Properties

Label 324.3.j.a.307.14
Level $324$
Weight $3$
Character 324.307
Analytic conductor $8.828$
Analytic rank $0$
Dimension $204$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,3,Mod(19,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(18)) chi = DirichletCharacter(H, H._module([9, 16])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.19"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.j (of order \(18\), degree \(6\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(204\)
Relative dimension: \(34\) over \(\Q(\zeta_{18})\)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{SU}(2)[C_{18}]$

Embedding invariants

Embedding label 307.14
Character \(\chi\) \(=\) 324.307
Dual form 324.3.j.a.19.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.376263 + 1.96429i) q^{2} +(-3.71685 - 1.47818i) q^{4} +(1.26933 - 7.19876i) q^{5} +(2.67622 + 3.18940i) q^{7} +(4.30208 - 6.74478i) q^{8} +(13.6628 + 5.20197i) q^{10} +(-18.4141 + 3.24691i) q^{11} +(-15.1228 + 5.50426i) q^{13} +(-7.27185 + 4.05681i) q^{14} +(11.6300 + 10.9883i) q^{16} +(-7.49839 + 12.9876i) q^{17} +(-0.338254 + 0.195291i) q^{19} +(-15.3590 + 24.8804i) q^{20} +(0.550703 - 37.3923i) q^{22} +(-10.6620 + 12.7065i) q^{23} +(-26.7186 - 9.72476i) q^{25} +(-5.12179 - 31.7767i) q^{26} +(-5.23262 - 15.8104i) q^{28} +(-36.9589 - 13.4520i) q^{29} +(-14.0094 + 16.6957i) q^{31} +(-25.9602 + 18.7101i) q^{32} +(-22.6900 - 19.6158i) q^{34} +(26.3567 - 15.2170i) q^{35} +(5.57476 - 9.65577i) q^{37} +(-0.256335 - 0.737910i) q^{38} +(-43.0932 - 39.5310i) q^{40} +(56.8435 - 20.6894i) q^{41} +(24.4766 - 4.31589i) q^{43} +(73.2421 + 15.1511i) q^{44} +(-20.9475 - 25.7242i) q^{46} +(14.6599 + 17.4709i) q^{47} +(5.49867 - 31.1845i) q^{49} +(29.1554 - 48.8239i) q^{50} +(64.3456 + 1.89574i) q^{52} -51.2309 q^{53} +136.680i q^{55} +(33.0251 - 4.32947i) q^{56} +(40.3298 - 67.5365i) q^{58} +(-82.3895 - 14.5275i) q^{59} +(19.0252 - 15.9640i) q^{61} +(-27.5240 - 33.8005i) q^{62} +(-26.9841 - 58.0332i) q^{64} +(20.4279 + 115.852i) q^{65} +(-17.9869 - 49.4186i) q^{67} +(47.0684 - 37.1890i) q^{68} +(19.9736 + 57.4978i) q^{70} +(-75.5843 - 43.6386i) q^{71} +(17.8942 + 30.9937i) q^{73} +(16.8691 + 14.5835i) q^{74} +(1.54592 - 0.225868i) q^{76} +(-59.6359 - 50.0405i) q^{77} +(-3.59582 + 9.87943i) q^{79} +(93.8648 - 69.7734i) q^{80} +(19.2517 + 119.442i) q^{82} +(-34.4827 + 94.7405i) q^{83} +(83.9766 + 70.4647i) q^{85} +(-0.732011 + 49.7030i) q^{86} +(-57.3195 + 138.168i) q^{88} +(7.29925 + 12.6427i) q^{89} +(-58.0273 - 33.5021i) q^{91} +(58.4116 - 31.4678i) q^{92} +(-39.8339 + 22.2225i) q^{94} +(0.976496 + 2.68290i) q^{95} +(-1.45511 - 8.25233i) q^{97} +(59.1864 + 22.5346i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 204 q + 6 q^{2} - 6 q^{4} + 12 q^{5} + 3 q^{8} - 3 q^{10} - 12 q^{13} - 39 q^{14} - 6 q^{16} + 6 q^{17} + 69 q^{20} - 6 q^{22} - 12 q^{25} + 174 q^{26} - 12 q^{28} - 60 q^{29} + 96 q^{32} + 6 q^{34} - 6 q^{37}+ \cdots - 510 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.376263 + 1.96429i −0.188132 + 0.982144i
\(3\) 0 0
\(4\) −3.71685 1.47818i −0.929213 0.369545i
\(5\) 1.26933 7.19876i 0.253867 1.43975i −0.545097 0.838373i \(-0.683507\pi\)
0.798964 0.601378i \(-0.205382\pi\)
\(6\) 0 0
\(7\) 2.67622 + 3.18940i 0.382317 + 0.455628i 0.922544 0.385891i \(-0.126106\pi\)
−0.540227 + 0.841519i \(0.681662\pi\)
\(8\) 4.30208 6.74478i 0.537761 0.843098i
\(9\) 0 0
\(10\) 13.6628 + 5.20197i 1.36628 + 0.520197i
\(11\) −18.4141 + 3.24691i −1.67401 + 0.295173i −0.928504 0.371323i \(-0.878904\pi\)
−0.745508 + 0.666497i \(0.767793\pi\)
\(12\) 0 0
\(13\) −15.1228 + 5.50426i −1.16330 + 0.423405i −0.850274 0.526341i \(-0.823564\pi\)
−0.313022 + 0.949746i \(0.601341\pi\)
\(14\) −7.27185 + 4.05681i −0.519418 + 0.289772i
\(15\) 0 0
\(16\) 11.6300 + 10.9883i 0.726873 + 0.686772i
\(17\) −7.49839 + 12.9876i −0.441082 + 0.763976i −0.997770 0.0667452i \(-0.978739\pi\)
0.556688 + 0.830722i \(0.312072\pi\)
\(18\) 0 0
\(19\) −0.338254 + 0.195291i −0.0178029 + 0.0102785i −0.508875 0.860840i \(-0.669938\pi\)
0.491072 + 0.871119i \(0.336605\pi\)
\(20\) −15.3590 + 24.8804i −0.767949 + 1.24402i
\(21\) 0 0
\(22\) 0.550703 37.3923i 0.0250319 1.69965i
\(23\) −10.6620 + 12.7065i −0.463566 + 0.552456i −0.946291 0.323316i \(-0.895202\pi\)
0.482725 + 0.875772i \(0.339647\pi\)
\(24\) 0 0
\(25\) −26.7186 9.72476i −1.06874 0.388990i
\(26\) −5.12179 31.7767i −0.196992 1.22218i
\(27\) 0 0
\(28\) −5.23262 15.8104i −0.186879 0.564659i
\(29\) −36.9589 13.4520i −1.27445 0.463861i −0.385855 0.922560i \(-0.626093\pi\)
−0.888592 + 0.458699i \(0.848316\pi\)
\(30\) 0 0
\(31\) −14.0094 + 16.6957i −0.451916 + 0.538572i −0.943111 0.332477i \(-0.892116\pi\)
0.491196 + 0.871049i \(0.336560\pi\)
\(32\) −25.9602 + 18.7101i −0.811256 + 0.584691i
\(33\) 0 0
\(34\) −22.6900 19.6158i −0.667353 0.576934i
\(35\) 26.3567 15.2170i 0.753049 0.434773i
\(36\) 0 0
\(37\) 5.57476 9.65577i 0.150669 0.260967i −0.780804 0.624776i \(-0.785190\pi\)
0.931474 + 0.363809i \(0.118524\pi\)
\(38\) −0.256335 0.737910i −0.00674567 0.0194187i
\(39\) 0 0
\(40\) −43.0932 39.5310i −1.07733 0.988276i
\(41\) 56.8435 20.6894i 1.38643 0.504618i 0.462307 0.886720i \(-0.347022\pi\)
0.924120 + 0.382101i \(0.124800\pi\)
\(42\) 0 0
\(43\) 24.4766 4.31589i 0.569224 0.100369i 0.118374 0.992969i \(-0.462232\pi\)
0.450850 + 0.892600i \(0.351121\pi\)
\(44\) 73.2421 + 15.1511i 1.66459 + 0.344343i
\(45\) 0 0
\(46\) −20.9475 25.7242i −0.455380 0.559223i
\(47\) 14.6599 + 17.4709i 0.311912 + 0.371722i 0.899111 0.437720i \(-0.144214\pi\)
−0.587199 + 0.809442i \(0.699769\pi\)
\(48\) 0 0
\(49\) 5.49867 31.1845i 0.112218 0.636419i
\(50\) 29.1554 48.8239i 0.583109 0.976477i
\(51\) 0 0
\(52\) 64.3456 + 1.89574i 1.23742 + 0.0364565i
\(53\) −51.2309 −0.966621 −0.483310 0.875449i \(-0.660566\pi\)
