Properties

Label 324.5.c.b.161.6
Level $324$
Weight $5$
Character 324.161
Analytic conductor $33.492$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,5,Mod(161,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.161"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 324.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.4918680392\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 130x^{6} + 404x^{5} + 7007x^{4} - 14692x^{3} - 164750x^{2} + 172164x + 1445046 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.6
Root \(5.23219 - 0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 324.161
Dual form 324.5.c.b.161.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+23.7512i q^{5} +86.6692 q^{7} -178.986i q^{11} +126.043 q^{13} -40.6840i q^{17} -157.085 q^{19} -784.115i q^{23} +60.8803 q^{25} +1377.20i q^{29} -376.079 q^{31} +2058.50i q^{35} +1828.71 q^{37} -734.617i q^{41} +359.163 q^{43} -3001.03i q^{47} +5110.56 q^{49} +2955.02i q^{53} +4251.14 q^{55} -4921.52i q^{59} +6775.98 q^{61} +2993.67i q^{65} -523.022 q^{67} +5104.50i q^{71} -6301.79 q^{73} -15512.6i q^{77} +4305.58 q^{79} +4808.46i q^{83} +966.293 q^{85} +9205.60i q^{89} +10924.0 q^{91} -3730.96i q^{95} -8935.86 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 52 q^{7} + 220 q^{13} - 308 q^{19} - 328 q^{25} - 1472 q^{31} + 1228 q^{37} + 388 q^{43} + 3432 q^{49} - 36 q^{55} + 1804 q^{61} - 2180 q^{67} - 4544 q^{73} - 5012 q^{79} - 5364 q^{85} - 1756 q^{91}+ \cdots - 2528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 23.7512i 0.950048i 0.879973 + 0.475024i \(0.157561\pi\)
−0.879973 + 0.475024i \(0.842439\pi\)
\(6\) 0 0
\(7\) 86.6692 1.76876 0.884380 0.466768i \(-0.154582\pi\)
0.884380 + 0.466768i \(0.154582\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) − 178.986i − 1.47923i −0.673032 0.739613i \(-0.735008\pi\)
0.673032 0.739613i \(-0.264992\pi\)
\(12\) 0 0
\(13\) 126.043 0.745815 0.372907 0.927869i \(-0.378361\pi\)
0.372907 + 0.927869i \(0.378361\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 40.6840i − 0.140775i −0.997520 0.0703875i \(-0.977576\pi\)
0.997520 0.0703875i \(-0.0224236\pi\)
\(18\) 0 0
\(19\) −157.085 −0.435139 −0.217569 0.976045i \(-0.569813\pi\)
−0.217569 + 0.976045i \(0.569813\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 784.115i − 1.48226i −0.671362 0.741130i \(-0.734290\pi\)
0.671362 0.741130i \(-0.265710\pi\)
\(24\) 0 0
\(25\) 60.8803 0.0974085
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 1377.20i 1.63757i 0.574099 + 0.818786i \(0.305352\pi\)
−0.574099 + 0.818786i \(0.694648\pi\)
\(30\) 0 0
\(31\) −376.079 −0.391341 −0.195671 0.980670i \(-0.562688\pi\)
−0.195671 + 0.980670i \(0.562688\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2058.50i 1.68041i
\(36\) 0 0
\(37\) 1828.71 1.33580 0.667900 0.744251i \(-0.267194\pi\)
0.667900 + 0.744251i \(0.267194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 734.617i − 0.437012i −0.975836 0.218506i \(-0.929882\pi\)
0.975836 0.218506i \(-0.0701183\pi\)
\(42\) 0 0
\(43\) 359.163 0.194247 0.0971237 0.995272i \(-0.469036\pi\)
0.0971237 + 0.995272i \(0.469036\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 3001.03i − 1.35855i −0.733886 0.679273i \(-0.762295\pi\)
0.733886 0.679273i \(-0.237705\pi\)
\(48\) 0 0
\(49\) 5110.56 2.12851
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 2955.02i 1.05198i 0.850490 + 0.525992i \(0.176306\pi\)
−0.850490 + 0.525992i \(0.823694\pi\)
\(54\) 0 0
\(55\) 4251.14 1.40534
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 4921.52i − 1.41382i −0.707301 0.706912i \(-0.750087\pi\)
0.707301 0.706912i \(-0.249913\pi\)
\(60\) 0 0
\(61\) 6775.98 1.82101 0.910505 0.413498i \(-0.135693\pi\)
0.910505 + 0.413498i \(0.135693\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 2993.67i 0.708560i
\(66\) 0 0
\(67\) −523.022 −0.116512 −0.0582559 0.998302i \(-0.518554\pi\)
−0.0582559 + 0.998302i \(0.518554\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 5104.50i 1.01260i 0.862359 + 0.506298i \(0.168986\pi\)
−0.862359 + 0.506298i \(0.831014\pi\)
\(72\) 0 0
