0.564611 0.977936i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 5.90115 + 10.2211i 0.504169 + 0.873247i 0.999988 + 0.00482115i \(0.00153463\pi\)
−0.495819 + 0.868426i \(0.665132\pi\)
\(138\) 0 0
\(139\) 8.35219 14.4664i 0.708423 1.22703i −0.257018 0.966407i \(-0.582740\pi\)
0.965442 0.260619i \(-0.0839266\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 12.3424 1.03213
\(144\) 0 0
\(145\) 2.63109 0.218500
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.6332 18.4172i 0.871106 1.50880i 0.0102520 0.999947i \(-0.496737\pi\)
0.860854 0.508852i \(-0.169930\pi\)
\(150\) 0 0
\(151\) 5.84154 + 10.1179i 0.475378 + 0.823379i 0.999602 0.0282013i \(-0.00897794\pi\)
−0.524224 + 0.851580i \(0.675645\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.915449 1.58560i −0.0735307 0.127359i
\(156\) 0 0
\(157\) 10.0458 17.3998i 0.801740 1.38865i −0.116730 0.993164i \(-0.537241\pi\)
0.918470 0.395490i \(-0.129425\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 3.24146 0.255463
\(162\) 0 0
\(163\) 2.99789 0.234813 0.117406 0.993084i \(-0.462542\pi\)
0.117406 + 0.993084i \(0.462542\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −5.25594 + 9.10355i −0.406717 + 0.704454i −0.994520 0.104550i \(-0.966660\pi\)
0.587803 + 0.809004i \(0.299993\pi\)
\(168\) 0 0
\(169\) 4.44980 + 7.70729i 0.342293 + 0.592868i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 5.87955 + 10.1837i 0.447014 + 0.774251i 0.998190 0.0601380i \(-0.0191541\pi\)
−0.551176 + 0.834389i \(0.685821\pi\)
\(174\) 0 0
\(175\) −1.95058 + 3.37850i −0.147450 + 0.255390i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.65604 −0.497496 −0.248748 0.968568i \(-0.580019\pi\)
−0.248748 + 0.968568i \(0.580019\pi\)
\(180\) 0 0
\(181\) 8.50730 0.632343 0.316171 0.948702i \(-0.397603\pi\)
0.316171 + 0.948702i \(0.397603\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −2.79395 + 4.83926i −0.205415 + 0.355789i
\(186\) 0 0
\(187\) −7.50316 12.9959i −0.548686 0.950351i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −8.75260 15.1599i −0.633316 1.09693i −0.986869 0.161521i \(-0.948360\pi\)
0.353554 0.935414i \(-0.384973\pi\)
\(192\) 0 0
\(193\) −13.0582 + 22.6175i −0.939953 + 1.62805i −0.174398 + 0.984675i \(0.555798\pi\)
−0.765555 + 0.643371i \(0.777535\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.9215 −0.920620 −0.460310 0.887758i \(-0.652262\pi\)
−0.460310 + 0.887758i \(0.652262\pi\)
\(198\) 0 0
\(199\) 16.9781 1.20354 0.601772 0.798668i \(-0.294461\pi\)
0.601772 + 0.798668i \(0.294461\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.13215 + 8.88914i −0.360206 + 0.623895i
\(204\) 0 0
\(205\) −3.32802 5.76430i −0.232439 0.402596i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 10.1735 + 17.6210i 0.703716 + 1.21887i
\(210\) 0 0
\(211\) −5.72109 + 9.90923i −0.393856 + 0.682179i −0.992954 0.118496i \(-0.962193\pi\)
0.599098 + 0.800676i \(0.295526\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.0520 0.753740
\(216\) 0 0
\(217\) 7.14261 0.484872
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.49270 + 4.31748i −0.167677 + 0.290425i
\(222\) 0 0
\(223\) −7.82725 13.5572i −0.524151 0.907856i −0.999605 0.0281156i \(-0.991049\pi\)
0.475454 0.879741i \(-0.342284\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 7.52600 + 13.0354i 0.499518 + 0.865190i 1.00000 0.000556524i \(-0.000177147\pi\)
−0.500482 + 0.865747i \(0.666844\pi\)
\(228\) 0 0
\(229\) −8.33820 + 14.4422i −0.551004 + 0.954367i 0.447199 + 0.894435i \(0.352422\pi\)
−0.998202 + 0.0599320i \(0.980912\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −2.99789 −0.196398 −0.0981992 0.995167i \(-0.531308\pi\)
−0.0981992 + 0.995167i \(0.531308\pi\)
\(234\) 0 0
\(235\) 0.166992 0.0108934
