Properties

Label 324.5.c.b.161.4
Level $324$
Weight $5$
Character 324.161
Analytic conductor $33.492$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,5,Mod(161,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.161"); S:= CuspForms(chi, 5); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 5, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 324.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,52] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(33.4918680392\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} - 130x^{6} + 404x^{5} + 7007x^{4} - 14692x^{3} - 164750x^{2} + 172164x + 1445046 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2}\cdot 3^{20} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.4
Root \(-4.23219 - 0.517638i\) of defining polynomial
Character \(\chi\) \(=\) 324.161
Dual form 324.5.c.b.161.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.4027i q^{5} -47.6885 q^{7} +109.967i q^{11} -34.6696 q^{13} +208.116i q^{17} +272.343 q^{19} -85.7457i q^{23} +355.950 q^{25} -637.603i q^{29} +1099.27 q^{31} +782.221i q^{35} +219.002 q^{37} -3310.80i q^{41} +2216.40 q^{43} +1823.78i q^{47} -126.810 q^{49} +4216.32i q^{53} +1803.77 q^{55} -4578.21i q^{59} +455.999 q^{61} +568.676i q^{65} +6977.24 q^{67} +7613.81i q^{71} +9842.32 q^{73} -5244.18i q^{77} +4735.00 q^{79} -4505.70i q^{83} +3413.67 q^{85} +5240.55i q^{89} +1653.34 q^{91} -4467.16i q^{95} +9041.72 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 52 q^{7} + 220 q^{13} - 308 q^{19} - 328 q^{25} - 1472 q^{31} + 1228 q^{37} + 388 q^{43} + 3432 q^{49} - 36 q^{55} + 1804 q^{61} - 2180 q^{67} - 4544 q^{73} - 5012 q^{79} - 5364 q^{85} - 1756 q^{91}+ \cdots - 2528 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) − 16.4027i − 0.656109i −0.944659 0.328055i \(-0.893607\pi\)
0.944659 0.328055i \(-0.106393\pi\)
\(6\) 0 0
\(7\) −47.6885 −0.973234 −0.486617 0.873615i \(-0.661769\pi\)
−0.486617 + 0.873615i \(0.661769\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 109.967i 0.908821i 0.890792 + 0.454411i \(0.150150\pi\)
−0.890792 + 0.454411i \(0.849850\pi\)
\(12\) 0 0
\(13\) −34.6696 −0.205146 −0.102573 0.994725i \(-0.532707\pi\)
−0.102573 + 0.994725i \(0.532707\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 208.116i 0.720124i 0.932928 + 0.360062i \(0.117245\pi\)
−0.932928 + 0.360062i \(0.882755\pi\)
\(18\) 0 0
\(19\) 272.343 0.754412 0.377206 0.926129i \(-0.376885\pi\)
0.377206 + 0.926129i \(0.376885\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 85.7457i − 0.162090i −0.996710 0.0810450i \(-0.974174\pi\)
0.996710 0.0810450i \(-0.0258258\pi\)
\(24\) 0 0
\(25\) 355.950 0.569520
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 637.603i − 0.758148i −0.925366 0.379074i \(-0.876243\pi\)
0.925366 0.379074i \(-0.123757\pi\)
\(30\) 0 0
\(31\) 1099.27 1.14388 0.571941 0.820295i \(-0.306191\pi\)
0.571941 + 0.820295i \(0.306191\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 782.221i 0.638548i
\(36\) 0 0
\(37\) 219.002 0.159972 0.0799860 0.996796i \(-0.474512\pi\)
0.0799860 + 0.996796i \(0.474512\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) − 3310.80i − 1.96954i −0.173856 0.984771i \(-0.555623\pi\)
0.173856 0.984771i \(-0.444377\pi\)
\(42\) 0 0
\(43\) 2216.40 1.19870 0.599351 0.800486i \(-0.295425\pi\)
0.599351 + 0.800486i \(0.295425\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 1823.78i 0.825612i 0.910819 + 0.412806i \(0.135451\pi\)
−0.910819 + 0.412806i \(0.864549\pi\)
\(48\) 0 0
\(49\) −126.810 −0.0528156
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 4216.32i 1.50100i 0.660868 + 0.750502i \(0.270188\pi\)
−0.660868 + 0.750502i \(0.729812\pi\)
\(54\) 0 0
\(55\) 1803.77 0.596286
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) − 4578.21i − 1.31520i −0.753368 0.657600i \(-0.771572\pi\)
0.753368 0.657600i \(-0.228428\pi\)
\(60\) 0 0
\(61\) 455.999 0.122547 0.0612737 0.998121i \(-0.480484\pi\)
0.0612737 + 0.998121i \(0.480484\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 568.676i 0.134598i
\(66\) 0 0
\(67\) 6977.24 1.55430 0.777148 0.629317i \(-0.216665\pi\)