\(73\) −6301.79 −1.18255 −0.591273 0.806472i \(-0.701374\pi\)
−0.591273 + 0.806472i \(0.701374\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 15512.6i − 2.61640i
\(78\) 0 0
\(79\) 4305.58 0.689885 0.344943 0.938624i \(-0.387898\pi\)
0.344943 + 0.938624i \(0.387898\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4808.46i 0.697992i 0.937124 + 0.348996i \(0.113477\pi\)
−0.937124 + 0.348996i \(0.886523\pi\)
\(84\) 0 0
\(85\) 966.293 0.133743
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 9205.60i 1.16218i 0.813841 + 0.581088i \(0.197373\pi\)
−0.813841 + 0.581088i \(0.802627\pi\)
\(90\) 0 0
\(91\) 10924.0 1.31917
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 3730.96i − 0.413403i
\(96\) 0 0
\(97\) −8935.86 −0.949714 −0.474857 0.880063i \(-0.657500\pi\)
−0.474857 + 0.880063i \(0.657500\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 6535.65i − 0.640687i −0.947301 0.320343i \(-0.896202\pi\)
0.947301 0.320343i \(-0.103798\pi\)
\(102\) 0 0
\(103\) 19772.1 1.86371 0.931856 0.362829i \(-0.118189\pi\)
0.931856 + 0.362829i \(0.118189\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 884.646i − 0.0772684i −0.999253 0.0386342i \(-0.987699\pi\)
0.999253 0.0386342i \(-0.0123007\pi\)
\(108\) 0 0
\(109\) 15820.7 1.33160 0.665798 0.746132i \(-0.268091\pi\)
0.665798 + 0.746132i \(0.268091\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 15078.7i 1.18088i 0.807082 + 0.590440i \(0.201046\pi\)
−0.807082 + 0.590440i \(0.798954\pi\)
\(114\) 0 0
\(115\) 18623.7 1.40822
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 3526.05i − 0.248997i
\(120\) 0 0
\(121\) −17395.2 −1.18811
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 16290.5i 1.04259i
\(126\) 0 0
\(127\) −2433.13 −0.150854 −0.0754271 0.997151i \(-0.524032\pi\)
−0.0754271 + 0.997151i \(0.524032\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 13786.9i 0.803388i 0.915774 + 0.401694i \(0.131578\pi\)
−0.915774 + 0.401694i \(0.868422\pi\)
\(132\) 0 0
\(133\) −13614.4 −0.769656
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12641.9i 0.673554i 0.941584 + 0.336777i \(0.109337\pi\)
−0.941584 + 0.336777i \(0.890663\pi\)
\(138\) 0 0
\(139\) −3110.48 −0.160990 −0.0804949 0.996755i \(-0.525650\pi\)
−0.0804949 + 0.996755i \(0.525650\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 22559.9i − 1.10323i
\(144\) 0 0
\(145\) −32710.1 −1.55577
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) − 41742.7i − 1.88022i −0.340877 0.940108i \(-0.610724\pi\)
0.340877 0.940108i \(-0.389276\pi\)
\(150\) 0 0
\(151\) −13882.7 −0.608862 −0.304431 0.952534i \(-0.598466\pi\)
−0.304431 + 0.952534i \(0.598466\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 8932.33i − 0.371793i
\(156\) 0 0
\(157\) −19248.5 −0.780903 −0.390452 0.920623i \(-0.627681\pi\)
−0.390452 + 0.920623i \(0.627681\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) − 67958.7i − 2.62176i
\(162\) 0 0
\(163\) −38351.4 −1.44346 −0.721732 0.692173i \(-0.756654\pi\)
−0.721732 + 0.692173i \(0.756654\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 46059.7i 1.65153i 0.564011 + 0.825767i \(0.309258\pi\)
−0.564011 + 0.825767i \(0.690742\pi\)
\(168\) 0 0
\(169\) −12674.2 −0.443761
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18815.9i 0.628686i 0.949310 + 0.314343i \(0.101784\pi\)
−0.949310 + 0.314343i \(0.898216\pi\)
\(174\) 0 0
\(175\) 5276.45 0.172292
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15586.9i 0.486467i 0.969968 + 0.243233i \(0.0782081\pi\)
−0.969968 + 0.243233i \(0.921792\pi\)
\(180\) 0 0
\(181\) 12059.0 0.368089 0.184044 0.982918i \(-0.441081\pi\)
0.184044 + 0.982918i \(0.441081\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 43434.0i 1.26907i
\(186\) 0 0
\(187\) −7281.88 −0.208238
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 65282.1i − 1.78948i −0.446585 0.894741i \(-0.647360\pi\)
0.446585 0.894741i \(-0.352640\pi\)
\(192\) 0 0
\(193\) −40646.2 −1.09120 −0.545601 0.838045i \(-0.683698\pi\)
−0.545601 + 0.838045i \(0.683698\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 29562.3i − 0.761739i −0.924629 0.380869i \(-0.875625\pi\)