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −7.73205 + 13.3923i −0.500145 + 0.866276i 0.499855 + 0.866109i \(0.333387\pi\)
−1.00000 0.000167197i \(0.999947\pi\)
\(240\) 0 0
\(241\) −8.15269 14.1209i −0.525161 0.909606i −0.999571 0.0293016i \(-0.990672\pi\)
0.474409 0.880304i \(-0.342662\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −4.10949 7.11785i −0.262546 0.454743i
\(246\) 0 0
\(247\) 3.37983 5.85404i 0.215054 0.372484i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 27.6295 1.74396 0.871981 0.489540i \(-0.162835\pi\)
0.871981 + 0.489540i \(0.162835\pi\)
\(252\) 0 0
\(253\) −5.06449 −0.318402
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 1.07391 1.86006i 0.0669884 0.116027i −0.830586 0.556891i \(-0.811994\pi\)
0.897574 + 0.440863i \(0.145328\pi\)
\(258\) 0 0
\(259\) −10.8996 18.8787i −0.677269 1.17306i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 2.80354 + 4.85587i 0.172873 + 0.299426i 0.939423 0.342759i \(-0.111361\pi\)
−0.766550 + 0.642185i \(0.778028\pi\)
\(264\) 0 0
\(265\) −6.01170 + 10.4126i −0.369296 + 0.639639i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −5.36469 −0.327091 −0.163545 0.986536i \(-0.552293\pi\)
−0.163545 + 0.986536i \(0.552293\pi\)
\(270\) 0 0
\(271\) −8.59000 −0.521805 −0.260903 0.965365i \(-0.584020\pi\)
−0.260903 + 0.965365i \(0.584020\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.04760 5.27859i 0.183777 0.318311i
\(276\) 0 0
\(277\) 12.3840 + 21.4497i 0.744081 + 1.28879i 0.950623 + 0.310348i \(0.100446\pi\)
−0.206542 + 0.978438i \(0.566221\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −12.7138 22.0210i −0.758443 1.31366i −0.943644 0.330961i \(-0.892627\pi\)
0.185202 0.982701i \(-0.440706\pi\)
\(282\) 0 0
\(283\) −1.43705 + 2.48904i −0.0854238 + 0.147958i −0.905572 0.424193i \(-0.860558\pi\)
0.820148 + 0.572152i \(0.193891\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 25.9662 1.53274
\(288\) 0 0
\(289\) −10.9386 −0.643447
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −4.76658 + 8.25597i −0.278467 + 0.482319i −0.971004 0.239064i \(-0.923160\pi\)
0.692537 + 0.721382i \(0.256493\pi\)
\(294\) 0 0
\(295\) 0.866025 + 1.50000i 0.0504219 + 0.0873334i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.841261 + 1.45711i 0.0486514 + 0.0842667i
\(300\) 0 0
\(301\) −21.5578 + 37.3391i −1.24257 + 2.15219i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −13.3163 −0.762489
\(306\) 0 0
\(307\) 4.02402 0.229663 0.114831 0.993385i \(-0.463367\pi\)
0.114831 + 0.993385i \(0.463367\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −4.82861 + 8.36340i −0.273805 + 0.474245i −0.969833 0.243770i \(-0.921616\pi\)
0.696028 + 0.718015i \(0.254949\pi\)
\(312\) 0 0
\(313\) 17.0462 + 29.5249i 0.963510 + 1.66885i 0.713566 + 0.700588i \(0.247079\pi\)
0.249944 + 0.968260i \(0.419588\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 9.25260 + 16.0260i 0.519678 + 0.900108i 0.999738 + 0.0228728i \(0.00728128\pi\)
−0.480061 + 0.877235i \(0.659385\pi\)
\(318\) 0 0
\(319\) 8.01852 13.8885i 0.448951 0.777605i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −8.21863 −0.457297
\(324\) 0 0
\(325\) −2.02494 −0.112324
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −0.325731 + 0.564182i −0.0179581 + 0.0311044i
\(330\) 0 0
\(331\) −9.16149 15.8682i −0.503561 0.872193i −0.999992 0.00411661i \(-0.998690\pi\)
0.496431 0.868076i \(-0.334644\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −6.63109 11.4854i −0.362295 0.627514i
\(336\) 0 0
\(337\) 14.0234 24.2892i 0.763903 1.32312i −0.176921 0.984225i \(-0.556614\pi\)
0.940825 0.338894i \(-0.110053\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −11.1597 −0.604331
\(342\) 0 0
\(343\) 4.75545 0.256770
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.03906 1.79971i 0.0557798 0.0966134i −0.836787 0.547528i \(-0.815569\pi\)
