Properties

Label 324.3.j.a.307.16
Level $324$
Weight $3$
Character 324.307
Analytic conductor $8.828$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,3,Mod(19,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 16])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.j (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 307.16
Character \(\chi\) \(=\) 324.307
Dual form 324.3.j.a.19.16

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.277531 - 1.98065i) q^{2} +(-3.84595 + 1.09938i) q^{4} +(0.542224 - 3.07510i) q^{5} +(-2.98812 - 3.56110i) q^{7} +(3.24486 + 7.31238i) q^{8} +(-6.24119 - 0.220520i) q^{10} +(-2.54564 + 0.448865i) q^{11} +(-16.7420 + 6.09358i) q^{13} +(-6.22401 + 6.90674i) q^{14} +(13.5827 - 8.45635i) q^{16} +(10.3549 - 17.9352i) q^{17} +(-24.5104 + 14.1511i) q^{19} +(1.29535 + 12.4228i) q^{20} +(1.59554 + 4.91745i) q^{22} +(-14.6669 + 17.4793i) q^{23} +(14.3301 + 5.21572i) q^{25} +(16.7157 + 31.4689i) q^{26} +(15.4072 + 10.4108i) q^{28} +(-5.90052 - 2.14762i) q^{29} +(-22.3759 + 26.6666i) q^{31} +(-20.5187 - 24.5557i) q^{32} +(-38.3971 - 15.5318i) q^{34} +(-12.5710 + 7.25787i) q^{35} +(-22.9733 + 39.7909i) q^{37} +(34.8307 + 44.6192i) q^{38} +(24.2458 - 6.01334i) q^{40} +(4.27327 - 1.55534i) q^{41} +(-12.6921 + 2.23796i) q^{43} +(9.29693 - 4.52494i) q^{44} +(38.6910 + 24.1990i) q^{46} +(-1.37925 - 1.64373i) q^{47} +(4.75617 - 26.9736i) q^{49} +(6.35348 - 29.8304i) q^{50} +(57.6897 - 41.8415i) q^{52} +31.8446 q^{53} +8.07149i q^{55} +(16.3441 - 33.4056i) q^{56} +(-2.61610 + 12.2829i) q^{58} +(-111.470 - 19.6551i) q^{59} +(63.3215 - 53.1331i) q^{61} +(59.0272 + 36.9181i) q^{62} +(-42.9417 + 47.4553i) q^{64} +(9.66050 + 54.7874i) q^{65} +(10.8572 + 29.8298i) q^{67} +(-20.1068 + 80.3619i) q^{68} +(17.8641 + 22.8845i) q^{70} +(0.0648998 + 0.0374699i) q^{71} +(-60.1132 - 104.119i) q^{73} +(85.1877 + 34.4589i) q^{74} +(78.7084 - 81.3707i) q^{76} +(9.20513 + 7.72402i) q^{77} +(-0.117809 + 0.323678i) q^{79} +(-18.6393 - 46.3535i) q^{80} +(-4.26656 - 8.03220i) q^{82} +(32.5283 - 89.3708i) q^{83} +(-49.5379 - 41.5672i) q^{85} +(7.95507 + 24.5175i) q^{86} +(-11.5425 - 17.1582i) q^{88} +(-59.4029 - 102.889i) q^{89} +(71.7269 + 41.4116i) q^{91} +(37.1918 - 83.3493i) q^{92} +(-2.87287 + 3.18801i) q^{94} +(30.2259 + 83.0451i) q^{95} +(11.2136 + 63.5953i) q^{97} +(-54.7452 - 1.93431i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 3 q^{8} - 3 q^{10} - 12 q^{13} - 39 q^{14} - 6 q^{16} + 6 q^{17} + 69 q^{20} - 6 q^{22} - 12 q^{25} + 174 q^{26} - 12 q^{28} - 60 q^{29} + 96 q^{32} + 6 q^{34} - 6 q^{37}+ \cdots - 510 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.277531 1.98065i −0.138765 0.990325i
\(3\) 0 0
\(4\) −3.84595 + 1.09938i −0.961488 + 0.274846i
\(5\) 0.542224 3.07510i 0.108445 0.615021i −0.881344 0.472476i \(-0.843360\pi\)
0.989788 0.142545i \(-0.0455285\pi\)
\(6\) 0 0
\(7\) −2.98812 3.56110i −0.426874 0.508729i 0.509143 0.860682i \(-0.329962\pi\)
−0.936018 + 0.351953i \(0.885518\pi\)
\(8\) 3.24486 + 7.31238i 0.405608 + 0.914047i
\(9\) 0 0
\(10\) −6.24119 0.220520i −0.624119 0.0220520i
\(11\) −2.54564 + 0.448865i −0.231422 + 0.0408059i −0.288156 0.957583i \(-0.593042\pi\)
0.0567345 + 0.998389i \(0.481931\pi\)
\(12\) 0 0
\(13\) −16.7420 + 6.09358i −1.28784 + 0.468737i −0.893019 0.450019i \(-0.851417\pi\)
−0.394825 + 0.918756i \(0.629195\pi\)
\(14\) −6.22401 + 6.90674i −0.444572 + 0.493339i
\(15\) 0 0
\(16\) 13.5827 8.45635i 0.848920 0.528522i
\(17\) 10.3549 17.9352i 0.609111 1.05501i −0.382276 0.924048i \(-0.624860\pi\)
0.991387 0.130963i \(-0.0418069\pi\)
\(18\) 0 0
\(19\) −24.5104 + 14.1511i −1.29002 + 0.744794i −0.978658 0.205497i \(-0.934119\pi\)
−0.311363 + 0.950291i \(0.600786\pi\)
\(20\) 1.29535 + 12.4228i 0.0647674 + 0.621141i
\(21\) 0 0
\(22\) 1.59554 + 4.91745i 0.0725244 + 0.223520i
\(23\) −14.6669 + 17.4793i −0.637692 + 0.759972i −0.984004 0.178148i \(-0.942989\pi\)
0.346312 + 0.938119i \(0.387434\pi\)
\(24\) 0 0
\(25\) 14.3301 + 5.21572i 0.573202 + 0.208629i
\(26\) 16.7157 + 31.4689i 0.642910 + 1.21034i
\(27\) 0 0
\(28\) 15.4072 + 10.4108i 0.550257 + 0.371813i
\(29\) −5.90052 2.14762i −0.203466 0.0740557i 0.238277 0.971197i \(-0.423417\pi\)
−0.441743 + 0.897142i \(0.645640\pi\)
\(30\) 0 0
\(31\) −22.3759 + 26.6666i −0.721804 + 0.860213i −0.994805 0.101801i \(-0.967539\pi\)
0.273001 + 0.962014i \(0.411984\pi\)
\(32\) −20.5187 24.5557i −0.641209 0.767366i
\(33\) 0 0
\(34\) −38.3971 15.5318i −1.12933 0.456819i
\(35\) −12.5710 + 7.25787i −0.359171 + 0.207368i
\(36\) 0 0
\(37\) −22.9733 + 39.7909i −0.620900 + 1.07543i 0.368419 + 0.929660i \(0.379899\pi\)
−0.989318 + 0.145770i \(0.953434\pi\)
\(38\) 34.8307 + 44.6192i 0.916599 + 1.17419i
\(39\) 0 0
\(40\) 24.2458 6.01334i 0.606144 0.150334i
\(41\) 4.27327 1.55534i 0.104226 0.0379352i −0.289381 0.957214i \(-0.593449\pi\)
0.393607 + 0.919279i \(0.371227\pi\)
\(42\) 0 0
\(43\) −12.6921 + 2.23796i −0.295165 + 0.0520456i −0.319270 0.947664i \(-0.603438\pi\)
0.0241045 + 0.999709i \(0.492327\pi\)
\(44\) 9.29693 4.52494i 0.211294 0.102840i
\(45\) 0 0
\(46\) 38.6910 + 24.1990i 0.841109 + 0.526065i
\(47\) −1.37925 1.64373i −0.0293458 0.0349730i 0.751172 0.660107i \(-0.229489\pi\)
−0.780518 + 0.625134i \(0.785044\pi\)
\(48\) 0 0
\(49\) 4.75617 26.9736i 0.0970646 0.550481i
\(50\) 6.35348 29.8304i 0.127070 0.596607i
\(51\) 0 0
\(52\) 57.6897 41.8415i 1.10942 0.804644i
\(53\) 31.8446 0.600841 0.300420 0.953807i \(-0.402873\pi\)
0.300420 + 0.953807i \(0.402873\pi\)
\(54\) 0 0
\(55\) 8.07149i 0.146754i
\(56\) 16.3441 33.4056i 0.291859 0.596528i
\(57\) 0 0
\(58\) −2.61610 + 12.2829i −0.0451052 + 0.211774i
\(59\) −111.470 19.6551i −1.88932 0.333138i −0.895583 0.444894i \(-0.853241\pi\)
−0.993736 + 0.111757i \(0.964352\pi\)
\(60\) 0 0
\(61\) 63.3215 53.1331i 1.03806 0.871034i 0.0462698 0.998929i \(-0.485267\pi\)
0.991788 + 0.127895i \(0.0408222\pi\)
\(62\) 59.0272 + 36.9181i 0.952052 + 0.595453i
\(63\) 0 0
\(64\) −42.9417 + 47.4553i −0.670965 + 0.741489i
\(65\) 9.66050 + 54.7874i 0.148623 + 0.842883i
\(66\) 0 0
\(67\) 10.8572 + 29.8298i 0.162047 + 0.445221i 0.993968 0.109674i \(-0.0349807\pi\)
−0.831921 + 0.554895i \(0.812759\pi\)
\(68\) −20.1068 + 80.3619i −0.295688 + 1.18179i
\(69\) 0 0
\(70\) 17.8641 + 22.8845i 0.255202 + 0.326921i
\(71\) 0.0648998 + 0.0374699i 0.000914081 + 0.000527745i 0.500457 0.865761i \(-0.333165\pi\)