−0.483310 + 0.875449i \(0.660566\pi\)
\(54\) 0 0
\(55\) 136.680i 2.48510i
\(56\) 33.0251 4.32947i 0.589734 0.0773120i
\(57\) 0 0
\(58\) 40.3298 67.5365i 0.695342 1.16442i
\(59\) −82.3895 14.5275i −1.39643 0.246229i −0.575755 0.817622i \(-0.695292\pi\)
−0.820676 + 0.571394i \(0.806403\pi\)
\(60\) 0 0
\(61\) 19.0252 15.9640i 0.311888 0.261705i −0.473384 0.880856i \(-0.656968\pi\)
0.785272 + 0.619151i \(0.212523\pi\)
\(62\) −27.5240 33.8005i −0.443936 0.545169i
\(63\) 0 0
\(64\) −26.9841 58.0332i −0.421627 0.906769i
\(65\) 20.4279 + 115.852i 0.314275 + 1.78234i
\(66\) 0 0
\(67\) −17.9869 49.4186i −0.268461 0.737592i −0.998529 0.0542169i \(-0.982734\pi\)
0.730068 0.683375i \(-0.239488\pi\)
\(68\) 47.0684 37.1890i 0.692183 0.546897i
\(69\) 0 0
\(70\) 19.9736 + 57.4978i 0.285337 + 0.821397i
\(71\) −75.5843 43.6386i −1.06457 0.614628i −0.137875 0.990450i \(-0.544027\pi\)
−0.926692 + 0.375821i \(0.877361\pi\)
\(72\) 0 0
\(73\) 17.8942 + 30.9937i 0.245127 + 0.424572i 0.962167 0.272460i \(-0.0878372\pi\)
−0.717041 + 0.697031i \(0.754504\pi\)
\(74\) 16.8691 + 14.5835i 0.227961 + 0.197075i
\(75\) 0 0
\(76\) 1.54592 0.225868i 0.0203410 0.00297195i
\(77\) −59.6359 50.0405i −0.774493 0.649877i
\(78\) 0 0
\(79\) −3.59582 + 9.87943i −0.0455167 + 0.125056i −0.960368 0.278734i \(-0.910085\pi\)
0.914852 + 0.403790i \(0.132307\pi\)
\(80\) 93.8648 69.7734i 1.17331 0.872168i
\(81\) 0 0
\(82\) 19.2517 + 119.442i 0.234777 + 1.45661i
\(83\) −34.4827 + 94.7405i −0.415455 + 1.14145i 0.538794 + 0.842438i \(0.318880\pi\)
−0.954249 + 0.299015i \(0.903342\pi\)
\(84\) 0 0
\(85\) 83.9766 + 70.4647i 0.987960 + 0.828997i
\(86\) −0.732011 + 49.7030i −0.00851176 + 0.577942i
\(87\) 0 0
\(88\) −57.3195 + 138.168i −0.651357 + 1.57009i
\(89\) 7.29925 + 12.6427i 0.0820141 + 0.142053i 0.904115 0.427289i \(-0.140531\pi\)
−0.822101 + 0.569342i \(0.807198\pi\)
\(90\) 0 0
\(91\) −58.0273 33.5021i −0.637663 0.368155i
\(92\) 58.4116 31.4678i 0.634909 0.342041i
\(93\) 0 0
\(94\) −39.8339 + 22.2225i −0.423765 + 0.236410i
\(95\) 0.976496 + 2.68290i 0.0102789 + 0.0282411i
\(96\) 0 0
\(97\) −1.45511 8.25233i −0.0150011 0.0850755i 0.976388 0.216024i \(-0.0693089\pi\)
−0.991389 + 0.130948i \(0.958198\pi\)
\(98\) 59.1864 + 22.5346i 0.603943 + 0.229945i
\(99\) 0 0
\(100\) 84.9340 + 75.6403i 0.849340 + 0.756403i
\(101\) 110.882 93.0413i 1.09784 0.921201i 0.100567 0.994930i \(-0.467934\pi\)
0.997278 + 0.0737291i \(0.0234900\pi\)
\(102\) 0 0
\(103\) −3.58880 0.632802i −0.0348427 0.00614371i 0.156200 0.987726i \(-0.450076\pi\)
−0.191042 + 0.981582i \(0.561187\pi\)
\(104\) −27.9347 + 125.680i −0.268603 + 1.20846i
\(105\) 0 0
\(106\) 19.2763 100.632i 0.181852 0.949361i
\(107\) 118.520i 1.10766i 0.832629 + 0.553831i \(0.186835\pi\)
−0.832629 + 0.553831i \(0.813165\pi\)
\(108\) 0 0
\(109\) −209.035 −1.91775 −0.958874 0.283830i \(-0.908395\pi\)
−0.958874 + 0.283830i \(0.908395\pi\)
\(110\) −268.479 51.4278i −2.44072 0.467525i
\(111\) 0 0
\(112\) −3.92181 + 66.4998i −0.0350162 + 0.593748i
\(113\) 19.3433 109.701i 0.171180 0.970810i −0.771281 0.636494i \(-0.780384\pi\)
0.942461 0.334315i \(-0.108505\pi\)
\(114\) 0 0
\(115\) 77.9373 + 92.8820i 0.677715 + 0.807670i
\(116\) 117.487 + 104.631i 1.01281 + 0.901990i
\(117\) 0 0
\(118\) 59.5363 156.370i 0.504545 1.32517i
\(119\) −61.4899 + 10.8423i −0.516722 + 0.0911121i
\(120\) 0 0
\(121\) 214.835 78.1935i 1.77549 0.646227i
\(122\) 24.1995 + 43.3776i 0.198356 + 0.355554i
\(123\) 0 0
\(124\) 76.7501 41.3472i 0.618952 0.333445i
\(125\) −12.5484 + 21.7345i −0.100387 + 0.173876i
\(126\) 0 0
\(127\) 9.25406 5.34284i 0.0728666 0.0420696i −0.463124 0.886293i \(-0.653272\pi\)
0.535991 + 0.844224i \(0.319938\pi\)
\(128\) 124.147 31.1688i 0.969899 0.243506i
\(129\) 0 0
\(130\) −235.254 3.46474i −1.80964 0.0266519i
\(131\) 41.0569 48.9297i 0.313411 0.373509i −0.586226 0.810148i \(-0.699387\pi\)
0.899637 + 0.436639i \(0.143831\pi\)
\(132\) 0 0
\(133\) −1.52810 0.556184i −0.0114895 0.00418184i
\(134\) 103.840 16.7370i 0.774927 0.124903i
\(135\) 0 0
\(136\) 55.3398 + 106.449i 0.406910 + 0.782712i
\(137\) 179.780 + 65.4345i 1.31226 + 0.477624i 0.900971 0.433880i \(-0.142856\pi\)
0.411291 + 0.911504i \(0.365078\pi\)
\(138\) 0 0
\(139\) −89.1108 + 106.198i −0.641085 + 0.764015i −0.984541 0.175153i \(-0.943958\pi\)
0.343456 + 0.939169i \(0.388402\pi\)
\(140\) −120.457 + 17.5996i −0.860411 + 0.125711i
\(141\) 0 0
\(142\) 114.158 132.050i 0.803932 0.929927i
\(143\) 260.602 150.459i 1.82239 1.05216i
\(144\) 0 0
\(145\) −143.751 + 248.983i −0.991384 + 1.71713i
\(146\) −67.6135 + 23.4876i −0.463106 + 0.160874i
\(147\) 0 0
\(148\) −34.9935 + 27.6486i −0.236443 + 0.186815i
\(149\) −56.2932 + 20.4890i −0.377806 + 0.137510i −0.523941 0.851754i \(-0.675539\pi\)
0.146135 + 0.989265i \(0.453317\pi\)
\(150\) 0 0
\(151\) 69.7855 12.3051i 0.462156 0.0814905i 0.0622775 0.998059i \(-0.480164\pi\)
0.399878 + 0.916568i \(0.369052\pi\)
\(152\) −0.138002 + 3.12161i −0.000907909 + 0.0205369i
\(153\) 0 0
\(154\) 120.733 98.3137i 0.783979 0.638401i
\(155\) 102.406 + 122.043i 0.660683 + 0.787372i
\(156\) 0 0
\(157\) −11.9033 + 67.5070i −0.0758172 + 0.429981i 0.923146 + 0.384450i \(0.125609\pi\)
−0.998963 + 0.0455306i \(0.985502\pi\)
\(158\) −18.0531 10.7805i −0.114260 0.0682309i
\(159\) 0 0
\(160\) 101.737 + 210.631i 0.635858 + 1.31644i
\(161\) −69.0599 −0.428944
\(162\) 0 0
\(163\) 166.784i 1.02321i −0.859220 0.511606i \(-0.829051\pi\)
0.859220 0.511606i \(-0.170949\pi\)
\(164\) −241.862 7.12567i −1.47477 0.0434492i
\(165\) 0 0
\(166\) −173.123 103.381i −1.04291 0.622780i
\(167\) 77.6761 + 13.6964i 0.465126 + 0.0820143i 0.401300 0.915947i \(-0.368559\pi\)
0.0638264 + 0.997961i \(0.479670\pi\)
\(168\) 0 0
\(169\) 68.9419 57.8491i 0.407940 0.342302i
\(170\) −170.010 + 138.441i −1.00006 + 0.814358i