0.892567 + 0.450915i \(0.148902\pi\)
\(348\) 0 0
\(349\) −7.69070 13.3207i −0.411674 0.713040i 0.583399 0.812186i \(-0.301722\pi\)
−0.995073 + 0.0991456i \(0.968389\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.27631 + 2.21063i 0.0679310 + 0.117660i 0.897990 0.440015i \(-0.145027\pi\)
−0.830059 + 0.557675i \(0.811694\pi\)
\(354\) 0 0
\(355\) −5.44145 + 9.42486i −0.288802 + 0.500220i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.57699 0.241564 0.120782 0.992679i \(-0.461460\pi\)
0.120782 + 0.992679i \(0.461460\pi\)
\(360\) 0 0
\(361\) −7.85641 −0.413495
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −0.938105 + 1.62485i −0.0491026 + 0.0850483i
\(366\) 0 0
\(367\) −11.2460 19.4787i −0.587038 1.01678i −0.994618 0.103611i \(-0.966960\pi\)
0.407580 0.913170i \(-0.366373\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −23.4526 40.6210i −1.21760 2.10894i
\(372\) 0 0
\(373\) 15.5655 26.9603i 0.805953 1.39595i −0.109692 0.993966i \(-0.534986\pi\)
0.915646 0.401987i \(-0.131680\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −5.32781 −0.274396
\(378\) 0 0
\(379\) −35.4136 −1.81907 −0.909537 0.415623i \(-0.863564\pi\)
−0.909537 + 0.415623i \(0.863564\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 8.43674 14.6129i 0.431097 0.746682i −0.565871 0.824494i \(-0.691460\pi\)
0.996968 + 0.0778116i \(0.0247933\pi\)
\(384\) 0 0
\(385\) 11.8891 + 20.5926i 0.605927 + 1.04950i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 5.23935 + 9.07483i 0.265646 + 0.460112i 0.967733 0.251979i \(-0.0810815\pi\)
−0.702087 + 0.712091i \(0.747748\pi\)
\(390\) 0 0
\(391\) 1.02283 1.77160i 0.0517269 0.0895936i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 7.46410 0.375560
\(396\) 0 0
\(397\) −1.55781 −0.0781843 −0.0390921 0.999236i \(-0.512447\pi\)
−0.0390921 + 0.999236i \(0.512447\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.32784 + 5.76399i −0.166184 + 0.287840i −0.937075 0.349127i \(-0.886478\pi\)
0.770891 + 0.636967i \(0.219811\pi\)
\(402\) 0 0
\(403\) 1.85373 + 3.21076i 0.0923410 + 0.159939i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 17.0296 + 29.4962i 0.844128 + 1.46207i
\(408\) 0 0
\(409\) 17.8452 30.9088i 0.882388 1.52834i 0.0337097 0.999432i \(-0.489268\pi\)
0.848678 0.528909i \(-0.177399\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −6.75699 −0.332490
\(414\) 0 0
\(415\) 6.80019 0.333808
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.43705 11.1493i 0.314470 0.544679i −0.664854 0.746973i \(-0.731506\pi\)
0.979325 + 0.202294i \(0.0648397\pi\)
\(420\) 0 0
\(421\) 7.08666 + 12.2745i 0.345383 + 0.598220i 0.985423 0.170121i \(-0.0544158\pi\)
−0.640041 + 0.768341i \(0.721082\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 1.23100 + 2.13215i 0.0597121 + 0.103424i
\(426\) 0 0
\(427\) 25.9744 44.9890i 1.25699 2.17717i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0.786211 0.0378704 0.0189352 0.999821i \(-0.493972\pi\)
0.0189352 + 0.999821i \(0.493972\pi\)
\(432\) 0 0
\(433\) 31.2184 1.50026 0.750129 0.661291i \(-0.229991\pi\)
0.750129 + 0.661291i \(0.229991\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.38685 + 2.40210i −0.0663422 + 0.114908i
\(438\) 0 0
\(439\) 14.5179 + 25.1458i 0.692904 + 1.20014i 0.970882 + 0.239557i \(0.0770023\pi\)
−0.277978 + 0.960587i \(0.589664\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.54426 + 14.7991i 0.405950 + 0.703126i 0.994432 0.105385i \(-0.0336074\pi\)
−0.588482 + 0.808511i \(0.700274\pi\)
\(444\) 0 0
\(445\) −6.07465 + 10.5216i −0.287966 + 0.498772i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 18.5082 0.873457 0.436729 0.899593i \(-0.356137\pi\)
0.436729 + 0.899593i \(0.356137\pi\)
\(450\) 0 0
\(451\) −40.5698 −1.91036
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 3.94980 6.84126i 0.185170 0.320723i