−0.499543 + 0.866289i \(0.666499\pi\)
\(72\) 0 0
\(73\) −60.1132 104.119i −0.823469 1.42629i −0.903084 0.429465i \(-0.858702\pi\)
0.0796145 0.996826i \(-0.474631\pi\)
\(74\) 85.1877 + 34.4589i 1.15119 + 0.465660i
\(75\) 0 0
\(76\) 78.7084 81.3707i 1.03564 1.07067i
\(77\) 9.20513 + 7.72402i 0.119547 + 0.100312i
\(78\) 0 0
\(79\) −0.117809 + 0.323678i −0.00149126 + 0.00409720i −0.940436 0.339971i \(-0.889583\pi\)
0.938945 + 0.344068i \(0.111805\pi\)
\(80\) −18.6393 46.3535i −0.232991 0.579419i
\(81\) 0 0
\(82\) −4.26656 8.03220i −0.0520312 0.0979537i
\(83\) 32.5283 89.3708i 0.391907 1.07676i −0.574222 0.818700i \(-0.694695\pi\)
0.966130 0.258057i \(-0.0830824\pi\)
\(84\) 0 0
\(85\) −49.5379 41.5672i −0.582799 0.489026i
\(86\) 7.95507 + 24.5175i 0.0925008 + 0.285088i
\(87\) 0 0
\(88\) −11.5425 17.1582i −0.131165 0.194979i
\(89\) −59.4029 102.889i −0.667449 1.15605i −0.978615 0.205700i \(-0.934053\pi\)
0.311167 0.950355i \(-0.399280\pi\)
\(90\) 0 0
\(91\) 71.7269 + 41.4116i 0.788208 + 0.455072i
\(92\) 37.1918 83.3493i 0.404258 0.905971i
\(93\) 0 0
\(94\) −2.87287 + 3.18801i −0.0305625 + 0.0339150i
\(95\) 30.2259 + 83.0451i 0.318168 + 0.874159i
\(96\) 0 0
\(97\) 11.2136 + 63.5953i 0.115604 + 0.655622i 0.986449 + 0.164065i \(0.0524608\pi\)
−0.870846 + 0.491556i \(0.836428\pi\)
\(98\) −54.7452 1.93431i −0.558624 0.0197379i
\(99\) 0 0
\(100\) −60.8468 4.30518i −0.608468 0.0430518i
\(101\) −96.7701 + 81.1997i −0.958120 + 0.803958i −0.980646 0.195788i \(-0.937273\pi\)
0.0225265 + 0.999746i \(0.492829\pi\)
\(102\) 0 0
\(103\) −154.727 27.2826i −1.50221 0.264879i −0.638794 0.769378i \(-0.720566\pi\)
−0.863412 + 0.504499i \(0.831677\pi\)
\(104\) −98.8840 102.651i −0.950807 0.987027i
\(105\) 0 0
\(106\) −8.83784 63.0730i −0.0833759 0.595028i
\(107\) 135.536i 1.26670i −0.773867 0.633348i \(-0.781680\pi\)
0.773867 0.633348i \(-0.218320\pi\)
\(108\) 0 0
\(109\) −19.3978 −0.177962 −0.0889809 0.996033i \(-0.528361\pi\)
−0.0889809 + 0.996033i \(0.528361\pi\)
\(110\) 15.9868 2.24008i 0.145335 0.0203644i
\(111\) 0 0
\(112\) −70.7007 23.1009i −0.631257 0.206258i
\(113\) 15.9448 90.4277i 0.141105 0.800245i −0.829308 0.558792i \(-0.811265\pi\)
0.970413 0.241453i \(-0.0776239\pi\)
\(114\) 0 0
\(115\) 45.7980 + 54.5800i 0.398244 + 0.474609i
\(116\) 25.0542 + 1.77270i 0.215984 + 0.0152819i
\(117\) 0 0
\(118\) −7.99367 + 226.238i −0.0677430 + 1.91727i
\(119\) −94.8107 + 16.7177i −0.796729 + 0.140485i
\(120\) 0 0
\(121\) −107.424 + 39.0991i −0.887802 + 0.323133i
\(122\) −122.812 110.672i −1.00665 0.907145i
\(123\) 0 0
\(124\) 56.7400 127.158i 0.457581 1.02547i
\(125\) 62.8407 108.843i 0.502726 0.870747i
\(126\) 0 0
\(127\) 184.813 106.702i 1.45522 0.840170i 0.456448 0.889750i \(-0.349122\pi\)
0.998770 + 0.0495799i \(0.0157883\pi\)
\(128\) 105.910 + 71.8823i 0.827422 + 0.561580i
\(129\) 0 0
\(130\) 105.834 34.3392i 0.814105 0.264148i
\(131\) −1.67775 + 1.99947i −0.0128073 + 0.0152631i −0.772410 0.635124i \(-0.780949\pi\)
0.759603 + 0.650387i \(0.225393\pi\)
\(132\) 0 0
\(133\) 123.634 + 44.9989i 0.929576 + 0.338338i
\(134\) 56.0692 29.7829i 0.418427 0.222260i
\(135\) 0 0
\(136\) 164.749 + 17.5216i 1.21139 + 0.128835i
\(137\) −179.564 65.3560i −1.31069 0.477051i −0.410225 0.911985i \(-0.634550\pi\)
−0.900463 + 0.434933i \(0.856772\pi\)
\(138\) 0 0
\(139\) 53.4641 63.7160i 0.384634 0.458389i −0.538637 0.842538i \(-0.681061\pi\)
0.923271 + 0.384149i \(0.125505\pi\)
\(140\) 40.3683 41.7337i 0.288345 0.298098i
\(141\) 0 0
\(142\) 0.0562031 0.138943i 0.000395797 0.000978470i
\(143\) 39.8838 23.0269i 0.278908 0.161028i
\(144\) 0 0
\(145\) −9.80354 + 16.9802i −0.0676106 + 0.117105i
\(146\) −189.540 + 147.960i −1.29822 + 1.01342i
\(147\) 0 0
\(148\) 44.6088 178.290i 0.301411 1.20467i
\(149\) 50.4885 18.3763i 0.338849 0.123331i −0.166991 0.985958i \(-0.553405\pi\)
0.505840 + 0.862628i \(0.331183\pi\)
\(150\) 0 0
\(151\) −49.1219 + 8.66152i −0.325311 + 0.0573610i −0.333919 0.942602i \(-0.608371\pi\)
0.00860797 + 0.999963i \(0.497260\pi\)
\(152\) −183.011 133.311i −1.20402 0.877046i
\(153\) 0 0
\(154\) 12.7439 20.3758i 0.0827525 0.132310i
\(155\) 69.8698 + 83.2676i 0.450773 + 0.537210i
\(156\) 0 0
\(157\) −31.3995 + 178.075i −0.199997 + 1.13424i 0.705124 + 0.709084i \(0.250891\pi\)
−0.905121 + 0.425154i \(0.860220\pi\)
\(158\) 0.673790 + 0.143508i 0.00426449 + 0.000908281i
\(159\) 0 0
\(160\) −86.6371 + 49.7824i −0.541482 + 0.311140i
\(161\) 106.072 0.658834
\(162\) 0 0
\(163\) 8.91711i 0.0547062i −0.999626 0.0273531i \(-0.991292\pi\)
0.999626 0.0273531i \(-0.00870785\pi\)
\(164\) −14.7249 + 10.6797i −0.0897859 + 0.0651204i
\(165\) 0 0
\(166\) −186.040 39.6241i −1.12072 0.238699i
\(167\) 285.053 + 50.2625i 1.70690 + 0.300973i 0.940097 0.340908i \(-0.110734\pi\)
0.766805 + 0.641880i \(0.221845\pi\)
\(168\) 0 0
\(169\) 113.701 95.4061i 0.672784 0.564533i
\(170\) −68.5819 + 109.653i −0.403423 + 0.645020i
\(171\) 0 0
\(172\) 46.3529 22.5606i 0.269494 0.131166i
\(173\) 55.6641 + 315.687i 0.321758 + 1.82478i 0.531541 + 0.847032i \(0.321613\pi\)
−0.209783 + 0.977748i \(0.567276\pi\)
\(174\) 0 0
\(175\) −24.2463 66.6160i −0.138550 0.380663i
\(176\) −30.7809 + 27.6236i −0.174892 + 0.156952i
\(177\) 0 0
\(178\) −187.301 + 146.211i −1.05225 + 0.821412i
\(179\) 162.728 + 93.9512i 0.909096 + 0.524867i 0.880140 0.474714i \(-0.157448\pi\)
0.0289558 + 0.999581i \(0.490782\pi\)
\(180\) 0 0
\(181\) −87.5994 151.727i −0.483975 0.838269i 0.515856 0.856675i \(-0.327474\pi\)
−0.999831 + 0.0184065i \(0.994141\pi\)
\(182\) 62.1154 153.559i 0.341294 0.843731i
\(183\) 0 0
\(184\) −175.408 50.5319i −0.953303 0.274630i
\(185\) 109.905 + 92.2208i 0.594078 + 0.498491i
\(186\) 0 0
\(187\) −18.3093 + 50.3044i −0.0979108 + 0.269008i
\(188\) 7.11164 + 4.80539i 0.0378279 + 0.0255606i
\(189\) 0 0
\(190\) 156.095 82.9146i 0.821551 0.436393i
\(191\) 27.9840 76.8854i 0.146513 0.402541i −0.844628 0.535353i \(-0.820178\pi\)
0.991141 + 0.132812i \(0.0424006\pi\)
\(192\) 0 0
\(193\) 235.485 + 197.596i 1.22013 + 1.02381i 0.998818 + 0.0486086i \(0.0154787\pi\)
0.221313 + 0.975203i \(0.428966\pi\)
\(194\) 122.848 39.8598i 0.633237 0.205463i
\(195\) 0 0
\(196\) 11.3623 + 108.968i 0.0579707 + 0.555959i
\(197\) −7.31189 12.6646i −0.0371162 0.0642871i 0.846871 0.531799i \(-0.178484\pi\)
−0.883987 + 0.467512i \(0.845150\pi\)