0.777148 + 0.629317i \(0.216665\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 7613.81i 1.51038i 0.655508 + 0.755188i \(0.272455\pi\)
−0.655508 + 0.755188i \(0.727545\pi\)
\(72\) 0 0
\(73\) 9842.32 1.84694 0.923468 0.383675i \(-0.125342\pi\)
0.923468 + 0.383675i \(0.125342\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 5244.18i − 0.884496i
\(78\) 0 0
\(79\) 4735.00 0.758693 0.379346 0.925255i \(-0.376149\pi\)
0.379346 + 0.925255i \(0.376149\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 4505.70i − 0.654043i −0.945017 0.327022i \(-0.893955\pi\)
0.945017 0.327022i \(-0.106045\pi\)
\(84\) 0 0
\(85\) 3413.67 0.472480
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5240.55i 0.661603i 0.943700 + 0.330801i \(0.107319\pi\)
−0.943700 + 0.330801i \(0.892681\pi\)
\(90\) 0 0
\(91\) 1653.34 0.199655
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 4467.16i − 0.494977i
\(96\) 0 0
\(97\) 9041.72 0.960965 0.480482 0.877004i \(-0.340462\pi\)
0.480482 + 0.877004i \(0.340462\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10842.4i 1.06287i 0.847098 + 0.531436i \(0.178347\pi\)
−0.847098 + 0.531436i \(0.821653\pi\)
\(102\) 0 0
\(103\) −1145.32 −0.107957 −0.0539786 0.998542i \(-0.517190\pi\)
−0.0539786 + 0.998542i \(0.517190\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 6886.22i 0.601470i 0.953708 + 0.300735i \(0.0972319\pi\)
−0.953708 + 0.300735i \(0.902768\pi\)
\(108\) 0 0
\(109\) −11759.8 −0.989802 −0.494901 0.868949i \(-0.664796\pi\)
−0.494901 + 0.868949i \(0.664796\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) − 20938.8i − 1.63982i −0.572496 0.819908i \(-0.694025\pi\)
0.572496 0.819908i \(-0.305975\pi\)
\(114\) 0 0
\(115\) −1406.46 −0.106349
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) − 9924.73i − 0.700850i
\(120\) 0 0
\(121\) 2548.17 0.174044
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 16090.3i − 1.02978i
\(126\) 0 0
\(127\) 8797.12 0.545422 0.272711 0.962096i \(-0.412080\pi\)
0.272711 + 0.962096i \(0.412080\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 15778.0i 0.919408i 0.888072 + 0.459704i \(0.152044\pi\)
−0.888072 + 0.459704i \(0.847956\pi\)
\(132\) 0 0
\(133\) −12987.6 −0.734219
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 7277.21i 0.387725i 0.981029 + 0.193863i \(0.0621016\pi\)
−0.981029 + 0.193863i \(0.937898\pi\)
\(138\) 0 0
\(139\) −3991.03 −0.206564 −0.103282 0.994652i \(-0.532934\pi\)
−0.103282 + 0.994652i \(0.532934\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) − 3812.53i − 0.186441i
\(144\) 0 0
\(145\) −10458.4 −0.497428
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 34396.9i 1.54934i 0.632365 + 0.774670i \(0.282084\pi\)
−0.632365 + 0.774670i \(0.717916\pi\)
\(150\) 0 0
\(151\) 4812.68 0.211073 0.105537 0.994415i \(-0.466344\pi\)
0.105537 + 0.994415i \(0.466344\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) − 18031.0i − 0.750512i
\(156\) 0 0
\(157\) −12322.9 −0.499933 −0.249967 0.968254i \(-0.580420\pi\)
−0.249967 + 0.968254i \(0.580420\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 4089.08i 0.157752i
\(162\) 0 0
\(163\) 15529.6 0.584502 0.292251 0.956342i \(-0.405596\pi\)
0.292251 + 0.956342i \(0.405596\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 43357.0i 1.55463i 0.629114 + 0.777313i \(0.283418\pi\)
−0.629114 + 0.777313i \(0.716582\pi\)
\(168\) 0 0
\(169\) −27359.0 −0.957915
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 18903.5i 0.631611i 0.948824 + 0.315806i \(0.102275\pi\)
−0.948824 + 0.315806i \(0.897725\pi\)
\(174\) 0 0
\(175\) −16974.7 −0.554277
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) − 59520.4i − 1.85763i −0.370540 0.928817i \(-0.620827\pi\)
0.370540 0.928817i \(-0.379173\pi\)
\(180\) 0 0
\(181\) −40098.7 −1.22398 −0.611988 0.790867i \(-0.709630\pi\)
−0.611988 + 0.790867i \(0.709630\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 3592.23i − 0.104959i
\(186\) 0 0
\(187\) −22886.0 −0.654465
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 18607.8i − 0.510068i −0.966932 0.255034i \(-0.917913\pi\)
0.966932 0.255034i \(-0.0820867\pi\)
\(192\) 0 0
\(193\) −48164.0 −1.29303 −0.646514 0.762902i \(-0.723774\pi\)
