Properties

Label 324.4.e.i.217.2
Level $324$
Weight $4$
Character 324.217
Analytic conductor $19.117$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,4,Mod(109,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.109"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 324.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.1166188419\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.49787136.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 3x^{6} + 5x^{4} + 12x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{8}\cdot 3^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.2
Root \(-0.228425 - 1.39564i\) of defining polynomial
Character \(\chi\) \(=\) 324.217
Dual form 324.4.e.i.109.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.33918 - 9.24773i) q^{5} +(-11.7477 + 20.3477i) q^{7} +(2.45505 - 4.25227i) q^{11} +(-0.752273 - 1.30297i) q^{13} +99.2990 q^{17} +28.5045 q^{19} +(76.3454 + 132.234i) q^{23} +(5.48636 - 9.50266i) q^{25} +(120.227 - 208.239i) q^{29} +(-128.486 - 222.545i) q^{31} +250.893 q^{35} +359.468 q^{37} +(-54.2499 - 93.9636i) q^{41} +(-205.730 + 356.334i) q^{43} +(155.885 - 270.000i) q^{47} +(-104.518 - 181.031i) q^{49} +702.578 q^{53} -52.4318 q^{55} +(239.595 + 414.991i) q^{59} +(-249.230 + 431.678i) q^{61} +(-8.03304 + 13.9136i) q^{65} +(166.216 + 287.894i) q^{67} +884.729 q^{71} +305.000 q^{73} +(57.6825 + 99.9091i) q^{77} +(351.693 - 609.150i) q^{79} +(210.373 - 364.377i) q^{83} +(-530.175 - 918.290i) q^{85} -1610.00 q^{89} +35.3500 q^{91} +(-152.191 - 263.602i) q^{95} +(-198.009 + 342.962i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 16 q^{7} - 116 q^{13} + 448 q^{19} - 616 q^{25} - 368 q^{31} + 1336 q^{37} - 656 q^{43} - 1716 q^{49} + 2880 q^{55} - 1004 q^{61} - 320 q^{67} + 2440 q^{73} + 64 q^{79} - 612 q^{85} - 6976 q^{91}+ \cdots - 2024 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −5.33918 9.24773i −0.477551 0.827142i 0.522118 0.852873i \(-0.325142\pi\)
−0.999669 + 0.0257312i \(0.991809\pi\)
\(6\) 0 0
\(7\) −11.7477 + 20.3477i −0.634318 + 1.09867i 0.352342 + 0.935871i \(0.385386\pi\)
−0.986659 + 0.162799i \(0.947948\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.45505 4.25227i 0.0672932 0.116555i −0.830416 0.557144i \(-0.811897\pi\)
0.897709 + 0.440589i \(0.145230\pi\)
\(12\) 0 0
\(13\) −0.752273 1.30297i −0.0160495 0.0277985i 0.857889 0.513835i \(-0.171776\pi\)
−0.873939 + 0.486036i \(0.838442\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 99.2990 1.41668 0.708340 0.705872i \(-0.249445\pi\)
0.708340 + 0.705872i \(0.249445\pi\)
\(18\) 0 0
\(19\) 28.5045 0.344178 0.172089 0.985081i \(-0.444948\pi\)
0.172089 + 0.985081i \(0.444948\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 76.3454 + 132.234i 0.692135 + 1.19881i 0.971137 + 0.238523i \(0.0766632\pi\)
−0.279001 + 0.960291i \(0.590003\pi\)
\(24\) 0 0
\(25\) 5.48636 9.50266i 0.0438909 0.0760213i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 120.227 208.239i 0.769846 1.33341i −0.167801 0.985821i \(-0.553666\pi\)
0.937646 0.347591i \(-0.113000\pi\)
\(30\) 0 0
\(31\) −128.486 222.545i −0.744414 1.28936i −0.950468 0.310822i \(-0.899396\pi\)
0.206054 0.978541i \(-0.433938\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 250.893 1.21168
\(36\) 0 0
\(37\) 359.468 1.59719 0.798597 0.601866i \(-0.205576\pi\)
0.798597 + 0.601866i \(0.205576\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −54.2499 93.9636i −0.206644 0.357918i 0.744011 0.668167i \(-0.232921\pi\)
−0.950655 + 0.310249i \(0.899588\pi\)
\(42\) 0 0
\(43\) −205.730 + 356.334i −0.729615 + 1.26373i 0.227430 + 0.973794i \(0.426968\pi\)
−0.957046 + 0.289937i \(0.906366\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 155.885 270.000i 0.483789 0.837948i −0.516037 0.856566i \(-0.672593\pi\)
0.999827 + 0.0186183i \(0.00592674\pi\)
\(48\) 0 0
\(49\) −104.518 181.031i −0.304718 0.527787i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 702.578 1.82088 0.910438 0.413645i \(-0.135745\pi\)
0.910438 + 0.413645i \(0.135745\pi\)
\(54\) 0 0
\(55\) −52.4318 −0.128544
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 239.595 + 414.991i 0.528689 + 0.915715i 0.999440 + 0.0334498i \(0.0106494\pi\)
−0.470752 + 0.882266i \(0.656017\pi\)
\(60\) 0 0
\(61\) −249.230 + 431.678i −0.523124 + 0.906078i 0.476514 + 0.879167i \(0.341900\pi\)
−0.999638 + 0.0269106i \(0.991433\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −8.03304 + 13.9136i −0.0153289 + 0.0265504i
\(66\) 0 0
\(67\) 166.216 + 287.894i 0.303082 + 0.524954i 0.976832 0.214005i \(-0.0686510\pi\)
−0.673750 + 0.738959i \(0.735318\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 884.729 1.47885 0.739423 0.673242i \(-0.235099\pi\)