\(456\) 0 0
\(457\) −0.0618953 0.107206i −0.00289534 0.00501488i 0.864574 0.502505i \(-0.167588\pi\)
−0.867469 + 0.497490i \(0.834255\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −8.43687 14.6131i −0.392944 0.680599i 0.599892 0.800081i \(-0.295210\pi\)
−0.992836 + 0.119481i \(0.961877\pi\)
\(462\) 0 0
\(463\) 2.28253 3.95346i 0.106078 0.183733i −0.808100 0.589045i \(-0.799504\pi\)
0.914178 + 0.405313i \(0.132837\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −34.8793 −1.61402 −0.807011 0.590537i \(-0.798916\pi\)
−0.807011 + 0.590537i \(0.798916\pi\)
\(468\) 0 0
\(469\) 51.7378 2.38903
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 33.6820 58.3390i 1.54870 2.68243i
\(474\) 0 0
\(475\) −1.66910 2.89097i −0.0765836 0.132647i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −21.2152 36.7457i −0.969345 1.67896i −0.697458 0.716626i \(-0.745685\pi\)
−0.271888 0.962329i \(-0.587648\pi\)
\(480\) 0 0
\(481\) 5.65758 9.79922i 0.257963 0.446806i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −0.663907 −0.0301465
\(486\) 0 0
\(487\) 18.1331 0.821691 0.410846 0.911705i \(-0.365233\pi\)
0.410846 + 0.911705i \(0.365233\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −9.25411 + 16.0286i −0.417632 + 0.723360i −0.995701 0.0926279i \(-0.970473\pi\)
0.578069 + 0.815988i \(0.303807\pi\)
\(492\) 0 0
\(493\) 3.23887 + 5.60988i 0.145871 + 0.252656i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −21.2279 36.7678i −0.952202 1.64926i
\(498\) 0 0
\(499\) 1.08332 1.87636i 0.0484960 0.0839975i −0.840758 0.541410i \(-0.817891\pi\)
0.889254 + 0.457413i \(0.151224\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −21.6088 −0.963490 −0.481745 0.876311i \(-0.659997\pi\)
−0.481745 + 0.876311i \(0.659997\pi\)
\(504\) 0 0
\(505\) −19.3616 −0.861580
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −1.67640 + 2.90362i −0.0743053 + 0.128701i −0.900784 0.434267i \(-0.857007\pi\)
0.826479 + 0.562968i \(0.190341\pi\)
\(510\) 0 0
\(511\) −3.65969 6.33877i −0.161895 0.280411i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.64567 + 11.5106i 0.292843 + 0.507220i
\(516\) 0 0
\(517\) 0.508925 0.881484i 0.0223825 0.0387676i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 33.4775 1.46668 0.733338 0.679864i \(-0.237961\pi\)
0.733338 + 0.679864i \(0.237961\pi\)
\(522\) 0 0
\(523\) −32.8230 −1.43525 −0.717624 0.696431i \(-0.754770\pi\)
−0.717624 + 0.696431i \(0.754770\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 2.25383 3.90375i 0.0981784 0.170050i
\(528\) 0 0
\(529\) 11.1548 + 19.3207i 0.484991 + 0.840030i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6.73905 + 11.6724i 0.291900 + 0.505586i
\(534\) 0 0
\(535\) −3.19615 + 5.53590i −0.138182 + 0.239338i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −50.0963 −2.15780
\(540\) 0 0
\(541\) −24.9038 −1.07070 −0.535350 0.844631i \(-0.679820\pi\)
−0.535350 + 0.844631i \(0.679820\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −3.64750 + 6.31766i −0.156242 + 0.270619i
\(546\) 0 0
\(547\) −20.2628 35.0961i −0.866373 1.50060i −0.865678 0.500602i \(-0.833112\pi\)
−0.000695095 1.00000i \(-0.500221\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −4.39156 7.60641i −0.187087 0.324044i
\(552\) 0 0
\(553\) −14.5593 + 25.2174i −0.619124 + 1.07235i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −25.8673 −1.09603 −0.548016 0.836468i \(-0.684617\pi\)
−0.548016 + 0.836468i \(0.684617\pi\)
\(558\) 0 0
\(559\) −22.3797 −0.946558
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −4.01504 + 6.95425i −0.169214 + 0.293087i −0.938144 0.346246i \(-0.887456\pi\)
0.768930 + 0.639333i \(0.220790\pi\)
\(564\) 0 0