\(198\) 0 0
\(199\) −9.61962 5.55389i −0.0483398 0.0279090i 0.475635 0.879643i \(-0.342218\pi\)
−0.523975 + 0.851734i \(0.675552\pi\)
\(200\) 8.35979 + 121.711i 0.0417989 + 0.608555i
\(201\) 0 0
\(202\) 187.685 + 169.132i 0.929134 + 0.837289i
\(203\) 9.98360 + 27.4297i 0.0491803 + 0.135122i
\(204\) 0 0
\(205\) −2.46577 13.9841i −0.0120282 0.0682151i
\(206\) −11.0957 + 314.032i −0.0538627 + 1.52443i
\(207\) 0 0
\(208\) −175.872 + 224.343i −0.845539 + 1.07857i
\(209\) 56.0427 47.0254i 0.268147 0.225002i
\(210\) 0 0
\(211\) −227.524 40.1186i −1.07831 0.190135i −0.393843 0.919178i \(-0.628855\pi\)
−0.684468 + 0.729042i \(0.739966\pi\)
\(212\) −122.473 + 35.0094i −0.577702 + 0.165138i
\(213\) 0 0
\(214\) −268.450 + 37.6155i −1.25444 + 0.175773i
\(215\) 40.2430i 0.187177i
\(216\) 0 0
\(217\) 161.825 0.745735
\(218\) 5.38349 + 38.4203i 0.0246949 + 0.176240i
\(219\) 0 0
\(220\) −8.87365 31.0426i −0.0403348 0.141103i
\(221\) −64.0717 + 363.369i −0.289917 + 1.64420i
\(222\) 0 0
\(223\) −15.4066 18.3609i −0.0690879 0.0823358i 0.730393 0.683027i \(-0.239337\pi\)
−0.799481 + 0.600691i \(0.794892\pi\)
\(224\) −26.1332 + 146.445i −0.116666 + 0.653771i
\(225\) 0 0
\(226\) −183.531 6.48470i −0.812083 0.0286934i
\(227\) −288.723 + 50.9096i −1.27191 + 0.224271i −0.768540 0.639802i \(-0.779016\pi\)
−0.503366 + 0.864073i \(0.667905\pi\)
\(228\) 0 0
\(229\) −235.290 + 85.6387i −1.02747 + 0.373968i −0.800117 0.599844i \(-0.795229\pi\)
−0.227352 + 0.973813i \(0.573007\pi\)
\(230\) 95.3935 105.858i 0.414754 0.460250i
\(231\) 0 0
\(232\) −3.44221 50.1156i −0.0148371 0.216015i
\(233\) −44.3299 + 76.7816i −0.190257 + 0.329535i −0.945335 0.326100i \(-0.894265\pi\)
0.755078 + 0.655635i \(0.227599\pi\)
\(234\) 0 0
\(235\) −5.80251 + 3.35008i −0.0246915 + 0.0142557i
\(236\) 450.316 46.9552i 1.90812 0.198963i
\(237\) 0 0
\(238\) 59.4248 + 183.147i 0.249684 + 0.769526i
\(239\) −193.538 + 230.649i −0.809781 + 0.965059i −0.999860 0.0167096i \(-0.994681\pi\)
0.190080 + 0.981769i \(0.439125\pi\)
\(240\) 0 0
\(241\) 293.914 + 106.976i 1.21956 + 0.443883i 0.870009 0.493035i \(-0.164113\pi\)
0.349549 + 0.936918i \(0.386335\pi\)
\(242\) 107.255 + 201.918i 0.443203 + 0.834373i
\(243\) 0 0
\(244\) −185.118 + 273.962i −0.758680 + 1.12279i
\(245\) −80.3676 29.2514i −0.328031 0.119393i
\(246\) 0 0
\(247\) 324.122 386.273i 1.31223 1.56386i
\(248\) −267.603 77.0918i −1.07904 0.310854i
\(249\) 0 0
\(250\) −233.021 94.2582i −0.932084 0.377033i
\(251\) 179.464 103.614i 0.714997 0.412804i −0.0979113 0.995195i \(-0.531216\pi\)
0.812909 + 0.582391i \(0.197883\pi\)
\(252\) 0 0
\(253\) 29.4908 51.0796i 0.116564 0.201895i
\(254\) −262.630 336.436i −1.03398 1.32455i
\(255\) 0 0
\(256\) 112.980 229.720i 0.441330 0.897345i
\(257\) 348.175 126.725i 1.35477 0.493095i 0.440335 0.897834i \(-0.354860\pi\)
0.914432 + 0.404739i \(0.132637\pi\)
\(258\) 0 0
\(259\) 210.347 37.0898i 0.812149 0.143204i
\(260\) −97.3861 200.089i −0.374562 0.769574i
\(261\) 0 0
\(262\) 4.42587 + 2.76813i 0.0168926 + 0.0105654i
\(263\) 118.833 + 141.619i 0.451836 + 0.538477i 0.943089 0.332540i \(-0.107906\pi\)
−0.491253 + 0.871017i \(0.663461\pi\)
\(264\) 0 0
\(265\) 17.2669 97.9253i 0.0651580 0.369530i
\(266\) 54.8151 257.363i 0.206072 0.967532i
\(267\) 0 0
\(268\) −74.5504 102.788i −0.278173 0.383536i
\(269\) −496.062 −1.84410 −0.922049 0.387074i \(-0.873486\pi\)
−0.922049 + 0.387074i \(0.873486\pi\)
\(270\) 0 0
\(271\) 316.792i 1.16897i −0.811403 0.584487i \(-0.801296\pi\)
0.811403 0.584487i \(-0.198704\pi\)
\(272\) −11.0187 331.173i −0.0405099 1.21755i
\(273\) 0 0
\(274\) −79.6129 + 373.792i −0.290558 + 1.36420i
\(275\) −38.8203 6.84507i −0.141165 0.0248912i
\(276\) 0 0
\(277\) −228.590 + 191.810i −0.825235 + 0.692455i −0.954192 0.299196i \(-0.903282\pi\)
0.128957 + 0.991650i \(0.458837\pi\)
\(278\) −141.037 88.2105i −0.507328 0.317304i
\(279\) 0 0
\(280\) −93.8634 68.3731i −0.335226 0.244190i
\(281\) −28.7377 162.980i −0.102270 0.579999i −0.992276 0.124051i \(-0.960411\pi\)
0.890006 0.455948i \(-0.150700\pi\)
\(282\) 0 0
\(283\) 128.140 + 352.062i 0.452792 + 1.24404i 0.930751 + 0.365654i \(0.119155\pi\)
−0.477959 + 0.878382i \(0.658623\pi\)
\(284\) −0.290795 0.0727578i −0.00102393 0.000256190i
\(285\) 0 0
\(286\) −56.6773 72.6053i −0.198172 0.253865i
\(287\) −18.3078 10.5700i −0.0637902 0.0368293i
\(288\) 0 0
\(289\) −69.9473 121.152i −0.242032 0.419212i
\(290\) 36.3527 + 14.7049i 0.125354 + 0.0507064i
\(291\) 0 0
\(292\) 345.660 + 334.350i 1.18377 + 1.14503i
\(293\) 275.790 + 231.416i 0.941264 + 0.789815i 0.977805 0.209518i \(-0.0671894\pi\)
−0.0365406 + 0.999332i \(0.511634\pi\)
\(294\) 0 0
\(295\) −120.883 + 332.124i −0.409773 + 1.12584i
\(296\) −365.511 38.8734i −1.23484 0.131329i
\(297\) 0 0
\(298\) −50.4092 94.9001i −0.169158 0.318457i
\(299\) 139.041 382.013i 0.465021 1.27763i
\(300\) 0 0
\(301\) 45.8952 + 38.5106i 0.152476 + 0.127942i
\(302\) 30.7883 + 94.8895i 0.101948 + 0.314204i
\(303\) 0 0
\(304\) −213.251 + 399.479i −0.701485 + 1.31407i
\(305\) −129.055 223.530i −0.423132 0.732886i
\(306\) 0 0
\(307\) −25.9467 14.9803i −0.0845168 0.0487958i 0.457146 0.889392i \(-0.348872\pi\)
−0.541663 + 0.840596i \(0.682205\pi\)
\(308\) −43.8942 19.5863i −0.142514 0.0635918i
\(309\) 0 0
\(310\) 145.533 161.497i 0.469461 0.520958i
\(311\) −90.6051 248.936i −0.291335 0.800436i −0.995872 0.0907688i \(-0.971068\pi\)
0.704537 0.709667i \(-0.251155\pi\)
\(312\) 0 0
\(313\) −24.1122 136.747i −0.0770356 0.436891i −0.998793 0.0491230i \(-0.984357\pi\)
0.921757 0.387768i \(-0.126754\pi\)
\(314\) 361.419 + 12.7700i 1.15102 + 0.0406689i
\(315\) 0 0
\(316\) 0.0972428 1.37437i 0.000307730 0.00434927i
\(317\) 149.944 125.818i 0.473009 0.396902i −0.374882 0.927073i \(-0.622317\pi\)
0.847891 + 0.530171i \(0.177872\pi\)
\(318\) 0 0
\(319\) 15.9846 + 2.81852i 0.0501084 + 0.00883547i
\(320\) 122.646 + 157.782i 0.383269 + 0.493068i
\(321\) 0 0
\(322\) −29.4383 210.092i −0.0914233 0.652460i
\(323\) 586.132i 1.81465i
\(324\) 0 0
\(325\) −271.696 −0.835987
\(326\) −17.6617 + 2.47477i −0.0541769 + 0.00759132i
\(327\) 0 0
\(328\) 25.2394 + 26.2009i 0.0769495 + 0.0798808i
\(329\) −1.73212 + 9.82334i −0.00526480 + 0.0298582i
\(330\) 0 0
\(331\) −7.54276 8.98911i −0.0227878 0.0271574i 0.754530 0.656265i \(-0.227865\pi\)
−0.777318 + 0.629108i \(0.783420\pi\)