0.924629 0.380869i \(-0.124375\pi\)
\(198\) 0 0
\(199\) 12760.8 0.322233 0.161117 0.986935i \(-0.448490\pi\)
0.161117 + 0.986935i \(0.448490\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 119361.i 2.89647i
\(204\) 0 0
\(205\) 17448.0 0.415182
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 28116.1i 0.643669i
\(210\) 0 0
\(211\) −20715.9 −0.465307 −0.232654 0.972560i \(-0.574741\pi\)
−0.232654 + 0.972560i \(0.574741\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 8530.56i 0.184544i
\(216\) 0 0
\(217\) −32594.5 −0.692189
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 5127.91i − 0.104992i
\(222\) 0 0
\(223\) −83790.3 −1.68494 −0.842469 0.538745i \(-0.818899\pi\)
−0.842469 + 0.538745i \(0.818899\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 23432.3i − 0.454739i −0.973809 0.227370i \(-0.926987\pi\)
0.973809 0.227370i \(-0.0730126\pi\)
\(228\) 0 0
\(229\) 28876.8 0.550653 0.275326 0.961351i \(-0.411214\pi\)
0.275326 + 0.961351i \(0.411214\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) − 79153.1i − 1.45800i −0.684516 0.728998i \(-0.739986\pi\)
0.684516 0.728998i \(-0.260014\pi\)
\(234\) 0 0
\(235\) 71278.0 1.29068
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) − 44604.9i − 0.780884i −0.920627 0.390442i \(-0.872322\pi\)
0.920627 0.390442i \(-0.127678\pi\)
\(240\) 0 0
\(241\) −110358. −1.90007 −0.950036 0.312141i \(-0.898954\pi\)
−0.950036 + 0.312141i \(0.898954\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 121382.i 2.02219i
\(246\) 0 0
\(247\) −19799.4 −0.324533
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 24428.5i − 0.387748i −0.981026 0.193874i \(-0.937895\pi\)
0.981026 0.193874i \(-0.0621053\pi\)
\(252\) 0 0
\(253\) −140346. −2.19260
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 63139.9i − 0.955956i −0.878372 0.477978i \(-0.841370\pi\)
0.878372 0.477978i \(-0.158630\pi\)
\(258\) 0 0
\(259\) 158493. 2.36271
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 60485.0i − 0.874452i −0.899352 0.437226i \(-0.855961\pi\)
0.899352 0.437226i \(-0.144039\pi\)
\(264\) 0 0
\(265\) −70185.3 −0.999435
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 109374.i 1.51150i 0.654861 + 0.755749i \(0.272727\pi\)
−0.654861 + 0.755749i \(0.727273\pi\)
\(270\) 0 0
\(271\) −37620.6 −0.512257 −0.256128 0.966643i \(-0.582447\pi\)
−0.256128 + 0.966643i \(0.582447\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 10896.8i − 0.144089i
\(276\) 0 0
\(277\) 8871.32 0.115619 0.0578094 0.998328i \(-0.481588\pi\)
0.0578094 + 0.998328i \(0.481588\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 9467.56i − 0.119902i −0.998201 0.0599509i \(-0.980906\pi\)
0.998201 0.0599509i \(-0.0190944\pi\)
\(282\) 0 0
\(283\) 53409.2 0.666873 0.333436 0.942773i \(-0.391792\pi\)
0.333436 + 0.942773i \(0.391792\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 63668.7i − 0.772969i
\(288\) 0 0
\(289\) 81865.8 0.980182
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 5225.87i − 0.0608728i −0.999537 0.0304364i \(-0.990310\pi\)
0.999537 0.0304364i \(-0.00968970\pi\)
\(294\) 0 0
\(295\) 116892. 1.34320
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 98832.0i − 1.10549i
\(300\) 0 0
\(301\) 31128.4 0.343577
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 160938.i 1.73005i
\(306\) 0 0
\(307\) 117913. 1.25108 0.625542 0.780191i \(-0.284878\pi\)
0.625542 + 0.780191i \(0.284878\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 57436.2i 0.593834i 0.954903 + 0.296917i \(0.0959585\pi\)
−0.954903 + 0.296917i \(0.904042\pi\)
\(312\) 0 0
\(313\) 5741.93 0.0586097 0.0293048 0.999571i \(-0.490671\pi\)
0.0293048 + 0.999571i \(0.490671\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8429.42i 0.0838840i 0.999120 + 0.0419420i \(0.0133545\pi\)
−0.999120 + 0.0419420i \(0.986646\pi\)
\(318\) 0 0
\(319\) 246500. 2.42234
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 6390.84i 0.0612566i
\(324\) 0 0
\(325\) 7673.52 0.0726487
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 260097.i − 2.40294i
\(330\) 0 0
\(331\) 85349.2 0.779011 0.389505 0.921024i \(-0.372646\pi\)