\(565\) 1.62485 + 2.81431i 0.0683577 + 0.118399i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 16.6933 + 28.9136i 0.699818 + 1.21212i 0.968529 + 0.248900i \(0.0800691\pi\)
−0.268711 + 0.963221i \(0.586598\pi\)
\(570\) 0 0
\(571\) −13.9659 + 24.1896i −0.584455 + 1.01231i 0.410488 + 0.911866i \(0.365358\pi\)
−0.994943 + 0.100439i \(0.967975\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0.830899 0.0346509
\(576\) 0 0
\(577\) −2.74187 −0.114146 −0.0570729 0.998370i \(-0.518177\pi\)
−0.0570729 + 0.998370i \(0.518177\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −13.2643 + 22.9744i −0.550296 + 0.953140i
\(582\) 0 0
\(583\) 36.6425 + 63.4666i 1.51758 + 2.62852i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0.261700 + 0.453278i 0.0108015 + 0.0187088i 0.871376 0.490616i \(-0.163228\pi\)
−0.860574 + 0.509325i \(0.829895\pi\)
\(588\) 0 0
\(589\) −3.05596 + 5.29307i −0.125918 + 0.218097i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −39.5973 −1.62607 −0.813033 0.582217i \(-0.802185\pi\)
−0.813033 + 0.582217i \(0.802185\pi\)
\(594\) 0 0
\(595\) −9.60461 −0.393751
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −11.2936 + 19.5611i −0.461445 + 0.799247i −0.999033 0.0439608i \(-0.986002\pi\)
0.537588 + 0.843208i \(0.319336\pi\)
\(600\) 0 0
\(601\) −6.88598 11.9269i −0.280885 0.486507i 0.690718 0.723124i \(-0.257295\pi\)
−0.971603 + 0.236617i \(0.923961\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −13.0757 22.6478i −0.531603 0.920763i
\(606\) 0 0
\(607\) 13.0874 22.6680i 0.531201 0.920068i −0.468136 0.883657i \(-0.655074\pi\)
0.999337 0.0364110i \(-0.0115925\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −0.338150 −0.0136801
\(612\) 0 0
\(613\) 1.67943 0.0678317 0.0339159 0.999425i \(-0.489202\pi\)
0.0339159 + 0.999425i \(0.489202\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −0.953146 + 1.65090i −0.0383722 + 0.0664626i −0.884574 0.466400i \(-0.845551\pi\)
0.846201 + 0.532863i \(0.178884\pi\)
\(618\) 0 0
\(619\) −5.49239 9.51309i −0.220758 0.382363i 0.734281 0.678846i \(-0.237520\pi\)
−0.955038 + 0.296483i \(0.904186\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −23.6981 41.0464i −0.949445 1.64449i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −13.7573 −0.548541
\(630\) 0 0
\(631\) −0.318756 −0.0126895 −0.00634473 0.999980i \(-0.502020\pi\)
−0.00634473 + 0.999980i \(0.502020\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −7.41468 + 12.8426i −0.294243 + 0.509643i
\(636\) 0 0
\(637\) 8.32149 + 14.4132i 0.329709 + 0.571073i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.56735 6.17882i −0.140902 0.244049i 0.786935 0.617036i \(-0.211667\pi\)
−0.927836 + 0.372987i \(0.878333\pi\)
\(642\) 0 0
\(643\) −5.79029 + 10.0291i −0.228347 + 0.395508i −0.957318 0.289036i \(-0.906665\pi\)
0.728971 + 0.684544i \(0.239999\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −8.68555 −0.341464 −0.170732 0.985317i \(-0.554613\pi\)
−0.170732 + 0.985317i \(0.554613\pi\)
\(648\) 0 0
\(649\) 10.5572 0.414406
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −22.6092 + 39.1603i −0.884766 + 1.53246i −0.0387837 + 0.999248i \(0.512348\pi\)
−0.845982 + 0.533211i \(0.820985\pi\)
\(654\) 0 0
\(655\) 6.52417 + 11.3002i 0.254920 + 0.441535i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5.49786 9.52258i −0.214166 0.370947i 0.738848 0.673872i \(-0.235370\pi\)
−0.953014 + 0.302925i \(0.902037\pi\)
\(660\) 0 0
\(661\) −11.5553 + 20.0144i −0.449450 + 0.778471i −0.998350 0.0574171i \(-0.981714\pi\)
0.548900 + 0.835888i \(0.315047\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 13.0228 0.505004
\(666\) 0 0
\(667\) 2.18617 0.0846490
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −40.5827 + 70.2913i −1.56668 + 2.71357i
\(672\) 0 0
\(673\) 2.99424 + 5.18617i 0.115419 + 0.199912i 0.917947 0.396702i \(-0.129845\pi\)