\(171\) 0 0
\(172\) −97.3556 20.1393i −0.566021 0.117089i
\(173\) 14.3748 + 81.5234i 0.0830912 + 0.471233i 0.997752 + 0.0670117i \(0.0213465\pi\)
−0.914661 + 0.404222i \(0.867542\pi\)
\(174\) 0 0
\(175\) −40.4887 111.242i −0.231364 0.635667i
\(176\) −249.834 164.579i −1.41951 0.935110i
\(177\) 0 0
\(178\) −27.5803 + 9.58086i −0.154946 + 0.0538250i
\(179\) −46.3255 26.7460i −0.258801 0.149419i 0.364986 0.931013i \(-0.381074\pi\)
−0.623788 + 0.781594i \(0.714407\pi\)
\(180\) 0 0
\(181\) 32.4491 + 56.2035i 0.179277 + 0.310516i 0.941633 0.336641i \(-0.109291\pi\)
−0.762356 + 0.647158i \(0.775958\pi\)
\(182\) 87.6413 101.377i 0.481546 0.557015i
\(183\) 0 0
\(184\) 39.8336 + 126.577i 0.216487 + 0.687920i
\(185\) −62.4333 52.3878i −0.337477 0.283177i
\(186\) 0 0
\(187\) 95.9068 263.502i 0.512871 1.40910i
\(188\) −28.6634 86.6068i −0.152465 0.460675i
\(189\) 0 0
\(190\) −5.63741 + 0.908641i −0.0296706 + 0.00478232i
\(191\) 72.7756 199.949i 0.381024 1.04685i −0.589902 0.807475i \(-0.700834\pi\)
0.970926 0.239380i \(-0.0769442\pi\)
\(192\) 0 0
\(193\) −11.4584 9.61478i −0.0593702 0.0498175i 0.612620 0.790378i \(-0.290116\pi\)
−0.671990 + 0.740560i \(0.734560\pi\)
\(194\) 16.7574 + 0.246799i 0.0863786 + 0.00127216i
\(195\) 0 0
\(196\) −66.5341 + 107.780i −0.339460 + 0.549899i
\(197\) 34.4522 + 59.6729i 0.174884 + 0.302908i 0.940121 0.340840i \(-0.110712\pi\)
−0.765237 + 0.643749i \(0.777378\pi\)
\(198\) 0 0
\(199\) −47.7506 27.5688i −0.239953 0.138537i 0.375202 0.926943i \(-0.377573\pi\)
−0.615155 + 0.788406i \(0.710907\pi\)
\(200\) −180.537 + 138.374i −0.902685 + 0.691871i
\(201\) 0 0
\(202\) 141.039 + 252.813i 0.698213 + 1.25155i
\(203\) −56.0067 153.877i −0.275895 0.758015i
\(204\) 0 0
\(205\) −76.7841 435.464i −0.374557 2.12422i
\(206\) 2.59334 6.81133i 0.0125890 0.0330647i
\(207\) 0 0
\(208\) −236.361 102.161i −1.13635 0.491157i
\(209\) 5.59457 4.69440i 0.0267683 0.0224612i
\(210\) 0 0
\(211\) 162.329 + 28.6229i 0.769331 + 0.135654i 0.544519 0.838748i \(-0.316712\pi\)
0.224812 + 0.974402i \(0.427823\pi\)
\(212\) 190.418 + 75.7285i 0.898197 + 0.357210i
\(213\) 0 0
\(214\) −232.807 44.5947i −1.08788 0.208387i
\(215\) 181.680i 0.845021i
\(216\) 0 0
\(217\) −90.7415 −0.418164
\(218\) 78.6521 410.604i 0.360789 1.88351i
\(219\) 0 0
\(220\) 202.038 508.020i 0.918354 2.30918i
\(221\) 41.9098 237.683i 0.189637 1.07549i
\(222\) 0 0
\(223\) −245.531 292.613i −1.10104 1.31217i −0.945967 0.324262i \(-0.894884\pi\)
−0.155071 0.987903i \(-0.549561\pi\)
\(224\) −129.149 32.7250i −0.576559 0.146094i
\(225\) 0 0
\(226\) 208.207 + 79.2725i 0.921270 + 0.350763i
\(227\) 157.728 27.8117i 0.694838 0.122519i 0.184935 0.982751i \(-0.440792\pi\)
0.509903 + 0.860232i \(0.329681\pi\)
\(228\) 0 0
\(229\) 219.275 79.8096i 0.957533 0.348513i 0.184466 0.982839i \(-0.440944\pi\)
0.773066 + 0.634325i \(0.218722\pi\)
\(230\) −211.772 + 118.143i −0.920748 + 0.513666i
\(231\) 0 0
\(232\) −249.731 + 191.409i −1.07643 + 0.825037i
\(233\) −213.934 + 370.545i −0.918172 + 1.59032i −0.115982 + 0.993251i \(0.537002\pi\)
−0.802190 + 0.597069i \(0.796332\pi\)
\(234\) 0 0
\(235\) 144.377 83.3563i 0.614372 0.354708i
\(236\) 284.755 + 175.783i 1.20659 + 0.744843i
\(237\) 0 0
\(238\) 1.83895 124.864i 0.00772669 0.524637i
\(239\) −29.7397 + 35.4424i −0.124434 + 0.148295i −0.824665 0.565622i \(-0.808636\pi\)
0.700231 + 0.713917i \(0.253081\pi\)
\(240\) 0 0
\(241\) −240.056 87.3733i −0.996083 0.362545i −0.208010 0.978127i \(-0.566699\pi\)
−0.788073 + 0.615582i \(0.788921\pi\)
\(242\) 72.7600 + 451.419i 0.300661 + 1.86537i
\(243\) 0 0
\(244\) −94.3115 + 31.2133i −0.386523 + 0.127923i
\(245\) −217.510 79.1672i −0.887797 0.323132i
\(246\) 0 0
\(247\) 4.04043 4.81520i 0.0163580 0.0194947i
\(248\) 52.3395 + 166.317i 0.211046 + 0.670632i
\(249\) 0 0
\(250\) −37.9712 32.8265i −0.151885 0.131306i
\(251\) −411.736 + 237.716i −1.64038 + 0.947076i −0.659687 + 0.751541i \(0.729311\pi\)
−0.980697 + 0.195535i \(0.937356\pi\)
\(252\) 0 0
\(253\) 155.075 268.598i 0.612944 1.06165i
\(254\) 7.01290 + 20.1880i 0.0276098 + 0.0794801i
\(255\) 0 0
\(256\) 14.5125 + 255.588i 0.0566895 + 0.998392i
\(257\) 43.3069 15.7624i 0.168509 0.0613323i −0.256388 0.966574i \(-0.582532\pi\)
0.424897 + 0.905242i \(0.360310\pi\)
\(258\) 0 0
\(259\) 45.7154 8.06085i 0.176507 0.0311230i
\(260\) 95.3231 460.802i 0.366627 1.77232i
\(261\) 0 0
\(262\) 80.6638 + 99.0580i 0.307877 + 0.378084i
\(263\) −102.839 122.559i −0.391025 0.466005i 0.534237 0.845335i \(-0.320599\pi\)
−0.925261 + 0.379330i \(0.876155\pi\)
\(264\) 0 0
\(265\) −65.0292 + 368.799i −0.245393 + 1.39169i
\(266\) 1.66748 2.79236i 0.00626871 0.0104976i
\(267\) 0 0
\(268\) −6.19492 + 210.270i −0.0231154 + 0.784588i
\(269\) −408.125 −1.51719 −0.758597 0.651560i \(-0.774115\pi\)
−0.758597 + 0.651560i \(0.774115\pi\)
\(270\) 0 0
\(271\) 9.23489i 0.0340771i −0.999855 0.0170385i \(-0.994576\pi\)
0.999855 0.0170385i \(-0.00542380\pi\)
\(272\) −229.918 + 68.6505i −0.845288 + 0.252391i
\(273\) 0 0
\(274\) −196.177 + 328.519i −0.715974 + 1.19897i
\(275\) 523.574 + 92.3203i 1.90391 + 0.335710i
\(276\) 0 0
\(277\) 59.9164 50.2758i 0.216305 0.181501i −0.528197 0.849122i \(-0.677132\pi\)
0.744502 + 0.667621i \(0.232687\pi\)
\(278\) −175.075 214.998i −0.629765 0.773373i
\(279\) 0 0
\(280\) 10.7531 243.235i 0.0384039 0.868697i
\(281\) 84.5660 + 479.598i 0.300947 + 1.70675i 0.641996 + 0.766708i \(0.278107\pi\)
−0.341049 + 0.940046i \(0.610782\pi\)
\(282\) 0 0
\(283\) −72.9296 200.373i −0.257702 0.708030i −0.999308 0.0371946i \(-0.988158\pi\)
0.741606 0.670836i \(-0.234064\pi\)
\(284\) 216.430 + 273.925i 0.762077 + 0.964526i
\(285\) 0 0
\(286\) 197.489 + 568.510i 0.690521 + 1.98780i
\(287\) 218.112 + 125.927i 0.759973 + 0.438771i
\(288\) 0 0
\(289\) 32.0482 + 55.5091i 0.110893 + 0.192073i