0.389505 + 0.921024i \(0.372646\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 12422.4i − 0.110692i
\(336\) 0 0
\(337\) 20182.7 0.177713 0.0888565 0.996044i \(-0.471679\pi\)
0.0888565 + 0.996044i \(0.471679\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 67313.0i 0.578883i
\(342\) 0 0
\(343\) 234835. 1.99607
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 14500.2i − 0.120425i −0.998186 0.0602123i \(-0.980822\pi\)
0.998186 0.0602123i \(-0.0191778\pi\)
\(348\) 0 0
\(349\) −199023. −1.63400 −0.817001 0.576636i \(-0.804365\pi\)
−0.817001 + 0.576636i \(0.804365\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 112370.i 0.901781i 0.892579 + 0.450890i \(0.148893\pi\)
−0.892579 + 0.450890i \(0.851107\pi\)
\(354\) 0 0
\(355\) −121238. −0.962015
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 196146.i 1.52191i 0.648802 + 0.760957i \(0.275270\pi\)
−0.648802 + 0.760957i \(0.724730\pi\)
\(360\) 0 0
\(361\) −105645. −0.810654
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 149675.i − 1.12348i
\(366\) 0 0
\(367\) −52979.7 −0.393348 −0.196674 0.980469i \(-0.563014\pi\)
−0.196674 + 0.980469i \(0.563014\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 256109.i 1.86071i
\(372\) 0 0
\(373\) −27297.1 −0.196200 −0.0980998 0.995177i \(-0.531276\pi\)
−0.0980998 + 0.995177i \(0.531276\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 173586.i 1.22133i
\(378\) 0 0
\(379\) 44799.6 0.311886 0.155943 0.987766i \(-0.450158\pi\)
0.155943 + 0.987766i \(0.450158\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 97981.4i − 0.667953i −0.942581 0.333977i \(-0.891609\pi\)
0.942581 0.333977i \(-0.108391\pi\)
\(384\) 0 0
\(385\) 368443. 2.48570
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 69789.7i 0.461203i 0.973048 + 0.230602i \(0.0740694\pi\)
−0.973048 + 0.230602i \(0.925931\pi\)
\(390\) 0 0
\(391\) −31900.9 −0.208665
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 102263.i 0.655424i
\(396\) 0 0
\(397\) −1193.74 −0.00757408 −0.00378704 0.999993i \(-0.501205\pi\)
−0.00378704 + 0.999993i \(0.501205\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 137748.i − 0.856637i −0.903628 0.428319i \(-0.859106\pi\)
0.903628 0.428319i \(-0.140894\pi\)
\(402\) 0 0
\(403\) −47402.0 −0.291868
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 327314.i − 1.97595i
\(408\) 0 0
\(409\) 26316.5 0.157319 0.0786597 0.996902i \(-0.474936\pi\)
0.0786597 + 0.996902i \(0.474936\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 426545.i − 2.50072i
\(414\) 0 0
\(415\) −114207. −0.663126
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 30153.9i 0.171758i 0.996306 + 0.0858788i \(0.0273698\pi\)
−0.996306 + 0.0858788i \(0.972630\pi\)
\(420\) 0 0
\(421\) −5937.01 −0.0334968 −0.0167484 0.999860i \(-0.505331\pi\)
−0.0167484 + 0.999860i \(0.505331\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 2476.85i − 0.0137127i
\(426\) 0 0
\(427\) 587269. 3.22093
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 166431.i 0.895942i 0.894048 + 0.447971i \(0.147853\pi\)
−0.894048 + 0.447971i \(0.852147\pi\)
\(432\) 0 0
\(433\) 219214. 1.16921 0.584605 0.811318i \(-0.301250\pi\)
0.584605 + 0.811318i \(0.301250\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 123173.i 0.644988i
\(438\) 0 0
\(439\) 201027. 1.04310 0.521550 0.853220i \(-0.325354\pi\)
0.521550 + 0.853220i \(0.325354\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 263344.i − 1.34189i −0.741509 0.670943i \(-0.765890\pi\)
0.741509 0.670943i \(-0.234110\pi\)
\(444\) 0 0
\(445\) −218644. −1.10412
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 70689.4i − 0.350640i −0.984511 0.175320i \(-0.943904\pi\)
0.984511 0.175320i \(-0.0560960\pi\)
\(450\) 0 0
\(451\) −131486. −0.646440
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 259459.i 1.25327i
\(456\) 0 0
\(457\) −166296. −0.796248 −0.398124 0.917332i \(-0.630339\pi\)
−0.398124 + 0.917332i \(0.630339\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 109252.i − 0.514074i −0.966402 0.257037i \(-0.917254\pi\)
0.966402 0.257037i \(-0.0827462\pi\)
\(462\) 0 0