−0.802528 + 0.596615i \(0.796512\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −8.77705 15.2023i −0.337329 0.584272i 0.646600 0.762829i \(-0.276190\pi\)
−0.983929 + 0.178557i \(0.942857\pi\)
\(678\) 0 0
\(679\) 1.29500 2.24301i 0.0496976 0.0860787i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −24.9458 −0.954524 −0.477262 0.878761i \(-0.658371\pi\)
−0.477262 + 0.878761i \(0.658371\pi\)
\(684\) 0 0
\(685\) −11.8023 −0.450943
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 12.1733 21.0849i 0.463768 0.803269i
\(690\) 0 0
\(691\) 17.5356 + 30.3725i 0.667085 + 1.15543i 0.978715 + 0.205222i \(0.0657916\pi\)
−0.311630 + 0.950203i \(0.600875\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 8.35219 + 14.4664i 0.316817 + 0.548742i
\(696\) 0 0
\(697\) 8.19356 14.1917i 0.310353 0.537547i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 11.6530 0.440128 0.220064 0.975485i \(-0.429373\pi\)
0.220064 + 0.975485i \(0.429373\pi\)
\(702\) 0 0
\(703\) 18.6535 0.703531
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 37.7663 65.4131i 1.42035 2.46011i
\(708\) 0 0
\(709\) −10.7795 18.6706i −0.404832 0.701189i 0.589470 0.807790i \(-0.299336\pi\)
−0.994302 + 0.106601i \(0.966003\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.760646 1.31748i −0.0284864 0.0493399i
\(714\) 0 0
\(715\) −6.17121 + 10.6888i −0.230790 + 0.399740i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −27.4199 −1.02259 −0.511295 0.859405i \(-0.670834\pi\)
−0.511295 + 0.859405i \(0.670834\pi\)
\(720\) 0 0
\(721\) −51.8516 −1.93105
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1.31555 + 2.27859i −0.0488582 + 0.0846249i
\(726\) 0 0
\(727\) −6.42247 11.1240i −0.238196 0.412568i 0.722001 0.691893i \(-0.243223\pi\)
−0.960197 + 0.279325i \(0.909889\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 13.6050 + 23.5645i 0.503198 + 0.871564i
\(732\) 0 0
\(733\) −3.29500 + 5.70711i −0.121704 + 0.210797i −0.920440 0.390885i \(-0.872169\pi\)
0.798736 + 0.601682i \(0.205502\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −80.8356 −2.97762
\(738\) 0 0
\(739\) 33.5238 1.23319 0.616596 0.787280i \(-0.288511\pi\)
0.616596 + 0.787280i \(0.288511\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −18.3204 + 31.7319i −0.672111 + 1.16413i 0.305193 + 0.952291i \(0.401279\pi\)
−0.977304 + 0.211841i \(0.932054\pi\)
\(744\) 0 0
\(745\) 10.6332 + 18.4172i 0.389570 + 0.674756i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −12.4687 21.5964i −0.455596 0.789115i
\(750\) 0 0
\(751\) 0.826681 1.43185i 0.0301660 0.0522491i −0.850548 0.525897i \(-0.823730\pi\)
0.880714 + 0.473648i \(0.157063\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −11.6831 −0.425191
\(756\) 0 0
\(757\) −24.9447 −0.906631 −0.453315 0.891350i \(-0.649759\pi\)
−0.453315 + 0.891350i \(0.649759\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.86392 + 17.0848i −0.357567 + 0.619324i −0.987554 0.157282i \(-0.949727\pi\)
0.629987 + 0.776606i \(0.283060\pi\)
\(762\) 0 0
\(763\) −14.2295 24.6461i −0.515141 0.892250i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.75365 3.03741i −0.0633207 0.109675i
\(768\) 0 0
\(769\) 23.1849 40.1574i 0.836068 1.44811i −0.0570893 0.998369i \(-0.518182\pi\)
0.893158 0.449744i \(-0.148485\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 24.2163 0.870998 0.435499 0.900189i \(-0.356572\pi\)
0.435499 + 0.900189i \(0.356572\pi\)
\(774\) 0 0
\(775\) 1.83090 0.0657678
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −11.1096 + 19.2424i −0.398043 + 0.689430i
\(780\) 0 0
\(781\) 33.1667 + 57.4464i 1.18680 + 2.05559i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 10.0458 + 17.3998i 0.358549 + 0.621025i
\(786\) 0 0
\(787\) 1.72004 2.97920i 0.0613128 0.106197i −0.833740 0.552158i \(-0.813805\pi\)