\(290\) −434.987 376.051i −1.49995 1.29673i
\(291\) 0 0
\(292\) −20.6959 141.650i −0.0708765 0.485103i
\(293\) 125.729 + 105.500i 0.429111 + 0.360067i 0.831616 0.555351i \(-0.187416\pi\)
−0.402505 + 0.915418i \(0.631861\pi\)
\(294\) 0 0
\(295\) −209.160 + 574.661i −0.709016 + 1.94800i
\(296\) −41.1430 79.1405i −0.138996 0.267367i
\(297\) 0 0
\(298\) −19.0653 118.285i −0.0639775 0.396930i
\(299\) 91.3000 250.845i 0.305351 0.838946i
\(300\) 0 0
\(301\) 79.2699 + 66.5153i 0.263355 + 0.220981i
\(302\) −2.08704 + 141.709i −0.00691074 + 0.469234i
\(303\) 0 0
\(304\) −6.07982 1.44562i −0.0199994 0.00475534i
\(305\) −90.7718 157.221i −0.297613 0.515480i
\(306\) 0 0
\(307\) −277.852 160.418i −0.905056 0.522534i −0.0262186 0.999656i \(-0.508347\pi\)
−0.878837 + 0.477122i \(0.841680\pi\)
\(308\) 147.689 + 274.146i 0.479510 + 0.890083i
\(309\) 0 0
\(310\) −278.258 + 155.235i −0.897608 + 0.500756i
\(311\) 141.775 + 389.525i 0.455870 + 1.25249i 0.928533 + 0.371249i \(0.121070\pi\)
−0.472664 + 0.881243i \(0.656708\pi\)
\(312\) 0 0
\(313\) 11.8062 + 66.9560i 0.0377193 + 0.213917i 0.997842 0.0656625i \(-0.0209161\pi\)
−0.960123 + 0.279579i \(0.909805\pi\)
\(314\) −128.124 48.7819i −0.408039 0.155356i
\(315\) 0 0
\(316\) 27.9687 31.4051i 0.0885085 0.0993832i
\(317\) 423.973 355.755i 1.33745 1.12226i 0.355180 0.934798i \(-0.384419\pi\)
0.982273 0.187458i \(-0.0600250\pi\)
\(318\) 0 0
\(319\) 724.244 + 127.704i 2.27036 + 0.400325i
\(320\) −452.019 + 120.589i −1.41256 + 0.376839i
\(321\) 0 0
\(322\) 25.9847 135.654i 0.0806979 0.421284i
\(323\) 5.85748i 0.0181346i
\(324\) 0 0
\(325\) 457.588 1.40796
\(326\) 327.611 + 62.7545i 1.00494 + 0.192499i
\(327\) 0 0
\(328\) 105.001 472.405i 0.320124 1.44026i
\(329\) −16.4887 + 93.5122i −0.0501177 + 0.284232i
\(330\) 0 0
\(331\) 253.344 + 301.924i 0.765390 + 0.912157i 0.998176 0.0603714i \(-0.0192285\pi\)
−0.232786 + 0.972528i \(0.574784\pi\)
\(332\) 268.211 301.165i 0.807864 0.907123i
\(333\) 0 0
\(334\) −56.1303 + 147.425i −0.168055 + 0.441391i
\(335\) −378.584 + 66.7546i −1.13010 + 0.199267i
\(336\) 0 0
\(337\) −495.696 + 180.418i −1.47091 + 0.535366i −0.948347 0.317236i \(-0.897245\pi\)
−0.522560 + 0.852602i \(0.675023\pi\)
\(338\) 87.6920 + 157.188i 0.259444 + 0.465054i
\(339\) 0 0
\(340\) −207.969 386.039i −0.611674 1.13541i
\(341\) 203.761 352.925i 0.597540 1.03497i
\(342\) 0 0
\(343\) 290.853 167.924i 0.847968 0.489574i
\(344\) 76.1908 183.657i 0.221485 0.533886i
\(345\) 0 0
\(346\) −165.544 2.43808i −0.478451 0.00704648i
\(347\) 105.358 125.560i 0.303624 0.361845i −0.592561 0.805526i \(-0.701883\pi\)
0.896185 + 0.443681i \(0.146328\pi\)
\(348\) 0 0
\(349\) 111.453 + 40.5656i 0.319350 + 0.116234i 0.496721 0.867910i \(-0.334537\pi\)
−0.177371 + 0.984144i \(0.556759\pi\)
\(350\) 233.745 37.6752i 0.667843 0.107643i
\(351\) 0 0
\(352\) 417.285 428.820i 1.18547 1.21824i
\(353\) −405.217 147.487i −1.14792 0.417810i −0.303154 0.952941i \(-0.598040\pi\)
−0.844769 + 0.535132i \(0.820262\pi\)
\(354\) 0 0
\(355\) −410.086 + 488.721i −1.15517 + 1.37668i
\(356\) −8.44210 57.7806i −0.0237138 0.162305i
\(357\) 0 0
\(358\) 69.9674 80.9330i 0.195440 0.226070i
\(359\) −276.576 + 159.681i −0.770407 + 0.444795i −0.833020 0.553243i \(-0.813390\pi\)
0.0626127 + 0.998038i \(0.480057\pi\)
\(360\) 0 0
\(361\) −180.424 + 312.503i −0.499789 + 0.865659i
\(362\) −122.609 + 42.5920i −0.338699 + 0.117658i
\(363\) 0 0
\(364\) 166.157 + 210.297i 0.456475 + 0.577739i
\(365\) 245.830 89.4748i 0.673507 0.245136i
\(366\) 0 0
\(367\) −605.049 + 106.686i −1.64863 + 0.290699i −0.919329 0.393490i \(-0.871268\pi\)
−0.729305 + 0.684188i \(0.760157\pi\)
\(368\) −263.622 + 30.6183i −0.716365 + 0.0832018i
\(369\) 0 0
\(370\) 126.396 102.925i 0.341611 0.278177i
\(371\) −137.105 163.396i −0.369556 0.440419i
\(372\) 0 0
\(373\) 104.221 591.065i 0.279412 1.58462i −0.445177 0.895442i \(-0.646859\pi\)
0.724589 0.689181i \(-0.242030\pi\)
\(374\) 481.507 + 287.535i 1.28745 + 0.768810i
\(375\) 0 0
\(376\) 180.906 23.7161i 0.481132 0.0630747i
\(377\) 632.967 1.67896
\(378\) 0 0
\(379\) 14.1542i 0.0373462i 0.999826 + 0.0186731i \(0.00594418\pi\)
−0.999826 + 0.0186731i \(0.994056\pi\)
\(380\) 0.336317 11.4154i 0.000885046 0.0300405i
\(381\) 0 0
\(382\) 365.375 + 218.186i 0.956479 + 0.571167i
\(383\) −357.007 62.9499i −0.932133 0.164360i −0.313095 0.949722i \(-0.601366\pi\)
−0.619037 + 0.785362i \(0.712477\pi\)
\(384\) 0 0
\(385\) −435.927 + 365.786i −1.13228 + 0.950095i
\(386\) 23.1976 18.8900i 0.0600974 0.0489378i
\(387\) 0 0
\(388\) −6.79000 + 32.8236i −0.0175000 + 0.0845969i
\(389\) 67.1581 + 380.873i 0.172643 + 0.979107i 0.940829 + 0.338881i \(0.110048\pi\)
−0.768186 + 0.640226i \(0.778841\pi\)
\(390\) 0 0
\(391\) −85.0789 233.752i −0.217593 0.597832i
\(392\) −186.677 171.246i −0.476217 0.436852i
\(393\) 0 0
\(394\) −130.178 + 45.2212i −0.330401 + 0.114775i
\(395\) 66.5553 + 38.4257i 0.168494 + 0.0972803i
\(396\) 0 0
\(397\) 75.4765 + 130.729i 0.190117 + 0.329293i 0.945289 0.326234i \(-0.105780\pi\)
−0.755172 + 0.655527i \(0.772447\pi\)
\(398\) 72.1199 83.4228i 0.181206 0.209605i
\(399\) 0 0
\(400\) −203.877 406.692i −0.509693 1.01673i
\(401\) 172.496 + 144.741i 0.430164 + 0.360951i 0.832014 0.554755i \(-0.187188\pi\)
−0.401850 + 0.915706i \(0.631633\pi\)
\(402\) 0 0
\(403\) 119.964 329.598i 0.297677 0.817862i
\(404\) −549.665 + 181.917i −1.36056 + 0.450289i
\(405\) 0 0
\(406\) 323.332 52.1149i 0.796385 0.128362i
\(407\) −71.3030 + 195.903i −0.175192 + 0.481335i
\(408\) 0 0
\(409\) −74.9861 62.9208i −0.183340 0.153841i 0.546499 0.837460i \(-0.315960\pi\)
−0.729839 + 0.683619i \(0.760405\pi\)
\(410\) 884.269 + 13.0232i 2.15675 + 0.0317640i
\(411\) 0 0
\(412\) 12.4036 + 7.65692i 0.0301059 + 0.0185848i
\(413\) −174.158 301.651i −0.421691 0.730391i
\(414\) 0 0