0.739423 + 0.673242i \(0.235099\pi\)
\(72\) 0 0
\(73\) 305.000 0.489008 0.244504 0.969648i \(-0.421375\pi\)
0.244504 + 0.969648i \(0.421375\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 57.6825 + 99.9091i 0.0853706 + 0.147866i
\(78\) 0 0
\(79\) 351.693 609.150i 0.500868 0.867529i −0.499131 0.866526i \(-0.666348\pi\)
0.999999 0.00100260i \(-0.000319137\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 210.373 364.377i 0.278210 0.481875i −0.692730 0.721197i \(-0.743592\pi\)
0.970940 + 0.239323i \(0.0769254\pi\)
\(84\) 0 0
\(85\) −530.175 918.290i −0.676536 1.17179i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −1610.00 −1.91752 −0.958761 0.284212i \(-0.908268\pi\)
−0.958761 + 0.284212i \(0.908268\pi\)
\(90\) 0 0
\(91\) 35.3500 0.0407218
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −152.191 263.602i −0.164363 0.284684i
\(96\) 0 0
\(97\) −198.009 + 342.962i −0.207266 + 0.358995i −0.950852 0.309645i \(-0.899790\pi\)
0.743587 + 0.668640i \(0.233123\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 136.483 236.395i 0.134461 0.232893i −0.790930 0.611906i \(-0.790403\pi\)
0.925391 + 0.379013i \(0.123736\pi\)
\(102\) 0 0
\(103\) 198.541 + 343.883i 0.189930 + 0.328969i 0.945227 0.326414i \(-0.105840\pi\)
−0.755297 + 0.655383i \(0.772507\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −360.870 −0.326043 −0.163022 0.986622i \(-0.552124\pi\)
−0.163022 + 0.986622i \(0.552124\pi\)
\(108\) 0 0
\(109\) 120.568 0.105948 0.0529740 0.998596i \(-0.483130\pi\)
0.0529740 + 0.998596i \(0.483130\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −612.311 1060.55i −0.509747 0.882908i −0.999936 0.0112917i \(-0.996406\pi\)
0.490189 0.871616i \(-0.336928\pi\)
\(114\) 0 0
\(115\) 815.243 1412.04i 0.661059 1.14499i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −1166.54 + 2020.50i −0.898625 + 1.55646i
\(120\) 0 0
\(121\) 653.445 + 1131.80i 0.490943 + 0.850339i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1451.97 −1.03894
\(126\) 0 0
\(127\) −1991.46 −1.39144 −0.695722 0.718311i \(-0.744915\pi\)
−0.695722 + 0.718311i \(0.744915\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 788.743 + 1366.14i 0.526052 + 0.911149i 0.999539 + 0.0303481i \(0.00966160\pi\)
−0.473487 + 0.880801i \(0.657005\pi\)
\(132\) 0 0
\(133\) −334.864 + 580.001i −0.218318 + 0.378139i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −418.004 + 724.005i −0.260675 + 0.451503i −0.966422 0.256962i \(-0.917279\pi\)
0.705746 + 0.708465i \(0.250612\pi\)
\(138\) 0 0
\(139\) 1364.30 + 2363.04i 0.832509 + 1.44195i 0.896042 + 0.443969i \(0.146430\pi\)
−0.0635329 + 0.997980i \(0.520237\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.38747 −0.00432008
\(144\) 0 0
\(145\) −2567.65 −1.47056
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1388.04 2404.16i −0.763173 1.32185i −0.941207 0.337829i \(-0.890307\pi\)
0.178035 0.984024i \(-0.443026\pi\)
\(150\) 0 0
\(151\) 381.514 660.801i 0.205610 0.356127i −0.744717 0.667381i \(-0.767415\pi\)
0.950327 + 0.311253i \(0.100749\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −1372.02 + 2376.41i −0.710991 + 1.23147i
\(156\) 0 0
\(157\) −352.743 610.969i −0.179312 0.310577i 0.762333 0.647185i \(-0.224054\pi\)
−0.941645 + 0.336607i \(0.890720\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −3587.54 −1.75613
\(162\) 0 0
\(163\) 1587.60 0.762886 0.381443 0.924392i \(-0.375427\pi\)
0.381443 + 0.924392i \(0.375427\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 330.432 + 572.325i 0.153111 + 0.265197i 0.932370 0.361506i \(-0.117737\pi\)
−0.779258 + 0.626703i \(0.784404\pi\)
\(168\) 0 0
\(169\) 1097.37 1900.70i 0.499485 0.865133i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 1018.69 1764.42i 0.447684 0.775411i −0.550551 0.834801i \(-0.685582\pi\)
0.998235 + 0.0593907i \(0.0189158\pi\)
\(174\) 0 0
\(175\) 128.905 + 223.269i 0.0556815 + 0.0964433i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2579.01 −1.07690 −0.538448 0.842659i \(-0.680989\pi\)
−0.538448 + 0.842659i \(0.680989\pi\)
\(180\) 0 0
\(181\) 1851.65 0.760400 0.380200 0.924904i \(-0.375855\pi\)
0.380200 + 0.924904i \(0.375855\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −1919.26 3324.26i −0.762741 1.32111i
\(186\) 0 0
\(187\) 243.784 422.246i 0.0953329 0.165121i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −28.4831 + 49.3341i −0.0107904 + 0.0186895i −0.871370 0.490626i \(-0.836768\pi\)
0.860580 + 0.509316i \(0.170101\pi\)
\(192\) 0 0
\(193\) −907.014 1570.99i −0.338281 0.585920i 0.645828 0.763483i \(-0.276512\pi\)