\(332\) −26.8497 + 379.477i −0.0808726 + 1.14300i
\(333\) 0 0
\(334\) 20.4416 578.539i 0.0612023 1.73215i
\(335\) 97.6167 17.2125i 0.291393 0.0513804i
\(336\) 0 0
\(337\) 86.0445 31.3176i 0.255325 0.0929307i −0.211187 0.977446i \(-0.567733\pi\)
0.466512 + 0.884515i \(0.345511\pi\)
\(338\) −220.522 198.723i −0.652430 0.587938i
\(339\) 0 0
\(340\) 236.219 + 105.405i 0.694761 + 0.310013i
\(341\) 44.9913 77.9273i 0.131939 0.228526i
\(342\) 0 0
\(343\) −307.536 + 177.556i −0.896606 + 0.517656i
\(344\) −57.5490 85.5477i −0.167294 0.248685i
\(345\) 0 0
\(346\) 609.817 197.864i 1.76248 0.571861i
\(347\) 230.389 274.567i 0.663944 0.791258i −0.324002 0.946056i \(-0.605028\pi\)
0.987946 + 0.154798i \(0.0494728\pi\)
\(348\) 0 0
\(349\) −424.517 154.511i −1.21638 0.442726i −0.347468 0.937692i \(-0.612958\pi\)
−0.868913 + 0.494966i \(0.835181\pi\)
\(350\) −125.214 + 66.5113i −0.357754 + 0.190032i
\(351\) 0 0
\(352\) 63.2554 + 53.2999i 0.179703 + 0.151420i
\(353\) −174.348 63.4575i −0.493903 0.179766i 0.0830465 0.996546i \(-0.473535\pi\)
−0.576950 + 0.816780i \(0.695757\pi\)
\(354\) 0 0
\(355\) 0.150414 0.179256i 0.000423701 0.000504948i
\(356\) 341.575 + 330.399i 0.959481 + 0.928088i
\(357\) 0 0
\(358\) 140.922 348.382i 0.393638 0.973134i
\(359\) −19.1474 + 11.0548i −0.0533354 + 0.0307932i −0.526431 0.850218i \(-0.676470\pi\)
0.473095 + 0.881011i \(0.343137\pi\)
\(360\) 0 0
\(361\) 220.007 381.063i 0.609437 1.05558i
\(362\) −276.206 + 215.613i −0.763000 + 0.595615i
\(363\) 0 0
\(364\) −321.386 80.4116i −0.882927 0.220911i
\(365\) −352.772 + 128.399i −0.966499 + 0.351777i
\(366\) 0 0
\(367\) −64.1920 + 11.3188i −0.174910 + 0.0308414i −0.260417 0.965496i \(-0.583860\pi\)
0.0855071 + 0.996338i \(0.472749\pi\)
\(368\) −51.4051 + 361.446i −0.139688 + 0.982189i
\(369\) 0 0
\(370\) 152.155 243.277i 0.411231 0.657504i
\(371\) −95.1554 113.402i −0.256484 0.305665i
\(372\) 0 0
\(373\) −13.9077 + 78.8746i −0.0372861 + 0.211460i −0.997759 0.0669145i \(-0.978685\pi\)
0.960473 + 0.278375i \(0.0897956\pi\)
\(374\) 104.717 + 22.3033i 0.279992 + 0.0596346i
\(375\) 0 0
\(376\) 7.54410 15.4193i 0.0200641 0.0410088i
\(377\) 111.873 0.296746
\(378\) 0 0
\(379\) 108.170i 0.285410i 0.989765 + 0.142705i \(0.0455799\pi\)
−0.989765 + 0.142705i \(0.954420\pi\)
\(380\) −207.546 286.158i −0.546173 0.753047i
\(381\) 0 0
\(382\) −160.050 34.0885i −0.418978 0.0892369i
\(383\) −314.011 55.3687i −0.819873 0.144566i −0.252048 0.967715i \(-0.581104\pi\)
−0.567825 + 0.823149i \(0.692215\pi\)
\(384\) 0 0
\(385\) 28.7434 24.1186i 0.0746582 0.0626457i
\(386\) 326.013 521.253i 0.844595 1.35040i
\(387\) 0 0
\(388\) −113.042 232.257i −0.291346 0.598599i
\(389\) −22.7566 129.059i −0.0585003 0.331772i 0.941486 0.337053i \(-0.109430\pi\)
−0.999986 + 0.00528095i \(0.998319\pi\)
\(390\) 0 0
\(391\) 161.621 + 444.050i 0.413353 + 1.13568i
\(392\) 212.674 52.7466i 0.542536 0.134558i
\(393\) 0 0
\(394\) −23.0548 + 17.9971i −0.0585147 + 0.0456779i
\(395\) 0.931466 + 0.537782i 0.00235814 + 0.00136147i
\(396\) 0 0
\(397\) 179.796 + 311.416i 0.452887 + 0.784423i 0.998564 0.0535725i \(-0.0170608\pi\)
−0.545677 + 0.837996i \(0.683727\pi\)
\(398\) −8.33058 + 20.5945i −0.0209311 + 0.0517449i
\(399\) 0 0
\(400\) 238.747 50.3364i 0.596868 0.125841i
\(401\) −259.700 217.914i −0.647631 0.543427i 0.258720 0.965952i \(-0.416699\pi\)
−0.906351 + 0.422525i \(0.861144\pi\)
\(402\) 0 0
\(403\) 212.122 582.801i 0.526358 1.44616i
\(404\) 282.904 418.678i 0.700257 1.03633i
\(405\) 0 0
\(406\) 51.5579 27.3866i 0.126990 0.0674547i
\(407\) 40.6210 111.605i 0.0998058 0.274214i
\(408\) 0 0
\(409\) 283.138 + 237.581i 0.692270 + 0.580883i 0.919563 0.392943i \(-0.128543\pi\)
−0.227293 + 0.973826i \(0.572988\pi\)
\(410\) −27.0133 + 8.76485i −0.0658861 + 0.0213777i
\(411\) 0 0
\(412\) 625.068 65.1768i 1.51715 0.158196i
\(413\) 263.091 + 455.687i 0.637025 + 1.10336i
\(414\) 0 0
\(415\) −257.187 148.487i −0.619727 0.357800i
\(416\) 493.156 + 286.079i 1.18547 + 0.687690i
\(417\) 0 0
\(418\) −108.694 97.9500i −0.260035 0.234330i
\(419\) −21.0810 57.9195i −0.0503125 0.138233i 0.911991 0.410210i \(-0.134545\pi\)
−0.962304 + 0.271977i \(0.912322\pi\)
\(420\) 0 0
\(421\) −4.86271 27.5778i −0.0115504 0.0655055i 0.978488 0.206305i \(-0.0661439\pi\)
−0.990038 + 0.140799i \(0.955033\pi\)
\(422\) −16.3161 + 461.779i −0.0386637 + 1.09426i
\(423\) 0 0
\(424\) 103.331 + 232.860i 0.243706 + 0.549197i
\(425\) 241.931 203.004i 0.569249 0.477657i
\(426\) 0 0
\(427\) −378.425 66.7265i −0.886240 0.156268i
\(428\) 149.006 + 521.267i 0.348146 + 1.21791i
\(429\) 0 0
\(430\) 79.7074 11.1687i 0.185366 0.0259737i
\(431\) 405.263i 0.940286i −0.882590 0.470143i \(-0.844202\pi\)
0.882590 0.470143i \(-0.155798\pi\)
\(432\) 0 0
\(433\) 208.330 0.481131 0.240565 0.970633i \(-0.422667\pi\)
0.240565 + 0.970633i \(0.422667\pi\)
\(434\) −44.9113 320.518i −0.103482 0.738520i
\(435\) 0 0
\(436\) 74.6032 21.3256i 0.171108 0.0489120i
\(437\) 112.140 635.979i 0.256614 1.45533i
\(438\) 0 0
\(439\) 272.688 + 324.977i 0.621157 + 0.740266i 0.981269 0.192643i \(-0.0617060\pi\)
−0.360112 + 0.932909i \(0.617262\pi\)
\(440\) −59.0218 + 26.1909i −0.134140 + 0.0595247i
\(441\) 0 0
\(442\) 737.488 + 26.0577i 1.66853 + 0.0589541i
\(443\) −613.592 + 108.193i −1.38508 + 0.244228i −0.816000 0.578052i \(-0.803813\pi\)
−0.569084 + 0.822280i \(0.692702\pi\)
\(444\) 0 0
\(445\) −348.604 + 126.881i −0.783379 + 0.285127i
\(446\) −32.0907 + 35.6108i −0.0719522 + 0.0798449i
\(447\) 0 0
\(448\) 297.308 + 11.1178i 0.663635 + 0.0248164i
\(449\) 14.5045 25.1226i 0.0323041 0.0559523i −0.849421 0.527715i \(-0.823049\pi\)
0.881725 + 0.471763i \(0.156382\pi\)
\(450\) 0 0
\(451\) −10.1801 + 5.87747i −0.0225722 + 0.0130321i
\(452\) 38.0915 + 365.310i 0.0842732 + 0.808208i
\(453\) 0 0
\(454\) 180.963 + 557.730i 0.398598 + 1.22848i
\(455\) 166.237 198.113i 0.365356 0.435414i
\(456\) 0 0
\(457\) −396.716 144.393i −0.868088 0.315958i −0.130695 0.991423i \(-0.541721\pi\)
−0.737393 + 0.675464i \(0.763943\pi\)
\(458\) 234.921 + 442.261i 0.512927 + 0.965635i
\(459\) 0 0
\(460\) −236.141 159.563i −0.513351 0.346875i
\(461\) −26.9765 9.81863i −0.0585173 0.0212985i 0.312596 0.949886i \(-0.398802\pi\)
−0.371113 + 0.928588i \(0.621024\pi\)
\(462\) 0 0
\(463\) 253.832 302.505i 0.548233 0.653359i −0.418779 0.908088i \(-0.637542\pi\)
0.967012 + 0.254729i \(0.0819863\pi\)