\(415\) 638.244 + 368.490i 1.53794 + 0.887928i
\(416\) 289.607 425.842i 0.696170 1.02366i
\(417\) 0 0
\(418\) 7.11612 + 12.7557i 0.0170242 + 0.0305159i
\(419\) 18.1404 + 49.8403i 0.0432945 + 0.118951i 0.959456 0.281859i \(-0.0909511\pi\)
−0.916161 + 0.400810i \(0.868729\pi\)
\(420\) 0 0
\(421\) 69.5196 + 394.265i 0.165130 + 0.936497i 0.948931 + 0.315485i \(0.102167\pi\)
−0.783801 + 0.621012i \(0.786722\pi\)
\(422\) −117.302 + 308.091i −0.277967 + 0.730073i
\(423\) 0 0
\(424\) −220.400 + 345.541i −0.519811 + 0.814956i
\(425\) 326.648 274.090i 0.768583 0.644917i
\(426\) 0 0
\(427\) 101.831 + 17.9556i 0.238481 + 0.0420506i
\(428\) 175.194 440.521i 0.409331 1.02925i
\(429\) 0 0
\(430\) 356.871 + 68.3594i 0.829932 + 0.158975i
\(431\) 445.360i 1.03332i −0.856191 0.516659i \(-0.827175\pi\)
0.856191 0.516659i \(-0.172825\pi\)
\(432\) 0 0
\(433\) −52.1504 −0.120440 −0.0602199 0.998185i \(-0.519180\pi\)
−0.0602199 + 0.998185i \(0.519180\pi\)
\(434\) 34.1427 178.242i 0.0786698 0.410697i
\(435\) 0 0
\(436\) 776.951 + 308.991i 1.78200 + 0.708694i
\(437\) 1.12501 6.38022i 0.00257438 0.0146001i
\(438\) 0 0
\(439\) −307.416 366.365i −0.700265 0.834543i 0.292291 0.956329i \(-0.405582\pi\)
−0.992556 + 0.121786i \(0.961138\pi\)
\(440\) 921.878 + 588.010i 2.09518 + 1.33639i
\(441\) 0 0
\(442\) 451.108 + 171.754i 1.02061 + 0.388584i
\(443\) −64.2664 + 11.3319i −0.145071 + 0.0255799i −0.245712 0.969343i \(-0.579022\pi\)
0.100641 + 0.994923i \(0.467911\pi\)
\(444\) 0 0
\(445\) 100.277 36.4978i 0.225341 0.0820174i
\(446\) 667.161 372.195i 1.49588 0.834517i
\(447\) 0 0
\(448\) 112.875 241.373i 0.251954 0.538779i
\(449\) 107.513 186.218i 0.239450 0.414740i −0.721106 0.692824i \(-0.756366\pi\)
0.960557 + 0.278084i \(0.0896994\pi\)
\(450\) 0 0
\(451\) −979.548 + 565.542i −2.17195 + 1.25397i
\(452\) −234.055 + 379.151i −0.517820 + 0.838830i
\(453\) 0 0
\(454\) −4.71711 + 320.288i −0.0103901 + 0.705481i
\(455\) −314.830 + 375.199i −0.691933 + 0.824614i
\(456\) 0 0
\(457\) 731.479 + 266.237i 1.60061 + 0.582575i 0.979552 0.201189i \(-0.0644806\pi\)
0.621059 + 0.783764i \(0.286703\pi\)
\(458\) 74.2638 + 460.749i 0.162148 + 1.00600i
\(459\) 0 0
\(460\) −152.385 460.434i −0.331272 1.00094i
\(461\) 41.6290 + 15.1517i 0.0903015 + 0.0328670i 0.386776 0.922174i \(-0.373589\pi\)
−0.296474 + 0.955041i \(0.595811\pi\)
\(462\) 0 0
\(463\) −525.356 + 626.094i −1.13468 + 1.35226i −0.207234 + 0.978291i \(0.566446\pi\)
−0.927443 + 0.373964i \(0.877998\pi\)
\(464\) −282.017 562.564i −0.607795 1.21242i
\(465\) 0 0
\(466\) −647.361 559.650i −1.38919 1.20097i
\(467\) −392.786 + 226.775i −0.841084 + 0.485600i −0.857632 0.514263i \(-0.828065\pi\)
0.0165487 + 0.999863i \(0.494732\pi\)
\(468\) 0 0
\(469\) 109.479 189.623i 0.233430 0.404313i
\(470\) 109.412 + 314.963i 0.232791 + 0.670133i
\(471\) 0 0
\(472\) −452.431 + 493.200i −0.958540 + 1.04492i
\(473\) −436.702 + 158.947i −0.923261 + 0.336039i
\(474\) 0 0
\(475\) 10.9368 1.92846i 0.0230249 0.00405991i
\(476\) 244.576 + 50.5938i 0.513815 + 0.106290i
\(477\) 0 0
\(478\) −58.4291 71.7530i −0.122237 0.150111i
\(479\) 394.817 + 470.525i 0.824253 + 0.982307i 0.999998 0.00212887i \(-0.000677642\pi\)
−0.175744 + 0.984436i \(0.556233\pi\)
\(480\) 0 0
\(481\) −31.1583 + 176.708i −0.0647782 + 0.367376i
\(482\) 261.951 438.664i 0.543466 0.910091i
\(483\) 0 0
\(484\) −914.093 26.9308i −1.88862 0.0556422i
\(485\) −61.2535 −0.126296
\(486\) 0 0
\(487\) 660.590i 1.35645i −0.734856 0.678224i \(-0.762750\pi\)
0.734856 0.678224i \(-0.237250\pi\)
\(488\) −25.8259 196.999i −0.0529220 0.403687i
\(489\) 0 0
\(490\) 237.348 397.465i 0.484384 0.811153i
\(491\) −711.257 125.414i −1.44859 0.255425i −0.606638 0.794978i \(-0.707482\pi\)
−0.841952 + 0.539553i \(0.818593\pi\)
\(492\) 0 0
\(493\) 451.841 379.140i 0.916514 0.769047i
\(494\) 7.93817 + 9.74835i 0.0160692 + 0.0197335i
\(495\) 0 0
\(496\) −346.387 + 40.2310i −0.698361 + 0.0811108i
\(497\) −63.0995 357.855i −0.126961 0.720030i
\(498\) 0 0
\(499\) −79.8454 219.374i −0.160011 0.439626i 0.833616 0.552344i \(-0.186267\pi\)
−0.993627 + 0.112718i \(0.964044\pi\)
\(500\) 78.7679 62.2350i 0.157536 0.124470i
\(501\) 0 0
\(502\) −312.021 898.212i −0.621557 1.78927i
\(503\) 225.781 + 130.355i 0.448870 + 0.259155i 0.707353 0.706861i \(-0.249889\pi\)
−0.258483 + 0.966016i \(0.583223\pi\)
\(504\) 0 0
\(505\) −529.035 916.315i −1.04759 1.81449i
\(506\) 469.254 + 405.675i 0.927379 + 0.801729i
\(507\) 0 0
\(508\) −42.2936 + 6.17936i −0.0832552 + 0.0121641i
\(509\) −590.919 495.840i −1.16094 0.974145i −0.161022 0.986951i \(-0.551479\pi\)
−0.999918 + 0.0128062i \(0.995924\pi\)
\(510\) 0 0
\(511\) −50.9623 + 140.018i −0.0997306 + 0.274008i
\(512\) −507.509 67.6618i −0.991229 0.132152i
\(513\) 0 0
\(514\) 14.6671 + 90.9980i 0.0285352 + 0.177039i
\(515\) −9.11078 + 25.0316i −0.0176908 + 0.0486051i
\(516\) 0 0
\(517\) −326.675 274.113i −0.631867 0.530199i
\(518\) −1.36719 + 92.8311i −0.00263936 + 0.179211i
\(519\) 0 0
\(520\) 869.282 + 360.625i 1.67170 + 0.693510i
\(521\) 213.733 + 370.196i 0.410236 + 0.710550i 0.994915 0.100715i \(-0.0321130\pi\)
−0.584679 + 0.811264i \(0.698780\pi\)
\(522\) 0 0
\(523\) 699.824 + 404.044i 1.33810 + 0.772550i 0.986525 0.163611i \(-0.0523143\pi\)
0.351571 + 0.936161i \(0.385648\pi\)
\(524\) −224.929 + 121.175i −0.429254 + 0.231250i
\(525\) 0 0
\(526\) 279.436 155.892i 0.531248 0.296372i
\(527\) −111.790 307.139i −0.212125 0.582807i
\(528\) 0 0
\(529\) 44.0835 + 250.010i 0.0833336 + 0.472608i
\(530\) −699.959 266.502i −1.32068 0.502833i
\(531\) 0 0
\(532\) 4.85760 + 4.32607i 0.00913082 + 0.00813170i
\(533\) −745.756 + 625.764i −1.39917 + 1.17404i
\(534\) 0 0
\(535\) 853.196 + 150.441i 1.59476 + 0.281199i
\(536\) −410.699 91.2854i −0.766230 0.170309i
\(537\) 0 0
\(538\) 153.563 801.675i 0.285432 1.49010i