−0.646514 + 0.762902i \(0.723774\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 37721.6i − 0.971981i −0.873964 0.485990i \(-0.838459\pi\)
0.873964 0.485990i \(-0.161541\pi\)
\(198\) 0 0
\(199\) −35926.3 −0.907207 −0.453603 0.891204i \(-0.649862\pi\)
−0.453603 + 0.891204i \(0.649862\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 30406.3i 0.737856i
\(204\) 0 0
\(205\) −54306.2 −1.29223
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 29948.8i 0.685626i
\(210\) 0 0
\(211\) 44633.0 1.00252 0.501258 0.865298i \(-0.332871\pi\)
0.501258 + 0.865298i \(0.332871\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) − 36355.0i − 0.786480i
\(216\) 0 0
\(217\) −52422.5 −1.11327
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 7215.30i − 0.147730i
\(222\) 0 0
\(223\) 80998.9 1.62881 0.814403 0.580300i \(-0.197065\pi\)
0.814403 + 0.580300i \(0.197065\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 45030.0i − 0.873876i −0.899492 0.436938i \(-0.856063\pi\)
0.899492 0.436938i \(-0.143937\pi\)
\(228\) 0 0
\(229\) −73791.1 −1.40713 −0.703563 0.710633i \(-0.748409\pi\)
−0.703563 + 0.710633i \(0.748409\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3288.93i 0.0605819i 0.999541 + 0.0302910i \(0.00964339\pi\)
−0.999541 + 0.0302910i \(0.990357\pi\)
\(234\) 0 0
\(235\) 29914.9 0.541691
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 108501.i 1.89950i 0.313015 + 0.949748i \(0.398661\pi\)
−0.313015 + 0.949748i \(0.601339\pi\)
\(240\) 0 0
\(241\) −35305.4 −0.607864 −0.303932 0.952694i \(-0.598300\pi\)
−0.303932 + 0.952694i \(0.598300\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2080.03i 0.0346528i
\(246\) 0 0
\(247\) −9442.01 −0.154764
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 11418.4i 0.181242i 0.995885 + 0.0906211i \(0.0288852\pi\)
−0.995885 + 0.0906211i \(0.971115\pi\)
\(252\) 0 0
\(253\) 9429.23 0.147311
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 45357.1i − 0.686720i −0.939204 0.343360i \(-0.888435\pi\)
0.939204 0.343360i \(-0.111565\pi\)
\(258\) 0 0
\(259\) −10443.9 −0.155690
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 48250.3i − 0.697571i −0.937203 0.348785i \(-0.886594\pi\)
0.937203 0.348785i \(-0.113406\pi\)
\(264\) 0 0
\(265\) 69159.2 0.984823
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) − 35673.2i − 0.492989i −0.969144 0.246494i \(-0.920721\pi\)
0.969144 0.246494i \(-0.0792787\pi\)
\(270\) 0 0
\(271\) 54635.1 0.743931 0.371966 0.928247i \(-0.378684\pi\)
0.371966 + 0.928247i \(0.378684\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 39142.9i 0.517592i
\(276\) 0 0
\(277\) 13626.5 0.177593 0.0887963 0.996050i \(-0.471698\pi\)
0.0887963 + 0.996050i \(0.471698\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 91373.3i 1.15720i 0.815613 + 0.578598i \(0.196400\pi\)
−0.815613 + 0.578598i \(0.803600\pi\)
\(282\) 0 0
\(283\) 79167.6 0.988496 0.494248 0.869321i \(-0.335444\pi\)
0.494248 + 0.869321i \(0.335444\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 157887.i 1.91683i
\(288\) 0 0
\(289\) 40208.7 0.481421
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 171342.i − 1.99585i −0.0643968 0.997924i \(-0.520512\pi\)
0.0643968 0.997924i \(-0.479488\pi\)
\(294\) 0 0
\(295\) −75095.1 −0.862915
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 2972.77i 0.0332521i
\(300\) 0 0
\(301\) −105697. −1.16662
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) − 7479.63i − 0.0804045i
\(306\) 0 0
\(307\) −5479.22 −0.0581356 −0.0290678 0.999577i \(-0.509254\pi\)
−0.0290678 + 0.999577i \(0.509254\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) − 70200.0i − 0.725799i −0.931828 0.362900i \(-0.881787\pi\)
0.931828 0.362900i \(-0.118213\pi\)
\(312\) 0 0
\(313\) 77812.9 0.794260 0.397130 0.917762i \(-0.370006\pi\)
0.397130 + 0.917762i \(0.370006\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 92341.9i 0.918925i 0.888197 + 0.459463i \(0.151958\pi\)
−0.888197 + 0.459463i \(0.848042\pi\)
\(318\) 0 0
\(319\) 70115.5 0.689021
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 56678.9i 0.543270i
\(324\) 0 0
\(325\) −12340.7 −0.116835