\(463\) −379106. −1.76847 −0.884237 0.467039i \(-0.845321\pi\)
−0.884237 + 0.467039i \(0.845321\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 20498.9i − 0.0939932i −0.998895 0.0469966i \(-0.985035\pi\)
0.998895 0.0469966i \(-0.0149650\pi\)
\(468\) 0 0
\(469\) −45329.9 −0.206082
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) − 64285.4i − 0.287336i
\(474\) 0 0
\(475\) −9563.39 −0.0423862
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 32431.7i 0.141351i 0.997499 + 0.0706754i \(0.0225154\pi\)
−0.997499 + 0.0706754i \(0.977485\pi\)
\(480\) 0 0
\(481\) 230495. 0.996259
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 212237.i − 0.902274i
\(486\) 0 0
\(487\) −320004. −1.34927 −0.674633 0.738153i \(-0.735698\pi\)
−0.674633 + 0.738153i \(0.735698\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 98170.4i 0.407209i 0.979053 + 0.203605i \(0.0652657\pi\)
−0.979053 + 0.203605i \(0.934734\pi\)
\(492\) 0 0
\(493\) 56029.9 0.230529
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 442403.i 1.79104i
\(498\) 0 0
\(499\) −334328. −1.34268 −0.671340 0.741150i \(-0.734281\pi\)
−0.671340 + 0.741150i \(0.734281\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 71289.4i 0.281766i 0.990026 + 0.140883i \(0.0449942\pi\)
−0.990026 + 0.140883i \(0.955006\pi\)
\(504\) 0 0
\(505\) 155229. 0.608683
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 306381.i 1.18257i 0.806463 + 0.591285i \(0.201379\pi\)
−0.806463 + 0.591285i \(0.798621\pi\)
\(510\) 0 0
\(511\) −546171. −2.09164
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 469611.i 1.77062i
\(516\) 0 0
\(517\) −537143. −2.00960
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 77716.8i 0.286312i 0.989700 + 0.143156i \(0.0457251\pi\)
−0.989700 + 0.143156i \(0.954275\pi\)
\(522\) 0 0
\(523\) −47075.7 −0.172105 −0.0860525 0.996291i \(-0.527425\pi\)
−0.0860525 + 0.996291i \(0.527425\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15300.4i 0.0550910i
\(528\) 0 0
\(529\) −334996. −1.19709
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 92593.1i − 0.325930i
\(534\) 0 0
\(535\) 21011.4 0.0734087
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 914720.i − 3.14855i
\(540\) 0 0
\(541\) −94797.1 −0.323892 −0.161946 0.986800i \(-0.551777\pi\)
−0.161946 + 0.986800i \(0.551777\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 375760.i 1.26508i
\(546\) 0 0
\(547\) −133762. −0.447050 −0.223525 0.974698i \(-0.571756\pi\)
−0.223525 + 0.974698i \(0.571756\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 216337.i − 0.712571i
\(552\) 0 0
\(553\) 373161. 1.22024
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 8093.05i − 0.0260857i −0.999915 0.0130428i \(-0.995848\pi\)
0.999915 0.0130428i \(-0.00415178\pi\)
\(558\) 0 0
\(559\) 45269.9 0.144873
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 135086.i − 0.426179i −0.977033 0.213090i \(-0.931647\pi\)
0.977033 0.213090i \(-0.0683527\pi\)
\(564\) 0 0
\(565\) −358136. −1.12189
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) − 456758.i − 1.41079i −0.708815 0.705394i \(-0.750770\pi\)
0.708815 0.705394i \(-0.249230\pi\)
\(570\) 0 0
\(571\) −69964.5 −0.214588 −0.107294 0.994227i \(-0.534219\pi\)
−0.107294 + 0.994227i \(0.534219\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 47737.2i − 0.144385i
\(576\) 0 0
\(577\) −553043. −1.66114 −0.830571 0.556912i \(-0.811986\pi\)
−0.830571 + 0.556912i \(0.811986\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 416746.i 1.23458i
\(582\) 0 0
\(583\) 528909. 1.55612
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 277782.i − 0.806171i −0.915162 0.403085i \(-0.867938\pi\)
0.915162 0.403085i \(-0.132062\pi\)
\(588\) 0 0
\(589\) 59076.4 0.170288
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 147873.i 0.420514i 0.977646 + 0.210257i \(0.0674301\pi\)
−0.977646 + 0.210257i \(0.932570\pi\)
\(594\) 0 0
\(595\) 83747.9 0.236559
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 596299.i 1.66192i 0.556331 + 0.830961i \(0.312209\pi\)
−0.556331 + 0.830961i \(0.687791\pi\)
\(600\) 0 0
\(601\) 414549. 1.14770 0.573848 0.818962i \(-0.305450\pi\)