\(464\) −98.3061 + 20.7264i −0.211867 + 0.0446690i
\(465\) 0 0
\(466\) 164.380 + 66.4927i 0.352748 + 0.142688i
\(467\) −264.780 + 152.871i −0.566982 + 0.327347i −0.755943 0.654638i \(-0.772821\pi\)
0.188961 + 0.981985i \(0.439488\pi\)
\(468\) 0 0
\(469\) 73.7845 127.798i 0.157323 0.272491i
\(470\) 8.24571 + 10.5630i 0.0175441 + 0.0224745i
\(471\) 0 0
\(472\) −217.978 878.887i −0.461819 1.86205i
\(473\) 31.3050 11.3941i 0.0661839 0.0240890i
\(474\) 0 0
\(475\) −425.044 + 74.9467i −0.894829 + 0.157782i
\(476\) 346.258 168.529i 0.727434 0.354052i
\(477\) 0 0
\(478\) 510.548 + 319.318i 1.06809 + 0.668030i
\(479\) −58.4435 69.6502i −0.122011 0.145408i 0.701581 0.712590i \(-0.252478\pi\)
−0.823592 + 0.567182i \(0.808033\pi\)
\(480\) 0 0
\(481\) 142.149 806.168i 0.295529 1.67603i
\(482\) 130.312 611.829i 0.270356 1.26936i
\(483\) 0 0
\(484\) 370.163 268.474i 0.764799 0.554697i
\(485\) 201.642 0.415758
\(486\) 0 0
\(487\) 696.162i 1.42949i 0.699385 + 0.714745i \(0.253457\pi\)
−0.699385 + 0.714745i \(0.746543\pi\)
\(488\) 593.999 + 290.621i 1.21721 + 0.595536i
\(489\) 0 0
\(490\) −35.6324 + 167.298i −0.0727191 + 0.341425i
\(491\) −120.362 21.2231i −0.245137 0.0432243i 0.0497294 0.998763i \(-0.484164\pi\)
−0.294867 + 0.955538i \(0.595275\pi\)
\(492\) 0 0
\(493\) −99.6171 + 83.5887i −0.202063 + 0.169551i
\(494\) −855.026 534.769i −1.73082 1.08253i
\(495\) 0 0
\(496\) −78.4239 + 551.423i −0.158113 + 1.11174i
\(497\) −0.0604942 0.343079i −0.000121719 0.000690301i
\(498\) 0 0
\(499\) 84.7569 + 232.868i 0.169853 + 0.466669i 0.995189 0.0979740i \(-0.0312362\pi\)
−0.825335 + 0.564643i \(0.809014\pi\)
\(500\) −122.022 + 487.692i −0.244044 + 0.975385i
\(501\) 0 0
\(502\) −255.030 326.700i −0.508027 0.650797i
\(503\) −672.109 388.042i −1.33620 0.771456i −0.349958 0.936765i \(-0.613804\pi\)
−0.986242 + 0.165310i \(0.947138\pi\)
\(504\) 0 0
\(505\) 197.227 + 341.606i 0.390548 + 0.676448i
\(506\) −109.355 44.2348i −0.216117 0.0874206i
\(507\) 0 0
\(508\) −593.475 + 613.549i −1.16826 + 1.20777i
\(509\) −146.977 123.328i −0.288756 0.242295i 0.486890 0.873463i \(-0.338131\pi\)
−0.775646 + 0.631168i \(0.782576\pi\)
\(510\) 0 0
\(511\) −191.154 + 525.190i −0.374078 + 1.02777i
\(512\) −486.351 160.020i −0.949905 0.312540i
\(513\) 0 0
\(514\) −347.628 654.443i −0.676319 1.27324i
\(515\) −167.794 + 461.009i −0.325813 + 0.895163i
\(516\) 0 0
\(517\) 4.24890 + 3.56525i 0.00821837 + 0.00689603i
\(518\) −131.840 406.330i −0.254516 0.784420i
\(519\) 0 0
\(520\) −369.279 + 248.419i −0.710152 + 0.477728i
\(521\) −91.6758 158.787i −0.175961 0.304774i 0.764532 0.644585i \(-0.222970\pi\)
−0.940494 + 0.339812i \(0.889637\pi\)
\(522\) 0 0
\(523\) 133.492 + 77.0714i 0.255242 + 0.147364i 0.622162 0.782888i \(-0.286254\pi\)
−0.366920 + 0.930252i \(0.619588\pi\)
\(524\) 4.25437 9.53434i 0.00811904 0.0181953i
\(525\) 0 0
\(526\) 247.519 274.670i 0.470568 0.522186i
\(527\) 246.570 + 677.446i 0.467875 + 1.28548i
\(528\) 0 0
\(529\) 1.45068 + 8.22723i 0.00274231 + 0.0155524i
\(530\) −198.748 7.02238i −0.374996 0.0132498i
\(531\) 0 0
\(532\) −524.960 37.1433i −0.986767 0.0698182i
\(533\) −62.0654 + 52.0791i −0.116445 + 0.0977093i
\(534\) 0 0
\(535\) −416.789 73.4911i −0.779044 0.137366i
\(536\) −182.897 + 176.185i −0.341225 + 0.328704i
\(537\) 0 0
\(538\) 137.672 + 982.526i 0.255897 + 1.82626i
\(539\) 70.7998i 0.131354i
\(540\) 0 0
\(541\) −914.557 −1.69049 −0.845246 0.534377i \(-0.820546\pi\)
−0.845246 + 0.534377i \(0.820546\pi\)
\(542\) −627.454 + 87.9194i −1.15766 + 0.162213i
\(543\) 0 0
\(544\) −652.880 + 113.735i −1.20015 + 0.209071i
\(545\) −10.5180 + 59.6504i −0.0192990 + 0.109450i
\(546\) 0 0
\(547\) −518.289 617.673i −0.947512 1.12920i −0.991492 0.130169i \(-0.958448\pi\)
0.0439796 0.999032i \(-0.485996\pi\)
\(548\) 762.447 + 53.9465i 1.39133 + 0.0984425i
\(549\) 0 0
\(550\) −2.78386 + 78.7892i −0.00506157 + 0.143253i
\(551\) 175.015 30.8599i 0.317632 0.0560071i
\(552\) 0 0
\(553\) 1.50468 0.547659i 0.00272094 0.000990342i
\(554\) 443.349 + 399.524i 0.800269 + 0.721163i
\(555\) 0 0
\(556\) −135.572 + 303.826i −0.243835 + 0.546450i
\(557\) −309.208 + 535.563i −0.555130 + 0.961514i 0.442763 + 0.896639i \(0.353998\pi\)
−0.997893 + 0.0648754i \(0.979335\pi\)
\(558\) 0 0
\(559\) 198.854 114.808i 0.355731 0.205382i
\(560\) −109.373 + 204.886i −0.195309 + 0.365868i
\(561\) 0 0
\(562\) −314.830 + 102.151i −0.560197 + 0.181764i
\(563\) 22.9512 27.3522i 0.0407660 0.0485830i −0.745276 0.666756i \(-0.767682\pi\)
0.786042 + 0.618173i \(0.212127\pi\)
\(564\) 0 0
\(565\) −269.429 98.0640i −0.476865 0.173565i
\(566\) 661.749 351.509i 1.16917 0.621040i
\(567\) 0 0
\(568\) −0.0634033 + 0.596156i −0.000111625 + 0.00104957i
\(569\) 519.027 + 188.910i 0.912174 + 0.332004i 0.755120 0.655586i \(-0.227578\pi\)
0.157053 + 0.987590i \(0.449801\pi\)
\(570\) 0 0
\(571\) 114.533 136.496i 0.200584 0.239046i −0.656371 0.754439i \(-0.727909\pi\)
0.856954 + 0.515392i \(0.172354\pi\)
\(572\) −128.076 + 132.408i −0.223909 + 0.231483i
\(573\) 0 0
\(574\) −15.8545 + 39.1948i −0.0276211 + 0.0682837i
\(575\) −301.345 + 173.982i −0.524078 + 0.302577i
\(576\) 0 0
\(577\) −112.675 + 195.160i −0.195278 + 0.338231i −0.946992 0.321258i \(-0.895894\pi\)
0.751714 + 0.659490i \(0.229228\pi\)
\(578\) −220.548 + 172.165i −0.381570 + 0.297862i
\(579\) 0 0
\(580\) 19.0362 76.0830i 0.0328210 0.131178i
\(581\) −415.457 + 151.214i −0.715073 + 0.260265i
\(582\) 0 0
\(583\) −81.0648 + 14.2939i −0.139048 + 0.0245178i
\(584\) 566.300 777.423i 0.969691 1.33120i
\(585\) 0 0
\(586\) 381.813 610.469i 0.651558 1.04176i
\(587\) 574.331 + 684.461i 0.978418 + 1.16603i 0.986115 + 0.166062i \(0.0531053\pi\)
−0.00769749 + 0.999970i \(0.502450\pi\)
\(588\) 0 0
\(589\) 171.082 970.253i 0.290461 1.64729i
\(590\) 691.370 + 147.253i 1.17181 + 0.249581i
\(591\) 0 0
\(592\) 24.4460 + 734.739i 0.0412939 + 1.24111i
\(593\) 272.894 0.460192 0.230096 0.973168i \(-0.426096\pi\)
0.230096 + 0.973168i \(0.426096\pi\)
\(594\) 0 0
\(595\) 300.617i 0.505239i
\(596\) −173.974 + 126.181i −0.291902 + 0.211712i
\(597\) 0 0
\(598\) −795.222 169.372i −1.32980 0.283231i
\(599\) 104.010 + 18.3398i 0.173639 + 0.0306173i 0.259792 0.965665i \(-0.416346\pi\)
−0.0861523 + 0.996282i \(0.527457\pi\)
\(600\) 0 0
\(601\) 60.5640 50.8193i 0.100772 0.0845578i −0.591010 0.806665i \(-0.701270\pi\)