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 86973.1i − 0.803513i
\(330\) 0 0
\(331\) 190474. 1.73852 0.869261 0.494353i \(-0.164595\pi\)
0.869261 + 0.494353i \(0.164595\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) − 114446.i − 1.01979i
\(336\) 0 0
\(337\) 5228.09 0.0460345 0.0230173 0.999735i \(-0.492673\pi\)
0.0230173 + 0.999735i \(0.492673\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 120884.i 1.03958i
\(342\) 0 0
\(343\) 120547. 1.02464
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 64714.7i − 0.537457i −0.963216 0.268729i \(-0.913396\pi\)
0.963216 0.268729i \(-0.0866035\pi\)
\(348\) 0 0
\(349\) −938.071 −0.00770167 −0.00385084 0.999993i \(-0.501226\pi\)
−0.00385084 + 0.999993i \(0.501226\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 74827.3i 0.600497i 0.953861 + 0.300248i \(0.0970696\pi\)
−0.953861 + 0.300248i \(0.902930\pi\)
\(354\) 0 0
\(355\) 124887. 0.990972
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 106644.i 0.827464i 0.910399 + 0.413732i \(0.135775\pi\)
−0.910399 + 0.413732i \(0.864225\pi\)
\(360\) 0 0
\(361\) −56150.5 −0.430863
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) − 161441.i − 1.21179i
\(366\) 0 0
\(367\) 189532. 1.40718 0.703592 0.710604i \(-0.251578\pi\)
0.703592 + 0.710604i \(0.251578\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 201070.i − 1.46083i
\(372\) 0 0
\(373\) 223453. 1.60608 0.803041 0.595924i \(-0.203214\pi\)
0.803041 + 0.595924i \(0.203214\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 22105.4i 0.155531i
\(378\) 0 0
\(379\) 82882.2 0.577010 0.288505 0.957478i \(-0.406842\pi\)
0.288505 + 0.957478i \(0.406842\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20218.4i 0.137832i 0.997622 + 0.0689158i \(0.0219540\pi\)
−0.997622 + 0.0689158i \(0.978046\pi\)
\(384\) 0 0
\(385\) −86018.8 −0.580326
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 59243.0i 0.391505i 0.980653 + 0.195753i \(0.0627150\pi\)
−0.980653 + 0.195753i \(0.937285\pi\)
\(390\) 0 0
\(391\) 17845.0 0.116725
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) − 77667.0i − 0.497786i
\(396\) 0 0
\(397\) 226012. 1.43400 0.717002 0.697072i \(-0.245514\pi\)
0.717002 + 0.697072i \(0.245514\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 69340.7i − 0.431220i −0.976480 0.215610i \(-0.930826\pi\)
0.976480 0.215610i \(-0.0691740\pi\)
\(402\) 0 0
\(403\) −38111.3 −0.234662
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 24083.1i 0.145386i
\(408\) 0 0
\(409\) −214964. −1.28505 −0.642523 0.766266i \(-0.722112\pi\)
−0.642523 + 0.766266i \(0.722112\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 218328.i 1.28000i
\(414\) 0 0
\(415\) −73905.9 −0.429124
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 24509.0i 0.139604i 0.997561 + 0.0698021i \(0.0222368\pi\)
−0.997561 + 0.0698021i \(0.977763\pi\)
\(420\) 0 0
\(421\) 44234.3 0.249571 0.124786 0.992184i \(-0.460176\pi\)
0.124786 + 0.992184i \(0.460176\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 74078.9i 0.410126i
\(426\) 0 0
\(427\) −21745.9 −0.119267
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 72928.0i 0.392591i 0.980545 + 0.196295i \(0.0628911\pi\)
−0.980545 + 0.196295i \(0.937109\pi\)
\(432\) 0 0
\(433\) −216643. −1.15550 −0.577749 0.816215i \(-0.696069\pi\)
−0.577749 + 0.816215i \(0.696069\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 23352.2i − 0.122283i
\(438\) 0 0
\(439\) −11304.8 −0.0586591 −0.0293296 0.999570i \(-0.509337\pi\)
−0.0293296 + 0.999570i \(0.509337\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 305549.i 1.55695i 0.627678 + 0.778473i \(0.284005\pi\)
−0.627678 + 0.778473i \(0.715995\pi\)
\(444\) 0 0
\(445\) 85959.4 0.434084
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) − 26446.7i − 0.131184i −0.997847 0.0655918i \(-0.979106\pi\)
0.997847 0.0655918i \(-0.0208935\pi\)
\(450\) 0 0
\(451\) 364080. 1.78996
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 27119.3i − 0.130995i
\(456\) 0 0
\(457\) −315288. −1.50964 −0.754822 0.655929i \(-0.772277\pi\)
−0.754822 + 0.655929i \(0.772277\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6024.67i 0.0283486i 0.999900 + 0.0141743i \(0.00451197\pi\)