0.573848 + 0.818962i \(0.305450\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 413156.i − 1.12876i
\(606\) 0 0
\(607\) −393182. −1.06713 −0.533563 0.845760i \(-0.679147\pi\)
−0.533563 + 0.845760i \(0.679147\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 378258.i − 1.01322i
\(612\) 0 0
\(613\) 324774. 0.864292 0.432146 0.901804i \(-0.357757\pi\)
0.432146 + 0.901804i \(0.357757\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 139692.i 0.366946i 0.983025 + 0.183473i \(0.0587339\pi\)
−0.983025 + 0.183473i \(0.941266\pi\)
\(618\) 0 0
\(619\) −227426. −0.593553 −0.296776 0.954947i \(-0.595912\pi\)
−0.296776 + 0.954947i \(0.595912\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 797842.i 2.05561i
\(624\) 0 0
\(625\) −348868. −0.893103
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 74399.1i − 0.188047i
\(630\) 0 0
\(631\) −363707. −0.913468 −0.456734 0.889603i \(-0.650981\pi\)
−0.456734 + 0.889603i \(0.650981\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 57789.7i − 0.143319i
\(636\) 0 0
\(637\) 644148. 1.58747
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 662932.i − 1.61344i −0.590934 0.806720i \(-0.701241\pi\)
0.590934 0.806720i \(-0.298759\pi\)
\(642\) 0 0
\(643\) 419706. 1.01513 0.507567 0.861612i \(-0.330545\pi\)
0.507567 + 0.861612i \(0.330545\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 103936.i 0.248289i 0.992264 + 0.124145i \(0.0396186\pi\)
−0.992264 + 0.124145i \(0.960381\pi\)
\(648\) 0 0
\(649\) −880886. −2.09137
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) − 326907.i − 0.766650i −0.923613 0.383325i \(-0.874779\pi\)
0.923613 0.383325i \(-0.125221\pi\)
\(654\) 0 0
\(655\) −327456. −0.763257
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 709809.i 1.63445i 0.576322 + 0.817223i \(0.304487\pi\)
−0.576322 + 0.817223i \(0.695513\pi\)
\(660\) 0 0
\(661\) 476388. 1.09033 0.545165 0.838328i \(-0.316467\pi\)
0.545165 + 0.838328i \(0.316467\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 323359.i − 0.731210i
\(666\) 0 0
\(667\) 1.07988e6 2.42731
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) − 1.21281e6i − 2.69369i
\(672\) 0 0
\(673\) −489359. −1.08043 −0.540216 0.841527i \(-0.681657\pi\)
−0.540216 + 0.841527i \(0.681657\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 313807.i 0.684676i 0.939577 + 0.342338i \(0.111219\pi\)
−0.939577 + 0.342338i \(0.888781\pi\)
\(678\) 0 0
\(679\) −774464. −1.67982
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 7855.89i 0.0168405i 0.999965 + 0.00842023i \(0.00268027\pi\)
−0.999965 + 0.00842023i \(0.997320\pi\)
\(684\) 0 0
\(685\) −300261. −0.639909
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 372459.i 0.784585i
\(690\) 0 0
\(691\) −231267. −0.484348 −0.242174 0.970233i \(-0.577860\pi\)
−0.242174 + 0.970233i \(0.577860\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 73877.7i − 0.152948i
\(696\) 0 0
\(697\) −29887.1 −0.0615203
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 872510.i 1.77556i 0.460272 + 0.887778i \(0.347752\pi\)
−0.460272 + 0.887778i \(0.652248\pi\)
\(702\) 0 0
\(703\) −287263. −0.581258
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 566439.i − 1.13322i
\(708\) 0 0
\(709\) −312389. −0.621445 −0.310722 0.950501i \(-0.600571\pi\)
−0.310722 + 0.950501i \(0.600571\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 294889.i 0.580069i
\(714\) 0 0
\(715\) 535826. 1.04812
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 870129.i 1.68316i 0.540132 + 0.841581i \(0.318374\pi\)
−0.540132 + 0.841581i \(0.681626\pi\)
\(720\) 0 0
\(721\) 1.71363e6 3.29646
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 83844.3i 0.159513i
\(726\) 0 0
\(727\) −445948. −0.843752 −0.421876 0.906653i \(-0.638628\pi\)
−0.421876 + 0.906653i \(0.638628\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 14612.2i − 0.0273452i
\(732\) 0 0
\(733\) 1.04537e6 1.94563 0.972816 0.231581i \(-0.0743899\pi\)
0.972816 + 0.231581i \(0.0743899\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 93613.8i 0.172348i
\(738\) 0 0