\(539\) 592.090i 1.09850i
\(540\) 0 0
\(541\) −374.121 −0.691535 −0.345768 0.938320i \(-0.612381\pi\)
−0.345768 + 0.938320i \(0.612381\pi\)
\(542\) 18.1400 + 3.47475i 0.0334686 + 0.00641098i
\(543\) 0 0
\(544\) −48.3394 477.456i −0.0888592 0.877677i
\(545\) −265.335 + 1504.79i −0.486853 + 2.76108i
\(546\) 0 0
\(547\) 630.498 + 751.399i 1.15265 + 1.37367i 0.915559 + 0.402184i \(0.131749\pi\)
0.237089 + 0.971488i \(0.423807\pi\)
\(548\) −571.491 508.957i −1.04287 0.928754i
\(549\) 0 0
\(550\) −378.346 + 993.714i −0.687901 + 1.80675i
\(551\) 15.1286 2.66758i 0.0274566 0.00484134i
\(552\) 0 0
\(553\) −41.1326 + 14.9710i −0.0743808 + 0.0270724i
\(554\) 76.2119 + 136.610i 0.137567 + 0.246589i
\(555\) 0 0
\(556\) 488.192 263.001i 0.878043 0.473023i
\(557\) 37.0277 64.1338i 0.0664770 0.115141i −0.830871 0.556465i \(-0.812157\pi\)
0.897348 + 0.441323i \(0.145491\pi\)
\(558\) 0 0
\(559\) −346.400 + 199.994i −0.619678 + 0.357771i
\(560\) 473.738 + 112.643i 0.845961 + 0.201148i
\(561\) 0 0
\(562\) −973.887 14.3431i −1.73290 0.0255216i
\(563\) 394.263 469.864i 0.700290 0.834573i −0.292270 0.956336i \(-0.594410\pi\)
0.992559 + 0.121763i \(0.0388549\pi\)
\(564\) 0 0
\(565\) −765.161 278.496i −1.35427 0.492913i
\(566\) 421.030 67.8619i 0.743869 0.119897i
\(567\) 0 0
\(568\) −619.503 + 322.063i −1.09067 + 0.567012i
\(569\) −128.189 46.6569i −0.225288 0.0819980i 0.226910 0.973916i \(-0.427138\pi\)
−0.452198 + 0.891918i \(0.649360\pi\)
\(570\) 0 0
\(571\) 28.1385 33.5342i 0.0492794 0.0587289i −0.740842 0.671680i \(-0.765573\pi\)
0.790121 + 0.612951i \(0.210018\pi\)
\(572\) −1191.02 + 174.016i −2.08221 + 0.304224i
\(573\) 0 0
\(574\) −329.425 + 381.054i −0.573911 + 0.663856i
\(575\) 408.441 235.814i 0.710333 0.410111i
\(576\) 0 0
\(577\) −73.2045 + 126.794i −0.126871 + 0.219747i −0.922463 0.386086i \(-0.873827\pi\)
0.795592 + 0.605833i \(0.207160\pi\)
\(578\) −121.094 + 42.0658i −0.209506 + 0.0727782i
\(579\) 0 0
\(580\) 902.342 712.945i 1.55576 1.22922i
\(581\) −394.448 + 143.567i −0.678913 + 0.247104i
\(582\) 0 0
\(583\) 943.372 166.342i 1.61813 0.285321i
\(584\) 286.028 + 12.6449i 0.489775 + 0.0216523i
\(585\) 0 0
\(586\) −254.539 + 207.273i −0.434367 + 0.353708i
\(587\) −439.369 523.619i −0.748499 0.892026i 0.248564 0.968616i \(-0.420041\pi\)
−0.997063 + 0.0765892i \(0.975597\pi\)
\(588\) 0 0
\(589\) 1.47820 8.38331i 0.00250969 0.0142331i
\(590\) −1050.10 627.074i −1.77983 1.06284i
\(591\) 0 0
\(592\) 170.935 51.0389i 0.288742 0.0862144i
\(593\) 339.967 0.573301 0.286650 0.958035i \(-0.407458\pi\)
0.286650 + 0.958035i \(0.407458\pi\)
\(594\) 0 0
\(595\) 456.414i 0.767082i
\(596\) 239.520 + 7.05668i 0.401879 + 0.0118401i
\(597\) 0 0
\(598\) 458.378 + 273.723i 0.766519 + 0.457731i
\(599\) 113.226 + 19.9649i 0.189026 + 0.0333303i 0.267359 0.963597i \(-0.413849\pi\)
−0.0783338 + 0.996927i \(0.524960\pi\)
\(600\) 0 0
\(601\) −41.4690 + 34.7966i −0.0689999 + 0.0578978i −0.676635 0.736318i \(-0.736563\pi\)
0.607635 + 0.794216i \(0.292118\pi\)
\(602\) −160.482 + 130.682i −0.266581 + 0.217079i
\(603\) 0 0
\(604\) −277.571 57.4194i −0.459555 0.0950652i
\(605\) −290.199 1645.80i −0.479667 2.72033i
\(606\) 0 0
\(607\) −221.274 607.945i −0.364537 1.00156i −0.977406 0.211372i \(-0.932207\pi\)
0.612869 0.790185i \(-0.290015\pi\)
\(608\) 5.12723 11.3986i 0.00843295 0.0187477i
\(609\) 0 0
\(610\) 342.982 119.145i 0.562266 0.195320i
\(611\) −317.864 183.519i −0.520235 0.300358i
\(612\) 0 0
\(613\) 107.603 + 186.374i 0.175535 + 0.304035i 0.940346 0.340219i \(-0.110501\pi\)
−0.764811 + 0.644254i \(0.777168\pi\)
\(614\) 419.653 485.422i 0.683473 0.790590i
\(615\) 0 0
\(616\) −594.071 + 186.953i −0.964401 + 0.303495i
\(617\) 246.443 + 206.791i 0.399422 + 0.335155i 0.820270 0.571976i \(-0.193823\pi\)
−0.420848 + 0.907131i \(0.638267\pi\)
\(618\) 0 0
\(619\) −129.813 + 356.659i −0.209715 + 0.576186i −0.999298 0.0374568i \(-0.988074\pi\)
0.789584 + 0.613643i \(0.210297\pi\)
\(620\) −200.227 604.989i −0.322946 0.975788i
\(621\) 0 0
\(622\) −818.484 + 131.924i −1.31589 + 0.212096i
\(623\) −20.7881 + 57.1148i −0.0333677 + 0.0916771i
\(624\) 0 0
\(625\) −403.996 338.993i −0.646394 0.542389i
\(626\) −135.963 2.00242i −0.217193 0.00319876i
\(627\) 0 0
\(628\) 144.030 233.318i 0.229348 0.371526i
\(629\) 83.6035 + 144.806i 0.132915 + 0.230216i
\(630\) 0 0
\(631\) −789.534 455.838i −1.25124 0.722405i −0.279887 0.960033i \(-0.590297\pi\)
−0.971356 + 0.237628i \(0.923630\pi\)
\(632\) 51.1651 + 66.7551i 0.0809574 + 0.105625i
\(633\) 0 0
\(634\) 539.280 + 966.662i 0.850600 + 1.52470i
\(635\) −26.7153 73.3996i −0.0420713 0.115590i
\(636\) 0 0
\(637\) 88.4923 + 501.865i 0.138920 + 0.787857i
\(638\) −523.353 + 1374.57i −0.820303 + 2.15450i
\(639\) 0 0
\(640\) −66.7925 933.268i −0.104363 1.45823i
\(641\) −415.837 + 348.929i −0.648732 + 0.544351i −0.906686 0.421807i \(-0.861396\pi\)
0.257954 + 0.966157i \(0.416952\pi\)
\(642\) 0 0
\(643\) −330.645 58.3017i −0.514223 0.0906714i −0.0894857 0.995988i \(-0.528522\pi\)
−0.424737 + 0.905317i \(0.639633\pi\)
\(644\) 256.686 + 102.083i 0.398580 + 0.158514i
\(645\) 0 0
\(646\) 11.5058 + 2.20396i 0.0178108 + 0.00341170i
\(647\) 1.27262i 0.00196696i −1.00000 0.000983479i \(-0.999687\pi\)
1.00000 0.000983479i \(-0.000313051\pi\)
\(648\) 0 0
\(649\) 1564.30 2.41032
\(650\) −172.174 + 898.835i −0.264883 + 1.38282i
\(651\) 0 0
\(652\) −246.536 + 619.910i −0.378123 + 0.950782i
\(653\) 67.8083 384.560i 0.103841 0.588913i −0.887836 0.460161i \(-0.847792\pi\)
0.991677 0.128752i \(-0.0410972\pi\)
\(654\) 0 0
\(655\) −300.118 357.667i −0.458196 0.546056i
\(656\) 888.430 + 384.000i 1.35431 + 0.585366i
\(657\) 0 0
\(658\) −177.481 67.5738i −0.269728 0.102696i
\(659\) 226.021 39.8536i 0.342975 0.0604758i 0.000492450 1.00000i \(-0.499843\pi\)