0.895052 + 0.445961i \(0.147138\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.6775 −0.450761
\(792\) 0 0
\(793\) 26.9647 0.957545
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −23.4875 + 40.6815i −0.831970 + 1.44101i 0.0645039 + 0.997917i \(0.479454\pi\)
−0.896474 + 0.443097i \(0.853880\pi\)
\(798\) 0 0
\(799\) 0.205567 + 0.356052i 0.00727243 + 0.0125962i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 5.71793 + 9.90375i 0.201781 + 0.349496i
\(804\) 0 0
\(805\) −1.62073 + 2.80719i −0.0571233 + 0.0989404i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.8829 −0.874838 −0.437419 0.899258i \(-0.644107\pi\)
−0.437419 + 0.899258i \(0.644107\pi\)
\(810\) 0 0
\(811\) −40.1794 −1.41089 −0.705444 0.708765i \(-0.749253\pi\)
−0.705444 + 0.708765i \(0.749253\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.49895 + 2.59625i −0.0525058 + 0.0909427i
\(816\) 0 0
\(817\) −18.4469 31.9510i −0.645375 1.11782i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.783301 1.35672i −0.0273374 0.0473498i 0.852033 0.523488i \(-0.175370\pi\)
−0.879370 + 0.476138i \(0.842036\pi\)
\(822\) 0 0
\(823\) 15.7488 27.2777i 0.548967 0.950840i −0.449378 0.893342i \(-0.648354\pi\)
0.998346 0.0574979i \(-0.0183123\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 19.7013 0.685081 0.342540 0.939503i \(-0.388713\pi\)
0.342540 + 0.939503i \(0.388713\pi\)
\(828\) 0 0
\(829\) −15.2950 −0.531217 −0.265609 0.964081i \(-0.585573\pi\)
−0.265609 + 0.964081i \(0.585573\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 10.1175 17.5241i 0.350552 0.607174i
\(834\) 0 0
\(835\) −5.25594 9.10355i −0.181889 0.315041i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −17.5600 30.4149i −0.606240 1.05004i −0.991854 0.127378i \(-0.959344\pi\)
0.385614 0.922660i \(-0.373990\pi\)
\(840\) 0 0
\(841\) 11.0387 19.1195i 0.380644 0.659295i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −8.89961 −0.306156
\(846\) 0 0
\(847\) 102.021 3.50547
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −2.32149 + 4.02093i −0.0795795 + 0.137836i
\(852\) 0 0
\(853\) −12.8152 22.1966i −0.438785 0.759998i 0.558811 0.829295i \(-0.311258\pi\)
−0.997596 + 0.0692967i \(0.977924\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −8.14719 14.1113i −0.278303 0.482034i 0.692660 0.721264i \(-0.256438\pi\)
−0.970963 + 0.239230i \(0.923105\pi\)
\(858\) 0 0
\(859\) 11.5523 20.0092i 0.394160 0.682704i −0.598834 0.800873i \(-0.704369\pi\)
0.992994 + 0.118169i \(0.0377024\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.3148 0.623443 0.311722 0.950173i \(-0.399094\pi\)
0.311722 + 0.950173i \(0.399094\pi\)
\(864\) 0 0
\(865\) −11.7591 −0.399821
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 22.7476 39.4000i 0.771659 1.33655i
\(870\) 0 0
\(871\) 13.4276 + 23.2573i 0.454976 + 0.788042i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −1.95058 3.37850i −0.0659415 0.114214i
\(876\) 0 0
\(877\) 3.91573 6.78225i 0.132225 0.229020i −0.792309 0.610120i \(-0.791121\pi\)
0.924534 + 0.381100i \(0.124455\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 3.17430 0.106945 0.0534724 0.998569i \(-0.482971\pi\)
0.0534724 + 0.998569i \(0.482971\pi\)
\(882\) 0 0
\(883\) −34.4132 −1.15810 −0.579049 0.815293i \(-0.696576\pi\)
−0.579049 + 0.815293i \(0.696576\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 27.8353 48.2121i 0.934618 1.61881i 0.159303 0.987230i \(-0.449075\pi\)
0.775314 0.631576i \(-0.217591\pi\)
\(888\) 0 0
\(889\) −28.9258 50.1009i −0.970140 1.68033i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −0.278727 0.482769i −0.00932724 0.0161552i
\(894\) 0 0
\(895\) 3.32802 5.76430i 0.111243 0.192679i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 4.81727 0.160665
\(900\) 0 0
\(901\) −29.6015 −0.986170