\(739\) −614455. −1.12513 −0.562564 0.826754i \(-0.690185\pi\)
−0.562564 + 0.826754i \(0.690185\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 329504.i − 0.596874i −0.954429 0.298437i \(-0.903535\pi\)
0.954429 0.298437i \(-0.0964652\pi\)
\(744\) 0 0
\(745\) 991438. 1.78630
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 76671.5i − 0.136669i
\(750\) 0 0
\(751\) −764579. −1.35563 −0.677817 0.735231i \(-0.737074\pi\)
−0.677817 + 0.735231i \(0.737074\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 329730.i − 0.578448i
\(756\) 0 0
\(757\) 794136. 1.38581 0.692904 0.721030i \(-0.256331\pi\)
0.692904 + 0.721030i \(0.256331\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 587558.i 1.01457i 0.861779 + 0.507284i \(0.169351\pi\)
−0.861779 + 0.507284i \(0.830649\pi\)
\(762\) 0 0
\(763\) 1.37117e6 2.35527
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 620322.i − 1.05445i
\(768\) 0 0
\(769\) −81625.4 −0.138030 −0.0690149 0.997616i \(-0.521986\pi\)
−0.0690149 + 0.997616i \(0.521986\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 771118.i 1.29051i 0.763967 + 0.645256i \(0.223249\pi\)
−0.763967 + 0.645256i \(0.776751\pi\)
\(774\) 0 0
\(775\) −22895.8 −0.0381200
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 115397.i 0.190161i
\(780\) 0 0
\(781\) 913636. 1.49786
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 457175.i − 0.741896i
\(786\) 0 0
\(787\) 314632. 0.507989 0.253994 0.967206i \(-0.418256\pi\)
0.253994 + 0.967206i \(0.418256\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 1.30686e6i 2.08869i
\(792\) 0 0
\(793\) 854063. 1.35814
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 926192.i − 1.45809i −0.684466 0.729045i \(-0.739964\pi\)
0.684466 0.729045i \(-0.260036\pi\)
\(798\) 0 0
\(799\) −122094. −0.191249
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.12793e6i 1.74925i
\(804\) 0 0
\(805\) 1.61410e6 2.49080
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) − 814711.i − 1.24482i −0.782691 0.622410i \(-0.786154\pi\)
0.782691 0.622410i \(-0.213846\pi\)
\(810\) 0 0
\(811\) −464849. −0.706758 −0.353379 0.935480i \(-0.614967\pi\)
−0.353379 + 0.935480i \(0.614967\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 910892.i − 1.37136i
\(816\) 0 0
\(817\) −56419.2 −0.0845245
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 568912.i − 0.844032i −0.906588 0.422016i \(-0.861323\pi\)
0.906588 0.422016i \(-0.138677\pi\)
\(822\) 0 0
\(823\) 517711. 0.764341 0.382171 0.924092i \(-0.375177\pi\)
0.382171 + 0.924092i \(0.375177\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 108209.i 0.158216i 0.996866 + 0.0791080i \(0.0252072\pi\)
−0.996866 + 0.0791080i \(0.974793\pi\)
\(828\) 0 0
\(829\) 526645. 0.766318 0.383159 0.923682i \(-0.374836\pi\)
0.383159 + 0.923682i \(0.374836\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 207918.i − 0.299641i
\(834\) 0 0
\(835\) −1.09397e6 −1.56904
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) − 831834.i − 1.18172i −0.806776 0.590858i \(-0.798789\pi\)
0.806776 0.590858i \(-0.201211\pi\)
\(840\) 0 0
\(841\) −1.18939e6 −1.68164
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) − 301029.i − 0.421594i
\(846\) 0 0
\(847\) −1.50762e6 −2.10149
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 1.43392e6i − 1.98000i
\(852\) 0 0
\(853\) 908743. 1.24894 0.624472 0.781047i \(-0.285314\pi\)
0.624472 + 0.781047i \(0.285314\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 15049.8i 0.0204912i 0.999948 + 0.0102456i \(0.00326134\pi\)
−0.999948 + 0.0102456i \(0.996739\pi\)
\(858\) 0 0
\(859\) 384604. 0.521228 0.260614 0.965443i \(-0.416075\pi\)
0.260614 + 0.965443i \(0.416075\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 577369.i 0.775232i 0.921821 + 0.387616i \(0.126701\pi\)
−0.921821 + 0.387616i \(0.873299\pi\)
\(864\) 0 0
\(865\) −446901. −0.597282
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) − 770640.i − 1.02050i
\(870\) 0 0
\(871\) −65923.1 −0.0868963
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.41188e6i 1.84409i
\(876\) 0 0
\(877\) −648747. −0.843482 −0.421741 0.906716i \(-0.638581\pi\)