0.342483 + 0.939524i \(0.388732\pi\)
\(660\) 0 0
\(661\) 128.136 46.6376i 0.193851 0.0705561i −0.243270 0.969959i \(-0.578220\pi\)
0.437121 + 0.899402i \(0.355998\pi\)
\(662\) −688.389 + 384.038i −1.03986 + 0.580118i
\(663\) 0 0
\(664\) 490.656 + 640.160i 0.738940 + 0.964097i
\(665\) −5.94351 + 10.2945i −0.00893761 + 0.0154804i
\(666\) 0 0
\(667\) 564.984 326.194i 0.847052 0.489046i
\(668\) −268.465 165.727i −0.401893 0.248094i
\(669\) 0 0
\(670\) 11.3221 768.766i 0.0168987 1.14741i
\(671\) −298.499 + 355.737i −0.444856 + 0.530159i
\(672\) 0 0
\(673\) −353.816 128.779i −0.525730 0.191350i 0.0655006 0.997853i \(-0.479136\pi\)
−0.591231 + 0.806502i \(0.701358\pi\)
\(674\) −167.882 1041.57i −0.249082 1.54536i
\(675\) 0 0
\(676\) −341.758 + 113.108i −0.505559 + 0.167320i
\(677\) −458.210 166.775i −0.676824 0.246344i −0.0193408 0.999813i \(-0.506157\pi\)
−0.657483 + 0.753469i \(0.728379\pi\)
\(678\) 0 0
\(679\) 22.4257 26.7260i 0.0330276 0.0393608i
\(680\) 836.544 263.258i 1.23021 0.387145i
\(681\) 0 0
\(682\) 616.577 + 533.038i 0.904073 + 0.781581i
\(683\) 1052.67 607.762i 1.54125 0.889842i 0.542491 0.840061i \(-0.317481\pi\)
0.998760 0.0497805i \(-0.0158522\pi\)
\(684\) 0 0
\(685\) 699.248 1211.13i 1.02080 1.76808i
\(686\) 220.414 + 634.502i 0.321303 + 0.924931i
\(687\) 0 0
\(688\) 332.087 + 218.764i 0.482684 + 0.317971i
\(689\) 774.757 281.988i 1.12447 0.409272i
\(690\) 0 0
\(691\) 72.6934 12.8178i 0.105200 0.0185496i −0.120800 0.992677i \(-0.538546\pi\)
0.226000 + 0.974127i \(0.427435\pi\)
\(692\) 67.0773 324.259i 0.0969325 0.468582i
\(693\) 0 0
\(694\) 206.994 + 254.196i 0.298263 + 0.366277i
\(695\) 651.383 + 776.288i 0.937242 + 1.11696i
\(696\) 0 0
\(697\) −157.530 + 893.398i −0.226012 + 1.28178i
\(698\) −121.618 + 203.663i −0.174238 + 0.291780i
\(699\) 0 0
\(700\) −13.9448 + 473.318i −0.0199211 + 0.676169i
\(701\) 807.939 1.15255 0.576276 0.817255i \(-0.304505\pi\)
0.576276 + 0.817255i \(0.304505\pi\)
\(702\) 0 0
\(703\) 4.35481i 0.00619461i
\(704\) 685.318 + 981.016i 0.973463 + 1.39349i
\(705\) 0 0
\(706\) 442.175 740.469i 0.626310 1.04882i
\(707\) 593.491 + 104.649i 0.839450 + 0.148018i
\(708\) 0 0
\(709\) −375.128 + 314.770i −0.529094 + 0.443963i −0.867788 0.496934i \(-0.834459\pi\)
0.338694 + 0.940896i \(0.390015\pi\)
\(710\) −805.688 989.414i −1.13477 1.39354i
\(711\) 0 0
\(712\) 116.674 + 5.15801i 0.163868 + 0.00724439i
\(713\) −62.7760 356.020i −0.0880449 0.499327i
\(714\) 0 0
\(715\) −752.324 2066.99i −1.05220 2.89090i
\(716\) 132.649 + 167.888i 0.185265 + 0.234481i
\(717\) 0 0
\(718\) −209.595 603.357i −0.291914 0.840331i
\(719\) −370.164 213.715i −0.514832 0.297239i 0.219985 0.975503i \(-0.429399\pi\)
−0.734818 + 0.678265i \(0.762732\pi\)
\(720\) 0 0
\(721\) −7.58616 13.1396i −0.0105217 0.0182242i
\(722\) −545.959 471.988i −0.756176 0.653722i
\(723\) 0 0
\(724\) −37.5296 256.865i −0.0518365 0.354787i
\(725\) 856.673 + 718.834i 1.18162 + 0.991495i
\(726\) 0 0
\(727\) 405.970 1115.39i 0.558418 1.53424i −0.263514 0.964656i \(-0.584882\pi\)
0.821932 0.569585i \(-0.192896\pi\)
\(728\) −475.603 + 247.253i −0.653301 + 0.339633i
\(729\) 0 0
\(730\) 83.2574 + 516.547i 0.114051 + 0.707599i
\(731\) −127.482 + 350.255i −0.174394 + 0.479145i
\(732\) 0 0
\(733\) −714.992 599.950i −0.975432 0.818485i 0.00796157 0.999968i \(-0.497466\pi\)
−0.983394 + 0.181483i \(0.941910\pi\)
\(734\) 18.0949 1228.63i 0.0246525 1.67389i
\(735\) 0 0
\(736\) 39.0483 529.350i 0.0530548 0.719226i
\(737\) 491.671 + 851.599i 0.667125 + 1.15549i
\(738\) 0 0
\(739\) −168.234 97.1298i −0.227651 0.131434i 0.381837 0.924230i \(-0.375292\pi\)
−0.609488 + 0.792795i \(0.708625\pi\)
\(740\) 154.617 + 287.005i 0.208942 + 0.387845i
\(741\) 0 0
\(742\) 372.544 207.834i 0.502080 0.280100i
\(743\) −237.223 651.765i −0.319277 0.877207i −0.990692 0.136125i \(-0.956535\pi\)
0.671414 0.741082i \(-0.265687\pi\)
\(744\) 0 0
\(745\) 76.0407 + 431.248i 0.102068 + 0.578857i
\(746\) 1121.81 + 427.115i 1.50376 + 0.572541i
\(747\) 0 0
\(748\) −745.975 + 837.630i −0.997292 + 1.11983i
\(749\) −378.007 + 317.185i −0.504682 + 0.423479i
\(750\) 0 0
\(751\) −826.362 145.710i −1.10035 0.194021i −0.406152 0.913806i \(-0.633129\pi\)
−0.694198 + 0.719785i \(0.744241\pi\)
\(752\) −21.4830 + 364.274i −0.0285678 + 0.484407i
\(753\) 0 0
\(754\) −238.163 + 1243.33i −0.315865 + 1.64898i
\(755\) 517.988i 0.686077i
\(756\) 0 0
\(757\) −851.184 −1.12442 −0.562209 0.826995i \(-0.690048\pi\)
−0.562209 + 0.826995i \(0.690048\pi\)
\(758\) −27.8029 5.32571i −0.0366793 0.00702600i
\(759\) 0 0
\(760\) 22.2965 + 4.95581i 0.0293376 + 0.00652081i
\(761\) 110.424 626.247i 0.145104 0.822926i −0.822179 0.569228i \(-0.807242\pi\)
0.967284 0.253698i \(-0.0816468\pi\)
\(762\) 0 0
\(763\) −559.423 666.694i −0.733188 0.873780i
\(764\) −566.057 + 635.606i −0.740912 + 0.831946i
\(765\) 0 0
\(766\) 257.980 677.578i 0.336789 0.884567i
\(767\) 1325.93 233.796i 1.72872 0.304819i
\(768\) 0 0
\(769\) −233.035 + 84.8179i −0.303037 + 0.110296i −0.489063 0.872248i \(-0.662661\pi\)
0.186026 + 0.982545i \(0.440439\pi\)
\(770\) −554.486 993.919i −0.720112 1.29080i
\(771\) 0 0
\(772\) 28.3770 + 52.6744i 0.0367578 + 0.0682310i
\(773\) 346.850 600.761i 0.448706 0.777181i −0.549596 0.835430i \(-0.685218\pi\)
0.998302 + 0.0582491i \(0.0185518\pi\)
\(774\) 0 0
\(775\) 536.673 309.848i 0.692481 0.399804i
\(776\) −61.9201 25.6878i −0.0797940 0.0331029i
\(777\) 0 0
\(778\) −773.413 11.3906i −0.994104 0.0146409i
\(779\) −15.1871 + 18.0993i −0.0194957 + 0.0232340i
\(780\) 0 0
\(781\) 1533.51 + 558.152i 1.96352 + 0.714663i
\(782\) 491.169 79.1669i 0.628093 0.101236i
\(783\) 0 0
\(784\) 406.616 302.254i 0.518643 0.385528i
\(785\) 470.857 + 171.378i 0.599818 + 0.218316i
\(786\) 0 0
\(787\) −140.899 + 167.917i −0.179033 + 0.213363i −0.848096 0.529843i \(-0.822251\pi\)