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.25365 + 7.36754i −0.141396 + 0.244905i
\(906\) 0 0
\(907\) 14.0146 + 24.2740i 0.465347 + 0.806005i 0.999217 0.0395614i \(-0.0125961\pi\)
−0.533870 + 0.845567i \(0.679263\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −12.4618 21.5845i −0.412878 0.715126i 0.582325 0.812956i \(-0.302143\pi\)
−0.995203 + 0.0978300i \(0.968810\pi\)
\(912\) 0 0
\(913\) 20.7243 35.8955i 0.685873 1.18797i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −50.9036 −1.68098
\(918\) 0 0
\(919\) 13.2512 0.437116 0.218558 0.975824i \(-0.429865\pi\)
0.218558 + 0.975824i \(0.429865\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 11.0186 19.0848i 0.362682 0.628184i
\(924\) 0 0
\(925\) −2.79395 4.83926i −0.0918644 0.159114i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.3456 + 36.9717i 0.700327 + 1.21300i 0.968352 + 0.249590i \(0.0802960\pi\)
−0.268024 + 0.963412i \(0.586371\pi\)
\(930\) 0 0
\(931\) −13.7183 + 23.7608i −0.449600 + 0.778730i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 15.0063 0.490759
\(936\) 0 0
\(937\) −11.5620 −0.377715 −0.188857 0.982005i \(-0.560478\pi\)
−0.188857 + 0.982005i \(0.560478\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 19.3865 33.5785i 0.631983 1.09463i −0.355163 0.934805i \(-0.615574\pi\)
0.987146 0.159823i \(-0.0510922\pi\)
\(942\) 0 0
\(943\) −2.76525 4.78955i −0.0900488 0.155969i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 25.1697 + 43.5951i 0.817904 + 1.41665i 0.907224 + 0.420649i \(0.138197\pi\)
−0.0893194 + 0.996003i \(0.528469\pi\)
\(948\) 0 0
\(949\) 1.89961 3.29022i 0.0616639 0.106805i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −11.4118 −0.369666 −0.184833 0.982770i \(-0.559174\pi\)
−0.184833 + 0.982770i \(0.559174\pi\)
\(954\) 0 0
\(955\) 17.5052 0.566455
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 23.0213 39.8740i 0.743396 1.28760i
\(960\) 0 0
\(961\) 13.8239 + 23.9437i 0.445932 + 0.772378i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −13.0582 22.6175i −0.420360 0.728084i
\(966\) 0 0
\(967\) 3.81642 6.61024i 0.122728 0.212571i −0.798115 0.602506i \(-0.794169\pi\)
0.920843 + 0.389935i \(0.127502\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.5124 0.658276 0.329138 0.944282i \(-0.393242\pi\)
0.329138 + 0.944282i \(0.393242\pi\)
\(972\) 0 0
\(973\) −65.1663 −2.08914
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.96930 6.87502i 0.126989 0.219951i −0.795520 0.605928i \(-0.792802\pi\)
0.922509 + 0.385976i \(0.126135\pi\)
\(978\) 0 0
\(979\) 37.0262 + 64.1312i 1.18336 + 2.04964i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −11.8627 20.5467i −0.378360 0.655339i 0.612464 0.790499i \(-0.290179\pi\)
−0.990824 + 0.135160i \(0.956845\pi\)
\(984\) 0 0
\(985\) 6.46076 11.1904i 0.205857 0.356555i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 9.18309 0.292005
\(990\) 0 0
\(991\) 4.04618 0.128531 0.0642656 0.997933i \(-0.479530\pi\)
0.0642656 + 0.997933i \(0.479530\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −8.48904 + 14.7035i −0.269121 + 0.466131i
\(996\) 0 0
\(997\) −4.54058 7.86451i −0.143802 0.249072i 0.785124 0.619339i \(-0.212599\pi\)
−0.928925 + 0.370268i \(0.879266\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3240.2.q.bg.1081.1 8
3.2 odd 2 3240.2.q.bh.1081.1 8
9.2 odd 6 3240.2.q.bh.2161.1 8
9.4 even 3 3240.2.a.v.1.4 yes 4
9.5 odd 6 3240.2.a.t.1.4 4
9.7 even 3 inner 3240.2.q.bg.2161.1 8
36.23 even 6 6480.2.a.by.1.1 4
36.31 odd 6 6480.2.a.ca.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3240.2.a.t.1.4 4 9.5 odd 6
3240.2.a.v.1.4 yes 4 9.4 even 3
3240.2.q.bg.1081.1 8 1.1 even 1 trivial
3240.2.q.bg.2161.1 8 9.7 even 3 inner
3240.2.q.bh.1081.1 8 3.2 odd 2
3240.2.q.bh.2161.1 8 9.2 odd 6
6480.2.a.by.1.1 4 36.23 even 6
6480.2.a.ca.1.1 4 36.31 odd 6