−0.984110 + 0.177562i \(0.943179\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −873.334 −0.315850 −0.157925 0.987451i \(-0.550480\pi\)
−0.157925 + 0.987451i \(0.550480\pi\)
\(198\) 0 0
\(199\) −5063.60 −1.80376 −0.901882 0.431982i \(-0.857814\pi\)
−0.901882 + 0.431982i \(0.857814\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2824.78 + 4892.66i 0.976653 + 1.69161i
\(204\) 0 0
\(205\) −579.300 + 1003.38i −0.197366 + 0.341848i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 69.9801 121.209i 0.0231609 0.0401158i
\(210\) 0 0
\(211\) −215.389 373.064i −0.0702747 0.121719i 0.828747 0.559624i \(-0.189054\pi\)
−0.899022 + 0.437904i \(0.855721\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4393.71 1.39371
\(216\) 0 0
\(217\) 6037.69 1.88878
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −74.6999 129.384i −0.0227369 0.0393815i
\(222\) 0 0
\(223\) 1631.84 2826.43i 0.490027 0.848751i −0.509907 0.860229i \(-0.670320\pi\)
0.999934 + 0.0114779i \(0.00365361\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 374.339 648.375i 0.109453 0.189578i −0.806096 0.591785i \(-0.798423\pi\)
0.915549 + 0.402207i \(0.131757\pi\)
\(228\) 0 0
\(229\) 1493.50 + 2586.81i 0.430974 + 0.746469i 0.996957 0.0779474i \(-0.0248366\pi\)
−0.565983 + 0.824417i \(0.691503\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 3785.23 1.06429 0.532144 0.846654i \(-0.321387\pi\)
0.532144 + 0.846654i \(0.321387\pi\)
\(234\) 0 0
\(235\) −3329.18 −0.924136
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 304.188 + 526.868i 0.0823274 + 0.142595i 0.904249 0.427005i \(-0.140431\pi\)
−0.821922 + 0.569600i \(0.807098\pi\)
\(240\) 0 0
\(241\) −2671.70 + 4627.53i −0.714106 + 1.23687i 0.249197 + 0.968453i \(0.419833\pi\)
−0.963303 + 0.268416i \(0.913500\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1116.08 + 1933.11i −0.291036 + 0.504090i
\(246\) 0 0
\(247\) −21.4432 37.1407i −0.00552388 0.00956764i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 6475.89 1.62850 0.814252 0.580512i \(-0.197147\pi\)
0.814252 + 0.580512i \(0.197147\pi\)
\(252\) 0 0
\(253\) 749.727 0.186304
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.64532 4.58182i −0.000642064 0.00111209i 0.865704 0.500556i \(-0.166871\pi\)
−0.866346 + 0.499444i \(0.833538\pi\)
\(258\) 0 0
\(259\) −4222.93 + 7314.34i −1.01313 + 1.75479i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 3523.47 6102.83i 0.826108 1.43086i −0.0749616 0.997186i \(-0.523883\pi\)
0.901070 0.433675i \(-0.142783\pi\)
\(264\) 0 0
\(265\) −3751.19 6497.25i −0.869561 1.50612i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −787.057 −0.178393 −0.0891965 0.996014i \(-0.528430\pi\)
−0.0891965 + 0.996014i \(0.528430\pi\)
\(270\) 0 0
\(271\) 5076.65 1.13795 0.568975 0.822355i \(-0.307340\pi\)
0.568975 + 0.822355i \(0.307340\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −26.9386 46.6590i −0.00590712 0.0102314i
\(276\) 0 0
\(277\) −408.891 + 708.220i −0.0886927 + 0.153620i −0.906959 0.421219i \(-0.861602\pi\)
0.818266 + 0.574840i \(0.194936\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2618.75 4535.80i 0.555948 0.962929i −0.441882 0.897073i \(-0.645689\pi\)
0.997829 0.0658560i \(-0.0209778\pi\)
\(282\) 0 0
\(283\) 1049.03 + 1816.97i 0.220347 + 0.381652i 0.954913 0.296885i \(-0.0959477\pi\)
−0.734566 + 0.678537i \(0.762614\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2549.25 0.524312
\(288\) 0 0
\(289\) 4947.29 1.00698
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −1245.03 2156.45i −0.248243 0.429970i 0.714795 0.699334i \(-0.246520\pi\)
−0.963039 + 0.269364i \(0.913187\pi\)
\(294\) 0 0
\(295\) 2558.48 4431.42i 0.504951 0.874601i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 114.865 198.952i 0.0222168 0.0384806i
\(300\) 0 0
\(301\) −4833.71 8372.23i −0.925616 1.60321i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5322.72 0.999273
\(306\) 0 0
\(307\) 2068.21 0.384492 0.192246 0.981347i \(-0.438423\pi\)
0.192246 + 0.981347i \(0.438423\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 2455.78 + 4253.54i 0.447764 + 0.775550i 0.998240 0.0593006i \(-0.0188871\pi\)
−0.550476 + 0.834851i \(0.685554\pi\)
\(312\) 0 0
\(313\) −2648.17 + 4586.76i −0.478221 + 0.828304i −0.999688 0.0249677i \(-0.992052\pi\)
0.521467 + 0.853272i \(0.325385\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 715.401 1239.11i 0.126754 0.219544i −0.795663 0.605739i \(-0.792878\pi\)
0.922417 + 0.386195i \(0.126211\pi\)
\(318\) 0 0
\(319\) −590.325 1022.47i −0.103611 0.179459i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2830.47 0.487590
\(324\) 0 0
\(325\) −16.5090 −0.00281770
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 3662.58 + 6343.77i 0.613752 + 1.06305i