−0.999900 + 0.0141743i \(0.995488\pi\)
\(462\) 0 0
\(463\) −182943. −0.853403 −0.426702 0.904392i \(-0.640325\pi\)
−0.426702 + 0.904392i \(0.640325\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 262279.i − 1.20262i −0.799014 0.601312i \(-0.794645\pi\)
0.799014 0.601312i \(-0.205355\pi\)
\(468\) 0 0
\(469\) −332734. −1.51269
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 243732.i 1.08941i
\(474\) 0 0
\(475\) 96940.5 0.429653
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) − 244075.i − 1.06378i −0.846813 0.531891i \(-0.821482\pi\)
0.846813 0.531891i \(-0.178518\pi\)
\(480\) 0 0
\(481\) −7592.70 −0.0328176
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) − 148309.i − 0.630498i
\(486\) 0 0
\(487\) −184209. −0.776701 −0.388350 0.921512i \(-0.626955\pi\)
−0.388350 + 0.921512i \(0.626955\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 162714.i 0.674937i 0.941337 + 0.337468i \(0.109571\pi\)
−0.941337 + 0.337468i \(0.890429\pi\)
\(492\) 0 0
\(493\) 132695. 0.545961
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 363091.i − 1.46995i
\(498\) 0 0
\(499\) 67122.8 0.269568 0.134784 0.990875i \(-0.456966\pi\)
0.134784 + 0.990875i \(0.456966\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) − 263850.i − 1.04285i −0.853297 0.521425i \(-0.825401\pi\)
0.853297 0.521425i \(-0.174599\pi\)
\(504\) 0 0
\(505\) 177844. 0.697360
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 169333.i 0.653592i 0.945095 + 0.326796i \(0.105969\pi\)
−0.945095 + 0.326796i \(0.894031\pi\)
\(510\) 0 0
\(511\) −469365. −1.79750
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 18786.3i 0.0708317i
\(516\) 0 0
\(517\) −200556. −0.750334
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 214222.i − 0.789203i −0.918852 0.394602i \(-0.870883\pi\)
0.918852 0.394602i \(-0.129117\pi\)
\(522\) 0 0
\(523\) −264574. −0.967262 −0.483631 0.875272i \(-0.660682\pi\)
−0.483631 + 0.875272i \(0.660682\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 228776.i 0.823738i
\(528\) 0 0
\(529\) 272489. 0.973727
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 114784.i 0.404043i
\(534\) 0 0
\(535\) 112953. 0.394630
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 13945.0i − 0.0479999i
\(540\) 0 0
\(541\) −304222. −1.03943 −0.519715 0.854340i \(-0.673962\pi\)
−0.519715 + 0.854340i \(0.673962\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 192894.i 0.649419i
\(546\) 0 0
\(547\) 237793. 0.794738 0.397369 0.917659i \(-0.369923\pi\)
0.397369 + 0.917659i \(0.369923\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) − 173646.i − 0.571956i
\(552\) 0 0
\(553\) −225805. −0.738386
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 197058.i − 0.635162i −0.948231 0.317581i \(-0.897130\pi\)
0.948231 0.317581i \(-0.102870\pi\)
\(558\) 0 0
\(559\) −76841.8 −0.245909
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 380965.i 1.20190i 0.799287 + 0.600949i \(0.205211\pi\)
−0.799287 + 0.600949i \(0.794789\pi\)
\(564\) 0 0
\(565\) −343454. −1.07590
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 376.317i 0.00116233i 1.00000 0.000581165i \(0.000184991\pi\)
−1.00000 0.000581165i \(0.999815\pi\)
\(570\) 0 0
\(571\) −617575. −1.89416 −0.947082 0.320993i \(-0.895983\pi\)
−0.947082 + 0.320993i \(0.895983\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) − 30521.2i − 0.0923136i
\(576\) 0 0
\(577\) −83037.0 −0.249414 −0.124707 0.992194i \(-0.539799\pi\)
−0.124707 + 0.992194i \(0.539799\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 214870.i 0.636537i
\(582\) 0 0
\(583\) −463658. −1.36414
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 602180.i 1.74763i 0.486256 + 0.873816i \(0.338362\pi\)
−0.486256 + 0.873816i \(0.661638\pi\)
\(588\) 0 0
\(589\) 299378. 0.862958
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 500703.i − 1.42387i −0.702245 0.711935i \(-0.747819\pi\)
0.702245 0.711935i \(-0.252181\pi\)
\(594\) 0 0
\(595\) −162793. −0.459834
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) − 423568.i − 1.18051i −0.807217 0.590254i \(-0.799027\pi\)