0.691782 + 0.722107i \(0.256826\pi\)
\(602\) 63.5388 101.590i 0.105546 0.168755i
\(603\) 0 0
\(604\) 179.398 87.3156i 0.297017 0.144562i
\(605\) 61.9861 + 351.540i 0.102456 + 0.581059i
\(606\) 0 0
\(607\) 290.469 + 798.058i 0.478533 + 1.31476i 0.910739 + 0.412983i \(0.135513\pi\)
−0.432206 + 0.901775i \(0.642265\pi\)
\(608\) 850.412 + 311.509i 1.39870 + 0.512350i
\(609\) 0 0
\(610\) −406.918 + 317.650i −0.667079 + 0.520737i
\(611\) 33.1077 + 19.1147i 0.0541860 + 0.0312843i
\(612\) 0 0
\(613\) 481.100 + 833.290i 0.784829 + 1.35936i 0.929101 + 0.369825i \(0.120583\pi\)
−0.144272 + 0.989538i \(0.546084\pi\)
\(614\) −22.4698 + 55.5488i −0.0365957 + 0.0904703i
\(615\) 0 0
\(616\) −26.6116 + 92.3748i −0.0432006 + 0.149959i
\(617\) −635.302 533.081i −1.02966 0.863989i −0.0388514 0.999245i \(-0.512370\pi\)
−0.990811 + 0.135256i \(0.956814\pi\)
\(618\) 0 0
\(619\) 126.739 348.213i 0.204748 0.562541i −0.794236 0.607610i \(-0.792129\pi\)
0.998984 + 0.0450690i \(0.0143508\pi\)
\(620\) −360.259 243.430i −0.581063 0.392628i
\(621\) 0 0
\(622\) −467.909 + 248.544i −0.752265 + 0.399589i
\(623\) −188.895 + 518.985i −0.303202 + 0.833041i
\(624\) 0 0
\(625\) −8.58152 7.20075i −0.0137304 0.0115212i
\(626\) −264.156 + 85.7092i −0.421974 + 0.136916i
\(627\) 0 0
\(628\) −75.0119 719.389i −0.119446 1.14552i
\(629\) 475.772 + 824.061i 0.756394 + 1.31011i
\(630\) 0 0
\(631\) −153.085 88.3837i −0.242607 0.140069i 0.373767 0.927523i \(-0.378066\pi\)
−0.616374 + 0.787453i \(0.711399\pi\)
\(632\) −2.74913 + 0.188826i −0.00434990 + 0.000298775i
\(633\) 0 0
\(634\) −290.815 262.068i −0.458699 0.413357i
\(635\) −227.909 626.174i −0.358911 0.986101i
\(636\) 0 0
\(637\) 84.7379 + 480.573i 0.133027 + 0.754431i
\(638\) 1.14628 32.4421i 0.00179668 0.0508497i
\(639\) 0 0
\(640\) 278.472 286.708i 0.435113 0.447981i
\(641\) 603.967 506.789i 0.942227 0.790622i −0.0357447 0.999361i \(-0.511380\pi\)
0.977971 + 0.208739i \(0.0669359\pi\)
\(642\) 0 0
\(643\) −887.935 156.567i −1.38093 0.243494i −0.566643 0.823963i \(-0.691758\pi\)
−0.814282 + 0.580469i \(0.802869\pi\)
\(644\) −407.949 + 116.614i −0.633461 + 0.181078i
\(645\) 0 0
\(646\) 1160.92 162.669i 1.79709 0.251810i
\(647\) 609.723i 0.942385i −0.882030 0.471193i \(-0.843824\pi\)
0.882030 0.471193i \(-0.156176\pi\)
\(648\) 0 0
\(649\) 292.584 0.450823
\(650\) 75.4039 + 538.135i 0.116006 + 0.827900i
\(651\) 0 0
\(652\) 9.80331 + 34.2948i 0.0150358 + 0.0525994i
\(653\) −100.348 + 569.103i −0.153673 + 0.871521i 0.806317 + 0.591484i \(0.201458\pi\)
−0.959989 + 0.280037i \(0.909653\pi\)
\(654\) 0 0
\(655\) 5.23885 + 6.24342i 0.00799824 + 0.00953193i
\(656\) 44.8901 57.2621i 0.0684301 0.0872897i
\(657\) 0 0
\(658\) 19.9373 + 0.704447i 0.0302999 + 0.00107059i
\(659\) 649.326 114.494i 0.985320 0.173739i 0.342302 0.939590i \(-0.388793\pi\)
0.643018 + 0.765851i \(0.277682\pi\)
\(660\) 0 0
\(661\) 270.159 98.3300i 0.408713 0.148759i −0.129478 0.991582i \(-0.541330\pi\)
0.538191 + 0.842823i \(0.319108\pi\)
\(662\) −15.7109 + 17.4343i −0.0237325 + 0.0263358i
\(663\) 0 0
\(664\) 759.063 52.1366i 1.14317 0.0785190i
\(665\) 205.413 355.786i 0.308892 0.535017i
\(666\) 0 0
\(667\) 124.081 71.6384i 0.186029 0.107404i
\(668\) −1151.56 + 120.075i −1.72389 + 0.179753i
\(669\) 0 0
\(670\) −61.1835 188.568i −0.0913186 0.281444i
\(671\) −137.344 + 163.680i −0.204686 + 0.243935i
\(672\) 0 0
\(673\) 615.335 + 223.963i 0.914316 + 0.332784i 0.755975 0.654601i \(-0.227163\pi\)
0.158341 + 0.987384i \(0.449385\pi\)
\(674\) −85.9093 161.733i −0.127462 0.239959i
\(675\) 0 0
\(676\) −332.399 + 491.928i −0.491715 + 0.727704i
\(677\) 350.399 + 127.535i 0.517576 + 0.188382i 0.587583 0.809164i \(-0.300080\pi\)
−0.0700062 + 0.997547i \(0.522302\pi\)
\(678\) 0 0
\(679\) 192.962 229.963i 0.284186 0.338679i
\(680\) 143.212 497.120i 0.210605 0.731058i
\(681\) 0 0
\(682\) −166.833 67.4849i −0.244623 0.0989515i
\(683\) 403.114 232.738i 0.590211 0.340758i −0.174970 0.984574i \(-0.555983\pi\)
0.765181 + 0.643815i \(0.222650\pi\)
\(684\) 0 0
\(685\) −298.340 + 516.741i −0.435533 + 0.754366i
\(686\) 437.027 + 559.844i 0.637066 + 0.816099i
\(687\) 0 0
\(688\) −153.468 + 137.727i −0.223065 + 0.200184i
\(689\) −533.141 + 194.047i −0.773790 + 0.281636i
\(690\) 0 0
\(691\) 822.564 145.040i 1.19040 0.209899i 0.456853 0.889542i \(-0.348976\pi\)
0.733543 + 0.679643i \(0.237865\pi\)
\(692\) −561.142 1152.92i −0.810899 1.66607i
\(693\) 0 0
\(694\) −607.760 380.119i −0.875735 0.547722i
\(695\) −166.944 198.956i −0.240207 0.286268i
\(696\) 0 0
\(697\) 16.3539 92.7473i 0.0234632 0.133066i
\(698\) −188.217 + 883.701i −0.269652 + 1.26605i
\(699\) 0 0
\(700\) 166.486 + 229.546i 0.237838 + 0.327923i
\(701\) 318.239 0.453978 0.226989 0.973897i \(-0.427112\pi\)
0.226989 + 0.973897i \(0.427112\pi\)
\(702\) 0 0
\(703\) 1300.39i 1.84977i
\(704\) 88.0131 140.079i 0.125019 0.198976i
\(705\) 0 0
\(706\) −77.3002 + 362.934i −0.109490 + 0.514070i
\(707\) 578.321 + 101.974i 0.817994 + 0.144234i
\(708\) 0 0
\(709\) −153.512 + 128.812i −0.216519 + 0.181681i −0.744596 0.667515i \(-0.767358\pi\)
0.528077 + 0.849197i \(0.322913\pi\)
\(710\) −0.396789 0.248168i −0.000558858 0.000349533i
\(711\) 0 0
\(712\) 559.608 768.237i 0.785966 1.07898i
\(713\) −137.929 782.233i −0.193449 1.09710i
\(714\) 0 0
\(715\) −49.1843 135.133i −0.0687892 0.188997i
\(716\) −729.133 182.431i −1.01834 0.254792i
\(717\) 0 0
\(718\) 27.2096 + 34.8563i 0.0378964 + 0.0485464i
\(719\) −95.7306 55.2701i −0.133144 0.0768708i 0.431948 0.901898i \(-0.357826\pi\)
−0.565093 + 0.825027i \(0.691160\pi\)
\(720\) 0 0
\(721\) 365.188 + 632.523i 0.506501 + 0.877286i
\(722\) −815.810 330.000i −1.12993 0.457063i
\(723\) 0 0
\(724\) 503.709 + 487.228i 0.695731 + 0.672968i
\(725\) −73.3535 61.5509i −0.101177 0.0848978i
\(726\) 0 0
\(727\) 258.380 709.893i 0.355406 0.976469i −0.625198 0.780466i \(-0.714982\pi\)
0.980603 0.196002i \(-0.0627961\pi\)
\(728\) −70.0730 + 658.869i −0.0962541 + 0.905040i
\(729\) 0 0
\(730\) 352.218 + 663.084i 0.482490 + 0.908334i
\(731\) −91.2871 + 250.809i −0.124880 + 0.343104i
\(732\) 0 0
\(733\) −217.881 182.824i −0.297245 0.249419i 0.481951 0.876198i \(-0.339928\pi\)
−0.779197 + 0.626780i \(0.784373\pi\)
\(734\) 40.2338 + 124.001i 0.0548144 + 0.168938i
\(735\) 0 0
\(736\) 730.164 + 1.50337i 0.992070 + 0.00204262i
\(737\) −41.0279 71.0624i −0.0556688 0.0964212i