\(330\) 0 0
\(331\) 2667.26 4619.82i 0.442917 0.767156i −0.554987 0.831859i \(-0.687277\pi\)
0.997905 + 0.0647034i \(0.0206101\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 1774.91 3074.24i 0.289474 0.501384i
\(336\) 0 0
\(337\) 4335.79 + 7509.81i 0.700847 + 1.21390i 0.968169 + 0.250296i \(0.0805280\pi\)
−0.267322 + 0.963607i \(0.586139\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −1261.76 −0.200376
\(342\) 0 0
\(343\) −3147.54 −0.495484
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2685.86 + 4652.05i 0.415518 + 0.719698i 0.995483 0.0949434i \(-0.0302670\pi\)
−0.579965 + 0.814642i \(0.696934\pi\)
\(348\) 0 0
\(349\) 2520.76 4366.09i 0.386629 0.669660i −0.605365 0.795948i \(-0.706973\pi\)
0.991994 + 0.126288i \(0.0403062\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2425.89 4201.76i 0.365771 0.633533i −0.623129 0.782119i \(-0.714139\pi\)
0.988900 + 0.148586i \(0.0474721\pi\)
\(354\) 0 0
\(355\) −4723.72 8181.73i −0.706223 1.22321i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3143.59 0.462151 0.231075 0.972936i \(-0.425776\pi\)
0.231075 + 0.972936i \(0.425776\pi\)
\(360\) 0 0
\(361\) −6046.49 −0.881541
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1628.45 2820.56i −0.233526 0.404479i
\(366\) 0 0
\(367\) −4990.91 + 8644.52i −0.709873 + 1.22954i 0.255030 + 0.966933i \(0.417915\pi\)
−0.964904 + 0.262604i \(0.915419\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8253.69 + 14295.8i −1.15501 + 2.00054i
\(372\) 0 0
\(373\) 3032.42 + 5252.30i 0.420945 + 0.729099i 0.996032 0.0889935i \(-0.0283650\pi\)
−0.575087 + 0.818092i \(0.695032\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −361.773 −0.0494224
\(378\) 0 0
\(379\) 11238.7 1.52321 0.761603 0.648044i \(-0.224413\pi\)
0.761603 + 0.648044i \(0.224413\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −7344.43 12720.9i −0.979851 1.69715i −0.662896 0.748711i \(-0.730673\pi\)
−0.316955 0.948441i \(-0.602660\pi\)
\(384\) 0 0
\(385\) 615.955 1066.86i 0.0815375 0.141227i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −677.833 + 1174.04i −0.0883483 + 0.153024i −0.906813 0.421533i \(-0.861492\pi\)
0.818465 + 0.574557i \(0.194826\pi\)
\(390\) 0 0
\(391\) 7581.02 + 13130.7i 0.980534 + 1.69833i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7511.01 −0.956759
\(396\) 0 0
\(397\) −9070.50 −1.14669 −0.573345 0.819314i \(-0.694354\pi\)
−0.573345 + 0.819314i \(0.694354\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1641.92 2843.89i −0.204473 0.354157i 0.745492 0.666515i \(-0.232215\pi\)
−0.949965 + 0.312358i \(0.898881\pi\)
\(402\) 0 0
\(403\) −193.314 + 334.829i −0.0238949 + 0.0413871i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 882.513 1528.56i 0.107480 0.186162i
\(408\) 0 0
\(409\) −3109.65 5386.07i −0.375947 0.651159i 0.614521 0.788900i \(-0.289349\pi\)
−0.990468 + 0.137741i \(0.956016\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −11258.8 −1.34143
\(414\) 0 0
\(415\) −4492.88 −0.531438
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −2984.55 5169.40i −0.347983 0.602724i 0.637908 0.770113i \(-0.279800\pi\)
−0.985891 + 0.167388i \(0.946467\pi\)
\(420\) 0 0
\(421\) −3269.54 + 5663.01i −0.378498 + 0.655578i −0.990844 0.135012i \(-0.956893\pi\)
0.612346 + 0.790590i \(0.290226\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 544.790 943.604i 0.0621793 0.107698i
\(426\) 0 0
\(427\) −5855.76 10142.5i −0.663654 1.14948i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −11929.1 −1.33319 −0.666596 0.745419i \(-0.732250\pi\)
−0.666596 + 0.745419i \(0.732250\pi\)
\(432\) 0 0
\(433\) −4047.92 −0.449262 −0.224631 0.974444i \(-0.572118\pi\)
−0.224631 + 0.974444i \(0.572118\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2176.19 + 3769.27i 0.238218 + 0.412606i
\(438\) 0 0
\(439\) 6062.11 10499.9i 0.659063 1.14153i −0.321796 0.946809i \(-0.604286\pi\)
0.980859 0.194722i \(-0.0623803\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −6218.80 + 10771.3i −0.666962 + 1.15521i 0.311787 + 0.950152i \(0.399072\pi\)
−0.978749 + 0.205060i \(0.934261\pi\)
\(444\) 0 0
\(445\) 8596.07 + 14888.8i 0.915714 + 1.58606i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2925.50 0.307489 0.153745 0.988111i \(-0.450867\pi\)
0.153745 + 0.988111i \(0.450867\pi\)
\(450\) 0 0
\(451\) −532.745 −0.0556231
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −188.740 326.907i −0.0194467 0.0336827i
\(456\) 0 0
\(457\) 8661.76 15002.6i 0.886608 1.53565i 0.0427492 0.999086i \(-0.486388\pi\)
0.843859 0.536565i \(-0.180278\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −6694.22 + 11594.7i −0.676314 + 1.17141i 0.299769 + 0.954012i \(0.403090\pi\)