0.807217 0.590254i \(-0.200973\pi\)
\(600\) 0 0
\(601\) −114621. −0.317334 −0.158667 0.987332i \(-0.550720\pi\)
−0.158667 + 0.987332i \(0.550720\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 41797.0i − 0.114192i
\(606\) 0 0
\(607\) −306023. −0.830571 −0.415286 0.909691i \(-0.636318\pi\)
−0.415286 + 0.909691i \(0.636318\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 63229.6i − 0.169371i
\(612\) 0 0
\(613\) 648468. 1.72571 0.862854 0.505453i \(-0.168675\pi\)
0.862854 + 0.505453i \(0.168675\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 255392.i 0.670869i 0.942064 + 0.335434i \(0.108883\pi\)
−0.942064 + 0.335434i \(0.891117\pi\)
\(618\) 0 0
\(619\) −383024. −0.999644 −0.499822 0.866128i \(-0.666601\pi\)
−0.499822 + 0.866128i \(0.666601\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) − 249914.i − 0.643894i
\(624\) 0 0
\(625\) −41455.4 −0.106126
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 45577.8i 0.115200i
\(630\) 0 0
\(631\) −709379. −1.78164 −0.890819 0.454358i \(-0.849869\pi\)
−0.890819 + 0.454358i \(0.849869\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) − 144297.i − 0.357857i
\(636\) 0 0
\(637\) 4396.46 0.0108349
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) − 86994.3i − 0.211726i −0.994381 0.105863i \(-0.966239\pi\)
0.994381 0.105863i \(-0.0337605\pi\)
\(642\) 0 0
\(643\) 637468. 1.54183 0.770915 0.636938i \(-0.219799\pi\)
0.770915 + 0.636938i \(0.219799\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 567845.i 1.35651i 0.734829 + 0.678253i \(0.237262\pi\)
−0.734829 + 0.678253i \(0.762738\pi\)
\(648\) 0 0
\(649\) 503454. 1.19528
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 418741.i 0.982018i 0.871155 + 0.491009i \(0.163372\pi\)
−0.871155 + 0.491009i \(0.836628\pi\)
\(654\) 0 0
\(655\) 258802. 0.603232
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 408601.i 0.940867i 0.882435 + 0.470434i \(0.155902\pi\)
−0.882435 + 0.470434i \(0.844098\pi\)
\(660\) 0 0
\(661\) −119365. −0.273197 −0.136598 0.990627i \(-0.543617\pi\)
−0.136598 + 0.990627i \(0.543617\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 213032.i 0.481728i
\(666\) 0 0
\(667\) −54671.7 −0.122888
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 50145.0i 0.111374i
\(672\) 0 0
\(673\) 232363. 0.513024 0.256512 0.966541i \(-0.417427\pi\)
0.256512 + 0.966541i \(0.417427\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 726313.i − 1.58470i −0.610068 0.792349i \(-0.708858\pi\)
0.610068 0.792349i \(-0.291142\pi\)
\(678\) 0 0
\(679\) −431186. −0.935243
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 688320.i − 1.47553i −0.675056 0.737766i \(-0.735881\pi\)
0.675056 0.737766i \(-0.264119\pi\)
\(684\) 0 0
\(685\) 119366. 0.254390
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 146178.i − 0.307924i
\(690\) 0 0
\(691\) 434535. 0.910058 0.455029 0.890477i \(-0.349629\pi\)
0.455029 + 0.890477i \(0.349629\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 65463.8i 0.135529i
\(696\) 0 0
\(697\) 689030. 1.41832
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 301886.i 0.614338i 0.951655 + 0.307169i \(0.0993817\pi\)
−0.951655 + 0.307169i \(0.900618\pi\)
\(702\) 0 0
\(703\) 59643.5 0.120685
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 517056.i − 1.03442i
\(708\) 0 0
\(709\) 930146. 1.85037 0.925185 0.379517i \(-0.123910\pi\)
0.925185 + 0.379517i \(0.123910\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 94257.7i − 0.185412i
\(714\) 0 0
\(715\) −62535.9 −0.122326
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 498988.i 0.965233i 0.875832 + 0.482617i \(0.160314\pi\)
−0.875832 + 0.482617i \(0.839686\pi\)
\(720\) 0 0
\(721\) 54618.4 0.105068
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) − 226955.i − 0.431781i
\(726\) 0 0
\(727\) −817751. −1.54722 −0.773610 0.633661i \(-0.781551\pi\)
−0.773610 + 0.633661i \(0.781551\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 461268.i 0.863215i
\(732\) 0 0
\(733\) −201746. −0.375488 −0.187744 0.982218i \(-0.560118\pi\)
−0.187744 + 0.982218i \(0.560118\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 767269.i 1.41258i