−0.421741 + 0.906716i \(0.638581\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 19219.1i 0.0247617i 0.999923 + 0.0123808i \(0.00394104\pi\)
−0.999923 + 0.0123808i \(0.996059\pi\)
\(882\) 0 0
\(883\) 166919. 0.214085 0.107042 0.994254i \(-0.465862\pi\)
0.107042 + 0.994254i \(0.465862\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 281186.i 0.357393i 0.983904 + 0.178697i \(0.0571881\pi\)
−0.983904 + 0.178697i \(0.942812\pi\)
\(888\) 0 0
\(889\) −210877. −0.266825
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 471417.i 0.591156i
\(894\) 0 0
\(895\) −370207. −0.462167
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 517935.i − 0.640849i
\(900\) 0 0
\(901\) 120222. 0.148093
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 286415.i 0.349702i
\(906\) 0 0
\(907\) 169309. 0.205810 0.102905 0.994691i \(-0.467186\pi\)
0.102905 + 0.994691i \(0.467186\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 711986.i 0.857896i 0.903329 + 0.428948i \(0.141116\pi\)
−0.903329 + 0.428948i \(0.858884\pi\)
\(912\) 0 0
\(913\) 860650. 1.03249
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.19490e6i 1.42100i
\(918\) 0 0
\(919\) 1.30687e6 1.54739 0.773696 0.633556i \(-0.218406\pi\)
0.773696 + 0.633556i \(0.218406\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 643384.i 0.755209i
\(924\) 0 0
\(925\) 111332. 0.130118
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 671466.i − 0.778023i −0.921233 0.389012i \(-0.872817\pi\)
0.921233 0.389012i \(-0.127183\pi\)
\(930\) 0 0
\(931\) −802792. −0.926197
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) − 172953.i − 0.197836i
\(936\) 0 0
\(937\) −485798. −0.553320 −0.276660 0.960968i \(-0.589228\pi\)
−0.276660 + 0.960968i \(0.589228\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.44727e6i 1.63444i 0.576323 + 0.817222i \(0.304487\pi\)
−0.576323 + 0.817222i \(0.695513\pi\)
\(942\) 0 0
\(943\) −576024. −0.647765
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 300354.i 0.334914i 0.985879 + 0.167457i \(0.0535556\pi\)
−0.985879 + 0.167457i \(0.946444\pi\)
\(948\) 0 0
\(949\) −794294. −0.881960
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 922083.i − 1.01528i −0.861570 0.507638i \(-0.830519\pi\)
0.861570 0.507638i \(-0.169481\pi\)
\(954\) 0 0
\(955\) 1.55053e6 1.70009
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 1.09567e6i 1.19136i
\(960\) 0 0
\(961\) −782086. −0.846852
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 965395.i − 1.03669i
\(966\) 0 0
\(967\) 844788. 0.903430 0.451715 0.892162i \(-0.350812\pi\)
0.451715 + 0.892162i \(0.350812\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 83930.8i − 0.0890190i −0.999009 0.0445095i \(-0.985828\pi\)
0.999009 0.0445095i \(-0.0141725\pi\)
\(972\) 0 0
\(973\) −269583. −0.284752
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 784388.i 0.821753i 0.911691 + 0.410877i \(0.134777\pi\)
−0.911691 + 0.410877i \(0.865223\pi\)
\(978\) 0 0
\(979\) 1.64768e6 1.71912
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 694563.i − 0.718794i −0.933185 0.359397i \(-0.882982\pi\)
0.933185 0.359397i \(-0.117018\pi\)
\(984\) 0 0
\(985\) 702141. 0.723689
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 281625.i − 0.287925i
\(990\) 0 0
\(991\) −1.54902e6 −1.57728 −0.788641 0.614854i \(-0.789215\pi\)
−0.788641 + 0.614854i \(0.789215\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 303083.i 0.306137i
\(996\) 0 0
\(997\) −951773. −0.957510 −0.478755 0.877949i \(-0.658912\pi\)
−0.478755 + 0.877949i \(0.658912\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.5.c.b.161.6 yes 8
3.2 odd 2 inner 324.5.c.b.161.3 8
4.3 odd 2 1296.5.e.f.161.6 8
9.2 odd 6 324.5.g.f.53.6 16
9.4 even 3 324.5.g.f.269.6 16
9.5 odd 6 324.5.g.f.269.3 16
9.7 even 3 324.5.g.f.53.3 16
12.11 even 2 1296.5.e.f.161.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.5.c.b.161.3 8 3.2 odd 2 inner
324.5.c.b.161.6 yes 8 1.1 even 1 trivial
324.5.g.f.53.3 16 9.7 even 3
324.5.g.f.53.6 16 9.2 odd 6
324.5.g.f.269.3 16 9.5 odd 6
324.5.g.f.269.6 16 9.4 even 3
1296.5.e.f.161.3 8 12.11 even 2
1296.5.e.f.161.6 8 4.3 odd 2