−0.976083 + 0.217398i \(0.930243\pi\)
\(462\) 0 0
\(463\) 5741.58 + 9944.71i 0.576315 + 0.998207i 0.995897 + 0.0904898i \(0.0288433\pi\)
−0.419582 + 0.907717i \(0.637823\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18016.7 −1.78526 −0.892629 0.450793i \(-0.851141\pi\)
−0.892629 + 0.450793i \(0.851141\pi\)
\(468\) 0 0
\(469\) −7810.64 −0.769001
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1010.15 + 1749.64i 0.0981964 + 0.170081i
\(474\) 0 0
\(475\) 156.386 270.869i 0.0151063 0.0261649i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 8526.11 14767.7i 0.813294 1.40867i −0.0972521 0.995260i \(-0.531005\pi\)
0.910546 0.413407i \(-0.135661\pi\)
\(480\) 0 0
\(481\) −270.418 468.378i −0.0256341 0.0443996i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4228.82 0.395919
\(486\) 0 0
\(487\) 3327.54 0.309620 0.154810 0.987944i \(-0.450523\pi\)
0.154810 + 0.987944i \(0.450523\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2986.10 + 5172.07i 0.274462 + 0.475381i 0.969999 0.243108i \(-0.0781671\pi\)
−0.695538 + 0.718490i \(0.744834\pi\)
\(492\) 0 0
\(493\) 11938.4 20677.9i 1.09062 1.88902i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −10393.6 + 18002.2i −0.938058 + 1.62476i
\(498\) 0 0
\(499\) −3467.45 6005.80i −0.311071 0.538791i 0.667523 0.744589i \(-0.267354\pi\)
−0.978595 + 0.205798i \(0.934021\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −5751.15 −0.509803 −0.254902 0.966967i \(-0.582043\pi\)
−0.254902 + 0.966967i \(0.582043\pi\)
\(504\) 0 0
\(505\) −2914.83 −0.256848
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 6006.24 + 10403.1i 0.523029 + 0.905913i 0.999641 + 0.0267988i \(0.00853134\pi\)
−0.476612 + 0.879114i \(0.658135\pi\)
\(510\) 0 0
\(511\) −3583.06 + 6206.04i −0.310186 + 0.537258i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 2120.09 3672.10i 0.181403 0.314199i
\(516\) 0 0
\(517\) −765.409 1325.73i −0.0651115 0.112776i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −13667.9 −1.14933 −0.574666 0.818388i \(-0.694868\pi\)
−0.574666 + 0.818388i \(0.694868\pi\)
\(522\) 0 0
\(523\) −22339.9 −1.86779 −0.933895 0.357548i \(-0.883613\pi\)
−0.933895 + 0.357548i \(0.883613\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −12758.6 22098.5i −1.05460 1.82661i
\(528\) 0 0
\(529\) −5573.74 + 9653.99i −0.458103 + 0.793457i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −81.6215 + 141.373i −0.00663306 + 0.0114888i
\(534\) 0 0
\(535\) 1926.75 + 3337.23i 0.155702 + 0.269684i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −1026.39 −0.0820218
\(540\) 0 0
\(541\) 22676.0 1.80207 0.901034 0.433749i \(-0.142809\pi\)
0.901034 + 0.433749i \(0.142809\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −643.735 1114.98i −0.0505956 0.0876341i
\(546\) 0 0
\(547\) −5016.26 + 8688.42i −0.392102 + 0.679141i −0.992727 0.120390i \(-0.961585\pi\)
0.600624 + 0.799531i \(0.294919\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 3427.01 5935.75i 0.264964 0.458932i
\(552\) 0 0
\(553\) 8263.19 + 14312.3i 0.635419 + 1.10058i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 12557.1 0.955224 0.477612 0.878571i \(-0.341502\pi\)
0.477612 + 0.878571i \(0.341502\pi\)
\(558\) 0 0
\(559\) 619.059 0.0468397
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −10053.8 17413.8i −0.752609 1.30356i −0.946554 0.322545i \(-0.895462\pi\)
0.193945 0.981012i \(-0.437872\pi\)
\(564\) 0 0
\(565\) −6538.48 + 11325.0i −0.486860 + 0.843266i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2695.40 + 4668.58i −0.198589 + 0.343966i −0.948071 0.318058i \(-0.896969\pi\)
0.749482 + 0.662025i \(0.230303\pi\)
\(570\) 0 0
\(571\) −7115.10 12323.7i −0.521467 0.903207i −0.999688 0.0249680i \(-0.992052\pi\)
0.478221 0.878239i \(-0.341282\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1675.43 0.121514
\(576\) 0 0
\(577\) −4781.42 −0.344979 −0.172490 0.985011i \(-0.555181\pi\)
−0.172490 + 0.985011i \(0.555181\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 4942.82 + 8561.21i 0.352948 + 0.611323i
\(582\) 0 0
\(583\) 1724.86 2987.55i 0.122533 0.212233i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −6368.41 + 11030.4i −0.447790 + 0.775594i −0.998242 0.0592724i \(-0.981122\pi\)
0.550452 + 0.834867i \(0.314455\pi\)
\(588\) 0 0
\(589\) −3662.45 6343.54i −0.256211 0.443771i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11262.9 0.779954 0.389977 0.920825i \(-0.372483\pi\)
0.389977 + 0.920825i \(0.372483\pi\)
\(594\) 0 0
\(595\) 24913.4 1.71655
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −1841.96 3190.37i −0.125643 0.217621i 0.796341 0.604848i \(-0.206766\pi\)
−0.921984 + 0.387227i \(0.873433\pi\)
\(600\) 0 0