\(738\) 0 0
\(739\) 295134. 0.540418 0.270209 0.962802i \(-0.412907\pi\)
0.270209 + 0.962802i \(0.412907\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 943146.i − 1.70845i −0.519907 0.854223i \(-0.674033\pi\)
0.519907 0.854223i \(-0.325967\pi\)
\(744\) 0 0
\(745\) 564203. 1.01654
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) − 328393.i − 0.585371i
\(750\) 0 0
\(751\) 743629. 1.31849 0.659245 0.751929i \(-0.270876\pi\)
0.659245 + 0.751929i \(0.270876\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) − 78941.0i − 0.138487i
\(756\) 0 0
\(757\) −354723. −0.619010 −0.309505 0.950898i \(-0.600163\pi\)
−0.309505 + 0.950898i \(0.600163\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) − 520653.i − 0.899040i −0.893270 0.449520i \(-0.851595\pi\)
0.893270 0.449520i \(-0.148405\pi\)
\(762\) 0 0
\(763\) 560809. 0.963309
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 158725.i 0.269807i
\(768\) 0 0
\(769\) 760246. 1.28559 0.642794 0.766039i \(-0.277775\pi\)
0.642794 + 0.766039i \(0.277775\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 480432.i − 0.804031i −0.915633 0.402016i \(-0.868310\pi\)
0.915633 0.402016i \(-0.131690\pi\)
\(774\) 0 0
\(775\) 391286. 0.651464
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 901672.i − 1.48585i
\(780\) 0 0
\(781\) −837271. −1.37266
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 202129.i 0.328011i
\(786\) 0 0
\(787\) −345949. −0.558551 −0.279276 0.960211i \(-0.590094\pi\)
−0.279276 + 0.960211i \(0.590094\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 998539.i 1.59592i
\(792\) 0 0
\(793\) −15809.3 −0.0251401
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 211316.i 0.332672i 0.986069 + 0.166336i \(0.0531937\pi\)
−0.986069 + 0.166336i \(0.946806\pi\)
\(798\) 0 0
\(799\) −379557. −0.594543
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 1.08233e6i 1.67854i
\(804\) 0 0
\(805\) 67072.1 0.103502
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 1.05505e6i 1.61204i 0.591888 + 0.806020i \(0.298383\pi\)
−0.591888 + 0.806020i \(0.701617\pi\)
\(810\) 0 0
\(811\) 378708. 0.575788 0.287894 0.957662i \(-0.407045\pi\)
0.287894 + 0.957662i \(0.407045\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) − 254729.i − 0.383498i
\(816\) 0 0
\(817\) 603621. 0.904315
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 712921.i − 1.05768i −0.848721 0.528841i \(-0.822627\pi\)
0.848721 0.528841i \(-0.177373\pi\)
\(822\) 0 0
\(823\) −637035. −0.940511 −0.470255 0.882530i \(-0.655838\pi\)
−0.470255 + 0.882530i \(0.655838\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 149310.i − 0.218313i −0.994025 0.109156i \(-0.965185\pi\)
0.994025 0.109156i \(-0.0348149\pi\)
\(828\) 0 0
\(829\) 1.19640e6 1.74088 0.870440 0.492274i \(-0.163834\pi\)
0.870440 + 0.492274i \(0.163834\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) − 26391.2i − 0.0380338i
\(834\) 0 0
\(835\) 711173. 1.02001
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 225799.i 0.320774i 0.987054 + 0.160387i \(0.0512741\pi\)
−0.987054 + 0.160387i \(0.948726\pi\)
\(840\) 0 0
\(841\) 300744. 0.425211
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 448763.i 0.628497i
\(846\) 0 0
\(847\) −121518. −0.169385
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) − 18778.4i − 0.0259299i
\(852\) 0 0
\(853\) 707190. 0.971936 0.485968 0.873977i \(-0.338467\pi\)
0.485968 + 0.873977i \(0.338467\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 970045.i − 1.32078i −0.750923 0.660390i \(-0.770391\pi\)
0.750923 0.660390i \(-0.229609\pi\)
\(858\) 0 0
\(859\) 836206. 1.13325 0.566627 0.823975i \(-0.308248\pi\)
0.566627 + 0.823975i \(0.308248\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 103918.i − 0.139531i −0.997563 0.0697653i \(-0.977775\pi\)
0.997563 0.0697653i \(-0.0222250\pi\)
\(864\) 0 0
\(865\) 310069. 0.414406
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 520696.i 0.689516i
\(870\) 0 0
\(871\) −241898. −0.318857
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 767320.i 1.00221i
\(876\) 0 0
\(877\) 842153. 1.09494 0.547472 0.836824i \(-0.315590\pi\)