\(738\) 0 0
\(739\) 336.529 + 194.295i 0.455385 + 0.262916i 0.710102 0.704099i \(-0.248649\pi\)
−0.254717 + 0.967016i \(0.581982\pi\)
\(740\) −524.074 233.850i −0.708208 0.316013i
\(741\) 0 0
\(742\) −198.201 + 219.942i −0.267117 + 0.296418i
\(743\) 53.3057 + 146.456i 0.0717439 + 0.197115i 0.970382 0.241576i \(-0.0776644\pi\)
−0.898638 + 0.438691i \(0.855442\pi\)
\(744\) 0 0
\(745\) −29.1330 165.221i −0.0391047 0.221774i
\(746\) 160.083 + 5.65622i 0.214588 + 0.00758206i
\(747\) 0 0
\(748\) 15.1130 213.598i 0.0202045 0.285558i
\(749\) −482.659 + 404.999i −0.644405 + 0.540720i
\(750\) 0 0
\(751\) 565.429 + 99.7004i 0.752901 + 0.132757i 0.536911 0.843639i \(-0.319591\pi\)
0.215990 + 0.976396i \(0.430702\pi\)
\(752\) −32.6340 10.6629i −0.0433963 0.0141794i
\(753\) 0 0
\(754\) −31.0482 221.582i −0.0411780 0.293875i
\(755\) 155.751i 0.206293i
\(756\) 0 0
\(757\) 759.370 1.00313 0.501566 0.865120i \(-0.332758\pi\)
0.501566 + 0.865120i \(0.332758\pi\)
\(758\) 214.247 30.0205i 0.282648 0.0396049i
\(759\) 0 0
\(760\) −509.178 + 490.493i −0.669971 + 0.645386i
\(761\) 155.466 881.691i 0.204292 1.15860i −0.694259 0.719725i \(-0.744268\pi\)
0.898550 0.438870i \(-0.144621\pi\)
\(762\) 0 0
\(763\) 57.9631 + 69.0777i 0.0759674 + 0.0905344i
\(764\) −23.0987 + 326.463i −0.0302339 + 0.427307i
\(765\) 0 0
\(766\) −22.5182 + 637.313i −0.0293972 + 0.832002i
\(767\) 1985.99 350.184i 2.58930 0.456564i
\(768\) 0 0
\(769\) 525.038 191.098i 0.682755 0.248502i 0.0227249 0.999742i \(-0.492766\pi\)
0.660030 + 0.751239i \(0.270544\pi\)
\(770\) −55.7477 50.2370i −0.0723996 0.0652429i
\(771\) 0 0
\(772\) −1122.90 501.055i −1.45453 0.649035i
\(773\) −452.627 + 783.973i −0.585546 + 1.01420i 0.409261 + 0.912417i \(0.365787\pi\)
−0.994807 + 0.101779i \(0.967547\pi\)
\(774\) 0 0
\(775\) −459.734 + 265.427i −0.593205 + 0.342487i
\(776\) −428.646 + 288.356i −0.552379 + 0.371593i
\(777\) 0 0
\(778\) −249.306 + 80.8908i −0.320444 + 0.103973i
\(779\) −82.7298 + 98.5936i −0.106200 + 0.126564i
\(780\) 0 0
\(781\) −0.182030 0.0662536i −0.000233073 8.48318e-5i
\(782\) 834.654 443.353i 1.06733 0.566947i
\(783\) 0 0
\(784\) −163.496 406.594i −0.208541 0.518615i
\(785\) 530.574 + 193.113i 0.675891 + 0.246004i
\(786\) 0 0
\(787\) 858.505 1023.13i 1.09086 1.30003i 0.140088 0.990139i \(-0.455262\pi\)
0.950771 0.309895i \(-0.100294\pi\)
\(788\) 42.0444 + 40.6688i 0.0533558 + 0.0516101i
\(789\) 0 0
\(790\) 0.806648 1.99416i 0.00102107 0.00252425i
\(791\) −369.667 + 213.428i −0.467342 + 0.269820i
\(792\) 0 0
\(793\) −736.357 + 1275.41i −0.928571 + 1.60833i
\(794\) 566.907 442.541i 0.713989 0.557356i
\(795\) 0 0
\(796\) 43.1025 + 10.7844i 0.0541488 + 0.0135482i
\(797\) 188.861 68.7400i 0.236965 0.0862484i −0.220808 0.975317i \(-0.570869\pi\)
0.457773 + 0.889069i \(0.348647\pi\)
\(798\) 0 0
\(799\) −43.7627 + 7.71654i −0.0547718 + 0.00965774i
\(800\) −165.958 458.905i −0.207448 0.573631i
\(801\) 0 0
\(802\) −359.537 + 574.853i −0.448301 + 0.716775i
\(803\) 199.762 + 238.067i 0.248770 + 0.296472i
\(804\) 0 0
\(805\) 57.5149 326.183i 0.0714471 0.405197i
\(806\) −1213.20 258.395i −1.50521 0.320589i
\(807\) 0 0
\(808\) −907.769 444.137i −1.12348 0.549675i
\(809\) −177.768 −0.219738 −0.109869 0.993946i \(-0.535043\pi\)
−0.109869 + 0.993946i \(0.535043\pi\)
\(810\) 0 0
\(811\) 928.342i 1.14469i 0.820014 + 0.572344i \(0.193966\pi\)
−0.820014 + 0.572344i \(0.806034\pi\)
\(812\) −68.5522 94.5176i −0.0844239 0.116401i
\(813\) 0 0
\(814\) −232.324 49.4821i −0.285411 0.0607888i
\(815\) −27.4210 4.83507i −0.0336454 0.00593260i
\(816\) 0 0
\(817\) 279.419 234.461i 0.342006 0.286977i
\(818\) 391.986 626.734i 0.479200 0.766179i
\(819\) 0 0
\(820\) 24.8571 + 51.0714i 0.0303136 + 0.0622822i
\(821\) 45.7241 + 259.314i 0.0556931 + 0.315851i 0.999909 0.0134752i \(-0.00428941\pi\)
−0.944216 + 0.329327i \(0.893178\pi\)
\(822\) 0 0
\(823\) 310.142 + 852.108i 0.376843 + 1.03537i 0.972657 + 0.232246i \(0.0746073\pi\)
−0.595814 + 0.803122i \(0.703170\pi\)
\(824\) −302.568 1219.95i −0.367194 1.48052i
\(825\) 0 0
\(826\) 829.542 647.559i 1.00429 0.783970i
\(827\) 1041.84 + 601.507i 1.25978 + 0.727337i 0.973032 0.230668i \(-0.0740913\pi\)
0.286751 + 0.958005i \(0.407425\pi\)
\(828\) 0 0
\(829\) −354.368 613.784i −0.427465 0.740390i 0.569183 0.822211i \(-0.307260\pi\)
−0.996647 + 0.0818209i \(0.973926\pi\)
\(830\) −222.723 + 550.607i −0.268342 + 0.663382i
\(831\) 0 0
\(832\) 429.757 1056.16i 0.516535 1.26943i
\(833\) −434.526 364.611i −0.521640 0.437708i
\(834\) 0 0
\(835\) 309.125 849.313i 0.370209 1.01714i
\(836\) −163.839 + 242.470i −0.195979 + 0.290036i
\(837\) 0 0
\(838\) −108.868 + 57.8284i −0.129914 + 0.0690077i
\(839\) 384.167 1055.49i 0.457887 1.25803i −0.469168 0.883109i \(-0.655446\pi\)
0.927055 0.374925i \(-0.122331\pi\)
\(840\) 0 0
\(841\) −614.039 515.240i −0.730130 0.612652i
\(842\) −53.2725 + 17.2850i −0.0632690 + 0.0205285i
\(843\) 0 0
\(844\) 919.151 95.8414i 1.08904 0.113556i
\(845\) −231.732 401.372i −0.274240 0.474997i
\(846\) 0 0
\(847\) 460.232 + 265.715i 0.543367 + 0.313713i
\(848\) 432.536 269.289i 0.510066 0.317557i
\(849\) 0 0
\(850\) −469.224 422.841i −0.552028 0.497460i
\(851\) −358.572 985.168i −0.421354 1.15766i
\(852\) 0 0
\(853\) −94.3663 535.178i −0.110629 0.627407i −0.988822 0.149101i \(-0.952362\pi\)
0.878193 0.478306i \(-0.158749\pi\)
\(854\) −27.1374 + 768.046i −0.0317768 + 0.899351i
\(855\) 0 0
\(856\) 991.094 439.797i 1.15782 0.513782i
\(857\) −1203.43 + 1009.80i −1.40424 + 1.17830i −0.445057 + 0.895502i \(0.646817\pi\)
−0.959181 + 0.282794i \(0.908739\pi\)
\(858\) 0 0
\(859\) −486.259 85.7406i −0.566076 0.0998145i −0.116716 0.993165i \(-0.537237\pi\)
−0.449360 + 0.893351i \(0.648348\pi\)
\(860\) −44.2425 154.773i −0.0514448 0.179968i
\(861\) 0 0
\(862\) −802.685 + 112.473i −0.931189 + 0.130479i
\(863\) 237.241i 0.274902i 0.990509 + 0.137451i \(0.0438910\pi\)
−0.990509 + 0.137451i \(0.956109\pi\)
\(864\) 0 0
\(865\) 1000.95 1.15717
\(866\) −57.8178 412.628i −0.0667642 0.476476i
\(867\) 0 0
\(868\) −622.370 + 177.907i −0.717016 + 0.204962i
\(869\) 0.154612 0.876849i 0.000177920 0.00100903i
\(870\) 0 0
\(871\) −363.540 433.250i −0.417383 0.497417i
\(872\) −62.9433 141.844i −0.0721827 0.162666i
\(873\) 0 0
\(874\) −1290.77 45.6070i −1.47686 0.0521819i
\(875\) −575.378 + 101.455i −0.657575 + 0.115948i
\(876\) 0 0