\(601\) 4712.16 8161.71i 0.319822 0.553948i −0.660629 0.750713i \(-0.729710\pi\)
0.980451 + 0.196765i \(0.0630435\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6977.72 12085.8i 0.468900 0.812159i
\(606\) 0 0
\(607\) −1355.64 2348.03i −0.0906486 0.157008i 0.817136 0.576445i \(-0.195561\pi\)
−0.907784 + 0.419438i \(0.862227\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −469.071 −0.0310582
\(612\) 0 0
\(613\) −15014.7 −0.989298 −0.494649 0.869093i \(-0.664703\pi\)
−0.494649 + 0.869093i \(0.664703\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 12955.3 + 22439.3i 0.845319 + 1.46414i 0.885344 + 0.464937i \(0.153923\pi\)
−0.0400251 + 0.999199i \(0.512744\pi\)
\(618\) 0 0
\(619\) −14573.2 + 25241.5i −0.946278 + 1.63900i −0.193105 + 0.981178i \(0.561856\pi\)
−0.753173 + 0.657823i \(0.771478\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 18913.8 32759.7i 1.21632 2.10673i
\(624\) 0 0
\(625\) 7066.50 + 12239.5i 0.452256 + 0.783331i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 35694.8 2.26271
\(630\) 0 0
\(631\) −10221.9 −0.644893 −0.322446 0.946588i \(-0.604505\pi\)
−0.322446 + 0.946588i \(0.604505\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10632.8 + 18416.5i 0.664485 + 1.15092i
\(636\) 0 0
\(637\) −157.252 + 272.369i −0.00978111 + 0.0169414i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −5870.53 + 10168.1i −0.361735 + 0.626543i −0.988246 0.152869i \(-0.951149\pi\)
0.626512 + 0.779412i \(0.284482\pi\)
\(642\) 0 0
\(643\) −7861.89 13617.2i −0.482181 0.835162i 0.517610 0.855617i \(-0.326822\pi\)
−0.999791 + 0.0204546i \(0.993489\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6458.34 0.392432 0.196216 0.980561i \(-0.437135\pi\)
0.196216 + 0.980561i \(0.437135\pi\)
\(648\) 0 0
\(649\) 2352.87 0.142309
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1829.48 + 3168.76i 0.109637 + 0.189898i 0.915623 0.402037i \(-0.131698\pi\)
−0.805986 + 0.591935i \(0.798364\pi\)
\(654\) 0 0
\(655\) 8422.48 14588.2i 0.502433 0.870239i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −5239.89 + 9075.76i −0.309738 + 0.536482i −0.978305 0.207170i \(-0.933575\pi\)
0.668567 + 0.743652i \(0.266908\pi\)
\(660\) 0 0
\(661\) −9909.38 17163.5i −0.583102 1.00996i −0.995109 0.0987812i \(-0.968506\pi\)
0.412008 0.911180i \(-0.364828\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 7151.59 0.417032
\(666\) 0 0
\(667\) 36715.0 2.13135
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1223.74 + 2119.58i 0.0704054 + 0.121946i
\(672\) 0 0
\(673\) 13934.0 24134.4i 0.798094 1.38234i −0.122762 0.992436i \(-0.539175\pi\)
0.920856 0.389903i \(-0.127491\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7200.21 12471.1i 0.408754 0.707983i −0.585996 0.810314i \(-0.699297\pi\)
0.994750 + 0.102331i \(0.0326300\pi\)
\(678\) 0 0
\(679\) −4652.31 8058.04i −0.262945 0.455433i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8387.44 0.469892 0.234946 0.972008i \(-0.424509\pi\)
0.234946 + 0.972008i \(0.424509\pi\)
\(684\) 0 0
\(685\) 8927.20 0.497942
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −528.530 915.441i −0.0292241 0.0506176i
\(690\) 0 0
\(691\) −10587.8 + 18338.7i −0.582895 + 1.00960i 0.412239 + 0.911076i \(0.364747\pi\)
−0.995134 + 0.0985283i \(0.968587\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 14568.5 25233.4i 0.795131 1.37721i
\(696\) 0 0
\(697\) −5386.96 9330.49i −0.292749 0.507055i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 7467.68 0.402354 0.201177 0.979555i \(-0.435523\pi\)
0.201177 + 0.979555i \(0.435523\pi\)
\(702\) 0 0
\(703\) 10246.5 0.549720
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3206.73 + 5554.22i 0.170582 + 0.295457i
\(708\) 0 0
\(709\) −9532.58 + 16510.9i −0.504942 + 0.874585i 0.495042 + 0.868869i \(0.335153\pi\)
−0.999984 + 0.00571568i \(0.998181\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 19618.7 33980.6i 1.03047 1.78483i
\(714\) 0 0
\(715\) 39.4430 + 68.3173i 0.00206306 + 0.00357332i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6863.35 0.355994 0.177997 0.984031i \(-0.443038\pi\)
0.177997 + 0.984031i \(0.443038\pi\)
\(720\) 0 0
\(721\) −9329.62 −0.481904
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −1319.21 2284.95i −0.0675784 0.117049i
\(726\) 0 0
\(727\) −7391.78 + 12802.9i −0.377092 + 0.653143i −0.990638 0.136517i \(-0.956409\pi\)
0.613546 + 0.789659i \(0.289743\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −20428.7 + 35383.6i −1.03363 + 1.79030i
\(732\) 0 0
\(733\) −2000.99 3465.82i −0.100830 0.174642i 0.811197 0.584773i \(-0.198816\pi\)
−0.912027 + 0.410131i \(0.865483\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1632.27 0.0815815