0.547472 + 0.836824i \(0.315590\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 965973.i 1.24455i 0.782798 + 0.622276i \(0.213792\pi\)
−0.782798 + 0.622276i \(0.786208\pi\)
\(882\) 0 0
\(883\) 854895. 1.09646 0.548228 0.836329i \(-0.315303\pi\)
0.548228 + 0.836329i \(0.315303\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 623326.i − 0.792261i −0.918194 0.396131i \(-0.870353\pi\)
0.918194 0.396131i \(-0.129647\pi\)
\(888\) 0 0
\(889\) −419521. −0.530824
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 496692.i 0.622851i
\(894\) 0 0
\(895\) −976298. −1.21881
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) − 700898.i − 0.867232i
\(900\) 0 0
\(901\) −877483. −1.08091
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 657728.i 0.803063i
\(906\) 0 0
\(907\) −205672. −0.250012 −0.125006 0.992156i \(-0.539895\pi\)
−0.125006 + 0.992156i \(0.539895\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) − 1.63205e6i − 1.96651i −0.182222 0.983257i \(-0.558329\pi\)
0.182222 0.983257i \(-0.441671\pi\)
\(912\) 0 0
\(913\) 495481. 0.594409
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 752427.i − 0.894799i
\(918\) 0 0
\(919\) −1.53874e6 −1.82194 −0.910971 0.412471i \(-0.864666\pi\)
−0.910971 + 0.412471i \(0.864666\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 263968.i − 0.309847i
\(924\) 0 0
\(925\) 77953.7 0.0911074
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 158309.i − 0.183432i −0.995785 0.0917159i \(-0.970765\pi\)
0.995785 0.0917159i \(-0.0292352\pi\)
\(930\) 0 0
\(931\) −34535.8 −0.0398447
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 375392.i 0.429400i
\(936\) 0 0
\(937\) 518596. 0.590677 0.295339 0.955393i \(-0.404568\pi\)
0.295339 + 0.955393i \(0.404568\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 51485.9i − 0.0581445i −0.999577 0.0290723i \(-0.990745\pi\)
0.999577 0.0290723i \(-0.00925529\pi\)
\(942\) 0 0
\(943\) −283887. −0.319243
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 377819.i 0.421293i 0.977562 + 0.210646i \(0.0675569\pi\)
−0.977562 + 0.210646i \(0.932443\pi\)
\(948\) 0 0
\(949\) −341229. −0.378891
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 1.32438e6i − 1.45823i −0.684389 0.729117i \(-0.739931\pi\)
0.684389 0.729117i \(-0.260069\pi\)
\(954\) 0 0
\(955\) −305219. −0.334661
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) − 347039.i − 0.377347i
\(960\) 0 0
\(961\) 284876. 0.308467
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 790021.i 0.848368i
\(966\) 0 0
\(967\) −1.17148e6 −1.25280 −0.626402 0.779500i \(-0.715473\pi\)
−0.626402 + 0.779500i \(0.715473\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 860593.i − 0.912766i −0.889783 0.456383i \(-0.849145\pi\)
0.889783 0.456383i \(-0.150855\pi\)
\(972\) 0 0
\(973\) 190326. 0.201036
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 115797.i 0.121313i 0.998159 + 0.0606565i \(0.0193194\pi\)
−0.998159 + 0.0606565i \(0.980681\pi\)
\(978\) 0 0
\(979\) −576290. −0.601279
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 74121.2i − 0.0767071i −0.999264 0.0383535i \(-0.987789\pi\)
0.999264 0.0383535i \(-0.0122113\pi\)
\(984\) 0 0
\(985\) −618737. −0.637726
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 190047.i − 0.194298i
\(990\) 0 0
\(991\) −1.30451e6 −1.32831 −0.664154 0.747596i \(-0.731208\pi\)
−0.664154 + 0.747596i \(0.731208\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 589289.i 0.595227i
\(996\) 0 0
\(997\) −224787. −0.226142 −0.113071 0.993587i \(-0.536069\pi\)
−0.113071 + 0.993587i \(0.536069\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.5.c.b.161.4 8
3.2 odd 2 inner 324.5.c.b.161.5 yes 8
4.3 odd 2 1296.5.e.f.161.4 8
9.2 odd 6 324.5.g.f.53.4 16
9.4 even 3 324.5.g.f.269.4 16
9.5 odd 6 324.5.g.f.269.5 16
9.7 even 3 324.5.g.f.53.5 16
12.11 even 2 1296.5.e.f.161.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.5.c.b.161.4 8 1.1 even 1 trivial
324.5.c.b.161.5 yes 8 3.2 odd 2 inner
324.5.g.f.53.4 16 9.2 odd 6
324.5.g.f.53.5 16 9.7 even 3
324.5.g.f.269.4 16 9.4 even 3
324.5.g.f.269.5 16 9.5 odd 6
1296.5.e.f.161.4 8 4.3 odd 2
1296.5.e.f.161.5 8 12.11 even 2