Properties

Label 324.4.b
Level 324324
Weight 44
Character orbit 324.b
Rep. character χ324(323,)\chi_{324}(323,\cdot)
Character field Q\Q
Dimension 6868
Newform subspaces 44
Sturm bound 216216
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 324=2234 324 = 2^{2} \cdot 3^{4}
Weight: k k == 4 4
Character orbit: [χ][\chi] == 324.b (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 12 12
Character field: Q\Q
Newform subspaces: 4 4
Sturm bound: 216216
Trace bound: 11
Distinguishing TpT_p: 55

Dimensions

The following table gives the dimensions of various subspaces of M4(324,[χ])M_{4}(324, [\chi]).

Total New Old
Modular forms 174 76 98
Cusp forms 150 68 82
Eisenstein series 24 8 16

Trace form

68q+2q420q10+4q13178q16+6q221296q25384q28410q34404q37428q40924q462152q49+664q52704q58464q61958q64+32q97+O(q100) 68 q + 2 q^{4} - 20 q^{10} + 4 q^{13} - 178 q^{16} + 6 q^{22} - 1296 q^{25} - 384 q^{28} - 410 q^{34} - 404 q^{37} - 428 q^{40} - 924 q^{46} - 2152 q^{49} + 664 q^{52} - 704 q^{58} - 464 q^{61} - 958 q^{64}+ \cdots - 32 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S4new(324,[χ])S_{4}^{\mathrm{new}}(324, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
324.4.b.a 324.b 12.b 44 19.11719.117 Q(2,3)\Q(\sqrt{-2}, \sqrt{3}) Q(1)\Q(\sqrt{-1}) 324.4.b.a 00 00 00 00 U(1)[D2]\mathrm{U}(1)[D_{2}] q+2β1q28q4+(7β1+β2)q5+q+2\beta _{1}q^{2}-8q^{4}+(-7\beta _{1}+\beta _{2})q^{5}+\cdots
324.4.b.b 324.b 12.b 88 19.11719.117 8.0.\cdots.1 None 36.4.h.a 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}] qβ1q2+(3β2+β3)q4+(β1+)q5+q-\beta _{1}q^{2}+(-3-\beta _{2}+\beta _{3})q^{4}+(-\beta _{1}+\cdots)q^{5}+\cdots
324.4.b.c 324.b 12.b 2424 19.11719.117 None 36.4.h.b 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]
324.4.b.d 324.b 12.b 3232 19.11719.117 None 324.4.b.d 00 00 00 00 SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Decomposition of S4old(324,[χ])S_{4}^{\mathrm{old}}(324, [\chi]) into lower level spaces

S4old(324,[χ]) S_{4}^{\mathrm{old}}(324, [\chi]) \simeq S4new(12,[χ])S_{4}^{\mathrm{new}}(12, [\chi])4^{\oplus 4}\oplusS4new(36,[χ])S_{4}^{\mathrm{new}}(36, [\chi])3^{\oplus 3}\oplusS4new(108,[χ])S_{4}^{\mathrm{new}}(108, [\chi])2^{\oplus 2}