\(738\) 0 0
\(739\) 16889.8 0.840733 0.420367 0.907354i \(-0.361901\pi\)
0.420367 + 0.907354i \(0.361901\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −15258.1 26427.8i −0.753386 1.30490i −0.946173 0.323662i \(-0.895086\pi\)
0.192787 0.981241i \(-0.438247\pi\)
\(744\) 0 0
\(745\) −14822.0 + 25672.4i −0.728907 + 1.26250i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4239.40 7342.86i 0.206815 0.358214i
\(750\) 0 0
\(751\) −6931.10 12005.0i −0.336777 0.583314i 0.647048 0.762449i \(-0.276003\pi\)
−0.983824 + 0.179135i \(0.942670\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −8147.88 −0.392757
\(756\) 0 0
\(757\) −15205.3 −0.730049 −0.365024 0.930998i \(-0.618939\pi\)
−0.365024 + 0.930998i \(0.618939\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 2420.42 + 4192.30i 0.115296 + 0.199699i 0.917898 0.396816i \(-0.129885\pi\)
−0.802602 + 0.596515i \(0.796552\pi\)
\(762\) 0 0
\(763\) −1416.40 + 2453.28i −0.0672047 + 0.116402i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 360.482 624.373i 0.0169703 0.0293935i
\(768\) 0 0
\(769\) 8528.08 + 14771.1i 0.399909 + 0.692663i 0.993714 0.111946i \(-0.0357083\pi\)
−0.593805 + 0.804609i \(0.702375\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10350.7 0.481618 0.240809 0.970573i \(-0.422587\pi\)
0.240809 + 0.970573i \(0.422587\pi\)
\(774\) 0 0
\(775\) −2819.69 −0.130692
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1546.37 2678.39i −0.0711225 0.123188i
\(780\) 0 0
\(781\) 2172.05 3762.11i 0.0995163 0.172367i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −3766.72 + 6524.15i −0.171261 + 0.296633i
\(786\) 0 0
\(787\) −3200.44 5543.32i −0.144960 0.251078i 0.784398 0.620258i \(-0.212972\pi\)
−0.929358 + 0.369180i \(0.879639\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 28773.1 1.29337
\(792\) 0 0
\(793\) 749.955 0.0335834
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 15790.6 + 27350.1i 0.701795 + 1.21554i 0.967836 + 0.251582i \(0.0809509\pi\)
−0.266041 + 0.963962i \(0.585716\pi\)
\(798\) 0 0
\(799\) 15479.2 26810.7i 0.685374 1.18710i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 748.791 1296.94i 0.0329069 0.0569964i
\(804\) 0 0
\(805\) 19154.5 + 33176.6i 0.838643 + 1.45257i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −3349.34 −0.145558 −0.0727791 0.997348i \(-0.523187\pi\)
−0.0727791 + 0.997348i \(0.523187\pi\)
\(810\) 0 0
\(811\) 5186.82 0.224579 0.112290 0.993676i \(-0.464182\pi\)
0.112290 + 0.993676i \(0.464182\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −8476.48 14681.7i −0.364317 0.631015i
\(816\) 0 0
\(817\) −5864.23 + 10157.1i −0.251118 + 0.434949i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −13332.5 + 23092.6i −0.566758 + 0.981654i 0.430126 + 0.902769i \(0.358469\pi\)
−0.996884 + 0.0788846i \(0.974864\pi\)
\(822\) 0 0
\(823\) 13152.1 + 22780.2i 0.557053 + 0.964844i 0.997741 + 0.0671832i \(0.0214012\pi\)
−0.440688 + 0.897660i \(0.645265\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −10768.0 −0.452769 −0.226385 0.974038i \(-0.572691\pi\)
−0.226385 + 0.974038i \(0.572691\pi\)
\(828\) 0 0
\(829\) −11960.9 −0.501110 −0.250555 0.968102i \(-0.580613\pi\)
−0.250555 + 0.968102i \(0.580613\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −10378.6 17976.2i −0.431687 0.747704i
\(834\) 0 0
\(835\) 3528.47 6111.49i 0.146237 0.253290i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −7177.07 + 12431.1i −0.295328 + 0.511523i −0.975061 0.221937i \(-0.928762\pi\)
0.679733 + 0.733459i \(0.262096\pi\)
\(840\) 0 0
\(841\) −16714.4 28950.2i −0.685325 1.18702i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −23436.2 −0.954117
\(846\) 0 0
\(847\) −30706.0 −1.24566
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 27443.7 + 47533.9i 1.10547 + 1.91474i
\(852\) 0 0
\(853\) 6065.55 10505.8i 0.243470 0.421703i −0.718230 0.695806i \(-0.755047\pi\)
0.961700 + 0.274103i \(0.0883808\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9376.46 + 16240.5i −0.373739 + 0.647334i −0.990137 0.140100i \(-0.955258\pi\)
0.616399 + 0.787434i \(0.288591\pi\)
\(858\) 0 0
\(859\) 5646.25 + 9779.58i 0.224269 + 0.388446i 0.956100 0.293041i \(-0.0946671\pi\)
−0.731831 + 0.681487i \(0.761334\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 5959.72 0.235077 0.117538 0.993068i \(-0.462500\pi\)
0.117538 + 0.993068i \(0.462500\pi\)
\(864\) 0 0
\(865\) −21755.8 −0.855166
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1726.85 2990.99i −0.0674101 0.116758i
\(870\) 0 0
\(871\) 250.079 433.150i 0.00972861 0.0168504i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 17057.3 29544.1i 0.659019 1.14145i
\(876\) 0 0