\(877\) −657.052 + 239.147i −0.749204 + 0.272688i −0.688271 0.725454i \(-0.741630\pi\)
−0.0609331 + 0.998142i \(0.519408\pi\)
\(878\) 567.986 630.290i 0.646909 0.717871i
\(879\) 0 0
\(880\) 68.2553 + 109.633i 0.0775628 + 0.124583i
\(881\) 201.312 348.683i 0.228504 0.395781i −0.728861 0.684662i \(-0.759950\pi\)
0.957365 + 0.288881i \(0.0932833\pi\)
\(882\) 0 0
\(883\) −70.5932 + 40.7570i −0.0799470 + 0.0461574i −0.539441 0.842024i \(-0.681364\pi\)
0.459494 + 0.888181i \(0.348031\pi\)
\(884\) −153.064 1467.94i −0.173150 1.66056i
\(885\) 0 0
\(886\) 384.583 + 1185.28i 0.434066 + 1.33779i
\(887\) 289.982 345.587i 0.326924 0.389613i −0.577399 0.816462i \(-0.695932\pi\)
0.904323 + 0.426849i \(0.140377\pi\)
\(888\) 0 0
\(889\) −932.218 339.300i −1.04861 0.381664i
\(890\) 348.056 + 655.249i 0.391074 + 0.736234i
\(891\) 0 0
\(892\) 79.4387 + 53.6773i 0.0890569 + 0.0601764i
\(893\) 57.0667 + 20.7706i 0.0639045 + 0.0232593i
\(894\) 0 0
\(895\) 377.145 449.463i 0.421391 0.502194i
\(896\) −60.4918 591.950i −0.0675131 0.660658i
\(897\) 0 0
\(898\) −53.7845 21.7561i −0.0598936 0.0242273i
\(899\) 189.299 109.292i 0.210567 0.121571i
\(900\) 0 0
\(901\) 329.747 571.138i 0.365979 0.633894i
\(902\) 14.4665 + 18.5320i 0.0160382 + 0.0205454i
\(903\) 0 0
\(904\) 712.980 176.831i 0.788695 0.195609i
\(905\) −514.074 + 187.108i −0.568037 + 0.206749i
\(906\) 0 0
\(907\) 359.604 63.4079i 0.396477 0.0699095i 0.0281447 0.999604i \(-0.491040\pi\)
0.368332 + 0.929694i \(0.379929\pi\)
\(908\) 1054.44 513.212i 1.16128 0.565212i
\(909\) 0 0
\(910\) −438.529 274.275i −0.481900 0.301401i
\(911\) −786.779 937.647i −0.863644 1.02925i −0.999259 0.0384887i \(-0.987746\pi\)
0.135616 0.990762i \(-0.456699\pi\)
\(912\) 0 0
\(913\) −42.6899 + 242.107i −0.0467579 + 0.265177i
\(914\) −175.891 + 825.830i −0.192441 + 0.903534i
\(915\) 0 0
\(916\) 810.766 588.037i 0.885116 0.641961i
\(917\) 12.1336 0.0132319
\(918\) 0 0
\(919\) 733.236i 0.797863i −0.916981 0.398931i \(-0.869381\pi\)
0.916981 0.398931i \(-0.130619\pi\)
\(920\) −250.501 + 511.997i −0.272284 + 0.556519i
\(921\) 0 0
\(922\) −11.9605 + 56.1559i −0.0129723 + 0.0609066i
\(923\) −1.31488 0.231848i −0.00142457 0.000251190i
\(924\) 0 0
\(925\) −536.747 + 450.384i −0.580267 + 0.486902i
\(926\) −669.603 418.798i −0.723114 0.452266i
\(927\) 0 0
\(928\) 68.3348 + 188.958i 0.0736366 + 0.203618i
\(929\) −34.2914 194.476i −0.0369122 0.209339i 0.960773 0.277334i \(-0.0894509\pi\)
−0.997686 + 0.0679949i \(0.978340\pi\)
\(930\) 0 0
\(931\) 265.130 + 728.438i 0.284779 + 0.782425i
\(932\) 86.0783 344.034i 0.0923587 0.369135i
\(933\) 0 0
\(934\) 376.269 + 482.011i 0.402857 + 0.516072i
\(935\) 144.764 + 83.5793i 0.154827 + 0.0893896i
\(936\) 0 0
\(937\) −822.848 1425.21i −0.878173 1.52104i −0.853344 0.521349i \(-0.825429\pi\)
−0.0248295 0.999692i \(-0.507904\pi\)
\(938\) −273.601 110.673i −0.291686 0.117989i
\(939\) 0 0
\(940\) 18.6332 19.2634i 0.0198225 0.0204930i
\(941\) 49.9757 + 41.9346i 0.0531092 + 0.0445639i 0.668956 0.743302i \(-0.266741\pi\)
−0.615847 + 0.787866i \(0.711186\pi\)
\(942\) 0 0
\(943\) −35.4893 + 97.5061i −0.0376345 + 0.103400i
\(944\) −1680.27 + 675.657i −1.77995 + 0.715739i
\(945\) 0 0
\(946\) −31.2558 58.8421i −0.0330400 0.0622009i
\(947\) −578.159 + 1588.48i −0.610517 + 1.67738i 0.118558 + 0.992947i \(0.462173\pi\)
−0.729075 + 0.684434i \(0.760049\pi\)
\(948\) 0 0
\(949\) 1640.87 + 1376.86i 1.72906 + 1.45085i
\(950\) 266.406 + 821.063i 0.280427 + 0.864277i
\(951\) 0 0
\(952\) −429.894 639.045i −0.451569 0.671266i
\(953\) 804.382 + 1393.23i 0.844052 + 1.46194i 0.886442 + 0.462841i \(0.153170\pi\)
−0.0423891 + 0.999101i \(0.513497\pi\)
\(954\) 0 0
\(955\) −221.257 127.743i −0.231683 0.133762i
\(956\) 490.765 1099.84i 0.513352 1.15046i
\(957\) 0 0
\(958\) −121.733 + 135.086i −0.127070 + 0.141009i
\(959\) 303.820 + 834.738i 0.316809 + 0.870426i
\(960\) 0 0
\(961\) −43.5491 246.979i −0.0453165 0.257002i
\(962\) −1636.19 57.8116i −1.70082 0.0600952i
\(963\) 0 0
\(964\) −1247.99 88.3005i −1.29459 0.0915981i
\(965\) 735.313 617.001i 0.761982 0.639379i
\(966\) 0 0
\(967\) 1161.14 + 204.740i 1.20076 + 0.211727i 0.738028 0.674770i \(-0.235757\pi\)
0.462735 + 0.886497i \(0.346868\pi\)
\(968\) −634.484 658.654i −0.655458 0.680427i
\(969\) 0 0
\(970\) −55.9619 399.383i −0.0576927 0.411735i
\(971\) 796.242i 0.820023i −0.912080 0.410011i \(-0.865525\pi\)
0.912080 0.410011i \(-0.134475\pi\)
\(972\) 0 0
\(973\) −386.657 −0.397386
\(974\) 1378.85 193.206i 1.41566 0.198364i
\(975\) 0 0
\(976\) 410.767 1257.16i 0.420867 1.28807i
\(977\) −232.161 + 1316.65i −0.237626 + 1.34765i 0.599385 + 0.800461i \(0.295412\pi\)
−0.837012 + 0.547185i \(0.815699\pi\)
\(978\) 0 0
\(979\) 197.402 + 235.254i 0.201636 + 0.240300i
\(980\) 341.248 + 24.1449i 0.348213 + 0.0246376i
\(981\) 0 0
\(982\) −8.63137 + 244.286i −0.00878958 + 0.248764i
\(983\) 613.490 108.175i 0.624100 0.110046i 0.147350 0.989084i \(-0.452926\pi\)
0.476750 + 0.879039i \(0.341815\pi\)
\(984\) 0 0
\(985\) −42.9095 + 15.6178i −0.0435630 + 0.0158556i
\(986\) 193.207 + 174.108i 0.195950 + 0.176580i
\(987\) 0 0
\(988\) −821.895 + 1841.92i −0.831878 + 1.86429i
\(989\) 147.036 254.674i 0.148671 0.257506i
\(990\) 0 0
\(991\) −513.695 + 296.582i −0.518360 + 0.299275i −0.736264 0.676695i \(-0.763412\pi\)
0.217903 + 0.975970i \(0.430078\pi\)
\(992\) 1113.94 + 2.29354i 1.12293 + 0.00231204i
\(993\) 0 0
\(994\) −0.662731 + 0.215033i −0.000666732 + 0.000216331i
\(995\) −22.2948 + 26.5699i −0.0224068 + 0.0267034i
\(996\) 0 0
\(997\) 377.002 + 137.218i 0.378136 + 0.137630i 0.524094 0.851660i \(-0.324404\pi\)
−0.145958 + 0.989291i \(0.546626\pi\)
\(998\) 437.707 232.502i 0.438584 0.232968i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.3.j.a.307.16 204
3.2 odd 2 108.3.j.a.31.19 yes 204
4.3 odd 2 inner 324.3.j.a.307.7 204
12.11 even 2 108.3.j.a.31.28 yes 204
27.7 even 9 inner 324.3.j.a.19.7 204
27.20 odd 18 108.3.j.a.7.28 yes 204
108.7 odd 18 inner 324.3.j.a.19.16 204
108.47 even 18 108.3.j.a.7.19 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.3.j.a.7.19 204 108.47 even 18
108.3.j.a.7.28 yes 204 27.20 odd 18
108.3.j.a.31.19 yes 204 3.2 odd 2
108.3.j.a.31.28 yes 204 12.11 even 2
324.3.j.a.19.7 204 27.7 even 9 inner
324.3.j.a.19.16 204 108.7 odd 18 inner
324.3.j.a.307.7 204 4.3 odd 2 inner
324.3.j.a.307.16 204 1.1 even 1 trivial