\(877\) −8912.47 15436.9i −0.343162 0.594374i 0.641856 0.766825i \(-0.278165\pi\)
−0.985018 + 0.172451i \(0.944831\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −44756.5 −1.71156 −0.855781 0.517339i \(-0.826923\pi\)
−0.855781 + 0.517339i \(0.826923\pi\)
\(882\) 0 0
\(883\) −7241.57 −0.275989 −0.137995 0.990433i \(-0.544066\pi\)
−0.137995 + 0.990433i \(0.544066\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16668.9 28871.4i −0.630990 1.09291i −0.987350 0.158557i \(-0.949316\pi\)
0.356360 0.934349i \(-0.384018\pi\)
\(888\) 0 0
\(889\) 23395.1 40521.5i 0.882618 1.52874i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 4443.42 7696.23i 0.166510 0.288404i
\(894\) 0 0
\(895\) 13769.8 + 23850.0i 0.514273 + 0.890746i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −61789.9 −2.29234
\(900\) 0 0
\(901\) 69765.2 2.57960
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9886.31 17123.6i −0.363129 0.628959i
\(906\) 0 0
\(907\) 9254.13 16028.6i 0.338785 0.586794i −0.645419 0.763829i \(-0.723317\pi\)
0.984205 + 0.177035i \(0.0566506\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −7352.80 + 12735.4i −0.267409 + 0.463165i −0.968192 0.250209i \(-0.919501\pi\)
0.700783 + 0.713374i \(0.252834\pi\)
\(912\) 0 0
\(913\) −1032.95 1789.13i −0.0374434 0.0648538i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −37063.8 −1.33474
\(918\) 0 0
\(919\) −44333.5 −1.59132 −0.795662 0.605741i \(-0.792877\pi\)
−0.795662 + 0.605741i \(0.792877\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −665.558 1152.78i −0.0237347 0.0411096i
\(924\) 0 0
\(925\) 1972.17 3415.90i 0.0701023 0.121421i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −15114.0 + 26178.3i −0.533773 + 0.924522i 0.465449 + 0.885075i \(0.345893\pi\)
−0.999222 + 0.0394470i \(0.987440\pi\)
\(930\) 0 0
\(931\) −2979.24 5160.20i −0.104877 0.181653i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5206.43 −0.182105
\(936\) 0 0
\(937\) 22568.0 0.786834 0.393417 0.919360i \(-0.371293\pi\)
0.393417 + 0.919360i \(0.371293\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −17542.5 30384.6i −0.607727 1.05261i −0.991614 0.129233i \(-0.958748\pi\)
0.383888 0.923380i \(-0.374585\pi\)
\(942\) 0 0
\(943\) 8283.46 14347.4i 0.286052 0.495456i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −17124.1 + 29659.7i −0.587600 + 1.01775i 0.406946 + 0.913452i \(0.366594\pi\)
−0.994546 + 0.104301i \(0.966740\pi\)
\(948\) 0 0
\(949\) −229.443 397.407i −0.00784831 0.0135937i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 38627.8 1.31299 0.656494 0.754331i \(-0.272039\pi\)
0.656494 + 0.754331i \(0.272039\pi\)
\(954\) 0 0
\(955\) 608.304 0.0206118
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9821.20 17010.8i −0.330702 0.572792i
\(960\) 0 0
\(961\) −18122.0 + 31388.2i −0.608304 + 1.05361i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −9685.41 + 16775.6i −0.323093 + 0.559613i
\(966\) 0 0
\(967\) 7814.39 + 13534.9i 0.259869 + 0.450107i 0.966207 0.257768i \(-0.0829871\pi\)
−0.706337 + 0.707875i \(0.749654\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −26637.8 −0.880379 −0.440190 0.897905i \(-0.645089\pi\)
−0.440190 + 0.897905i \(0.645089\pi\)
\(972\) 0 0
\(973\) −64109.9 −2.11230
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −888.789 1539.43i −0.0291043 0.0504101i 0.851106 0.524993i \(-0.175932\pi\)
−0.880211 + 0.474583i \(0.842599\pi\)
\(978\) 0 0
\(979\) −3952.63 + 6846.15i −0.129036 + 0.223498i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 23817.2 41252.6i 0.772788 1.33851i −0.163241 0.986586i \(-0.552195\pi\)
0.936029 0.351922i \(-0.114472\pi\)
\(984\) 0 0
\(985\) 4662.89 + 8076.36i 0.150834 + 0.261253i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −62826.0 −2.01997
\(990\) 0 0
\(991\) −33719.5 −1.08086 −0.540432 0.841388i \(-0.681739\pi\)
−0.540432 + 0.841388i \(0.681739\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 27035.5 + 46826.8i 0.861389 + 1.49197i
\(996\) 0 0
\(997\) 200.389 347.083i 0.00636547 0.0110253i −0.862825 0.505503i \(-0.831307\pi\)
0.869191 + 0.494477i \(0.164640\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.4.e.i.217.2 8
3.2 odd 2 inner 324.4.e.i.217.3 8
9.2 odd 6 324.4.a.e.1.2 4
9.4 even 3 inner 324.4.e.i.109.2 8
9.5 odd 6 inner 324.4.e.i.109.3 8
9.7 even 3 324.4.a.e.1.3 yes 4
36.7 odd 6 1296.4.a.z.1.3 4
36.11 even 6 1296.4.a.z.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.4.a.e.1.2 4 9.2 odd 6
324.4.a.e.1.3 yes 4 9.7 even 3
324.4.e.i.109.2 8 9.4 even 3 inner
324.4.e.i.109.3 8 9.5 odd 6 inner
324.4.e.i.217.2 8 1.1 even 1 trivial
324.4.e.i.217.3 8 3.2 odd 2 inner
1296.4.a.z.1.2 4 36.11 even 6
1296.4.a.z.1.3 4 36.7 odd 6