0.669063 + 0.743205i \(0.266695\pi\)
\(788\) −39.8463 272.722i −0.0505664 0.346094i
\(789\) 0 0
\(790\) −100.521 + 116.276i −0.127242 + 0.147184i
\(791\) 401.648 231.892i 0.507773 0.293163i
\(792\) 0 0
\(793\) −199.845 + 346.141i −0.252011 + 0.436496i
\(794\) −285.189 + 99.0690i −0.359180 + 0.124772i
\(795\) 0 0
\(796\) 136.730 + 173.053i 0.171772 + 0.217404i
\(797\) −416.664 + 151.653i −0.522791 + 0.190280i −0.589917 0.807464i \(-0.700839\pi\)
0.0671257 + 0.997745i \(0.478617\pi\)
\(798\) 0 0
\(799\) −336.831 + 59.3924i −0.421566 + 0.0743334i
\(800\) 875.571 247.450i 1.09446 0.309313i
\(801\) 0 0
\(802\) −349.217 + 284.371i −0.435433 + 0.354577i
\(803\) −430.140 512.621i −0.535667 0.638383i
\(804\) 0 0
\(805\) −87.6602 + 497.146i −0.108895 + 0.617572i
\(806\) 602.288 + 359.660i 0.747255 + 0.446228i
\(807\) 0 0
\(808\) −150.518 1148.15i −0.186285 1.42098i
\(809\) −244.622 −0.302376 −0.151188 0.988505i \(-0.548310\pi\)
−0.151188 + 0.988505i \(0.548310\pi\)
\(810\) 0 0
\(811\) 1469.40i 1.81184i 0.423453 + 0.905918i \(0.360818\pi\)
−0.423453 + 0.905918i \(0.639182\pi\)
\(812\) −19.2894 + 654.726i −0.0237554 + 0.806313i
\(813\) 0 0
\(814\) −357.982 213.771i −0.439781 0.262618i
\(815\) −1200.63 211.704i −1.47317 0.259760i
\(816\) 0 0
\(817\) −7.43647 + 6.23994i −0.00910216 + 0.00763762i
\(818\) 151.809 123.619i 0.185586 0.151124i
\(819\) 0 0
\(820\) −358.299 + 1732.06i −0.436950 + 2.11227i
\(821\) −29.3718 166.576i −0.0357757 0.202894i 0.961681 0.274171i \(-0.0884036\pi\)
−0.997457 + 0.0712774i \(0.977292\pi\)
\(822\) 0 0
\(823\) 307.283 + 844.254i 0.373370 + 1.02583i 0.974049 + 0.226335i \(0.0726745\pi\)
−0.600680 + 0.799490i \(0.705103\pi\)
\(824\) −19.7074 + 21.4833i −0.0239168 + 0.0260720i
\(825\) 0 0
\(826\) 658.059 228.597i 0.796682 0.276752i
\(827\) 1161.59 + 670.645i 1.40459 + 0.810938i 0.994859 0.101271i \(-0.0322909\pi\)
0.409726 + 0.912209i \(0.365624\pi\)
\(828\) 0 0
\(829\) 557.477 + 965.578i 0.672469 + 1.16475i 0.977202 + 0.212313i \(0.0680995\pi\)
−0.304733 + 0.952438i \(0.598567\pi\)
\(830\) −963.969 + 1115.05i −1.16141 + 1.34343i
\(831\) 0 0
\(832\) 727.507 + 729.100i 0.874408 + 0.876322i
\(833\) 363.781 + 305.248i 0.436712 + 0.366445i
\(834\) 0 0
\(835\) 197.194 541.786i 0.236160 0.648845i
\(836\) −27.7333 + 9.17861i −0.0331738 + 0.0109792i
\(837\) 0 0
\(838\) −104.726 + 16.8798i −0.124972 + 0.0201430i
\(839\) −152.747 + 419.670i −0.182059 + 0.500203i −0.996828 0.0795824i \(-0.974641\pi\)
0.814769 + 0.579785i \(0.196864\pi\)
\(840\) 0 0
\(841\) 540.765 + 453.756i 0.643003 + 0.539543i
\(842\) −800.608 11.7911i −0.950841 0.0140037i
\(843\) 0 0
\(844\) −561.042 346.338i −0.664742 0.410353i
\(845\) −328.931 569.726i −0.389268 0.674232i
\(846\) 0 0
\(847\) 824.335 + 475.930i 0.973241 + 0.561901i
\(848\) −595.814 562.943i −0.702611 0.663848i
\(849\) 0 0
\(850\) 415.486 + 744.760i 0.488807 + 0.876188i
\(851\) 63.2528 + 173.786i 0.0743276 + 0.204213i
\(852\) 0 0
\(853\) −7.00887 39.7493i −0.00821673 0.0465994i 0.980424 0.196899i \(-0.0630872\pi\)
−0.988640 + 0.150300i \(0.951976\pi\)
\(854\) −73.5853 + 193.270i −0.0861655 + 0.226311i
\(855\) 0 0
\(856\) 799.391 + 509.883i 0.933868 + 0.595657i
\(857\) −166.999 + 140.129i −0.194865 + 0.163511i −0.735000 0.678067i \(-0.762818\pi\)
0.540135 + 0.841579i \(0.318373\pi\)
\(858\) 0 0
\(859\) 1612.96 + 284.408i 1.87772 + 0.331093i 0.991282 0.131757i \(-0.0420618\pi\)
0.886437 + 0.462849i \(0.153173\pi\)
\(860\) −268.555 + 675.276i −0.312273 + 0.785204i
\(861\) 0 0
\(862\) 874.816 + 167.573i 1.01487 + 0.194400i
\(863\) 859.974i 0.996494i 0.867035 + 0.498247i \(0.166023\pi\)
−0.867035 + 0.498247i \(0.833977\pi\)
\(864\) 0 0
\(865\) 605.113 0.699553
\(866\) 19.6223 102.438i 0.0226585 0.118289i
\(867\) 0 0
\(868\) 337.273 + 134.132i 0.388563 + 0.154530i
\(869\) 34.1363 193.596i 0.0392822 0.222781i
\(870\) 0 0
\(871\) 544.027 + 648.346i 0.624600 + 0.744369i
\(872\) −899.285 + 1409.89i −1.03129 + 1.61685i
\(873\) 0 0
\(874\) 12.1093 + 4.61048i 0.0138550 + 0.00527515i
\(875\) −102.902 + 18.1444i −0.117602 + 0.0207365i
\(876\) 0 0
\(877\) −356.422 + 129.727i −0.406411 + 0.147921i −0.537133 0.843498i \(-0.680493\pi\)
0.130722 + 0.991419i \(0.458270\pi\)
\(878\) 835.315 466.005i 0.951384 0.530757i
\(879\) 0 0
\(880\) −1501.89 + 1589.59i −1.70669 + 1.80635i
\(881\) 41.1847 71.3340i 0.0467477 0.0809693i −0.841705 0.539938i \(-0.818448\pi\)
0.888452 + 0.458969i \(0.151781\pi\)
\(882\) 0 0
\(883\) −328.446 + 189.629i −0.371967 + 0.214755i −0.674317 0.738442i \(-0.735562\pi\)
0.302351 + 0.953197i \(0.402229\pi\)
\(884\) −507.110 + 821.481i −0.573654 + 0.929277i
\(885\) 0 0
\(886\) 1.92198 130.501i 0.00216928 0.147293i
\(887\) 257.770 307.198i 0.290609 0.346334i −0.600911 0.799316i \(-0.705195\pi\)
0.891520 + 0.452982i \(0.149640\pi\)
\(888\) 0 0
\(889\) 41.8063 + 15.2163i 0.0470262 + 0.0171162i
\(890\) 33.9616 + 210.705i 0.0381591 + 0.236747i
\(891\) 0 0
\(892\) 480.069 + 1450.54i 0.538194 + 1.62616i
\(893\) −8.37069 3.04668i −0.00937367 0.00341174i
\(894\) 0 0
\(895\) −251.341 + 299.536i −0.280827 + 0.334677i
\(896\) 431.655 + 312.540i 0.481758 + 0.348817i
\(897\) 0 0
\(898\) 325.333 + 281.254i 0.362286 + 0.313201i
\(899\) 742.362 428.603i 0.825765 0.476755i
\(900\) 0 0
\(901\) 384.150 665.367i 0.426359 0.738476i
\(902\) −742.319 2136.91i −0.822970 2.36908i
\(903\) 0 0
\(904\) −656.696 602.412i −0.726433 0.666385i
\(905\) 445.784 162.252i 0.492579 0.179284i
\(906\) 0 0
\(907\) −131.754 + 23.2317i −0.145263 + 0.0256138i −0.245807 0.969319i \(-0.579053\pi\)
0.100544 + 0.994933i \(0.467942\pi\)
\(908\) −627.363 129.779i −0.690929 0.142928i
\(909\) 0 0
\(910\) −618.540 759.590i −0.679715 0.834714i
\(911\) 264.618 + 315.359i 0.290469 + 0.346168i 0.891469 0.453081i \(-0.149675\pi\)
−0.601000 + 0.799249i \(0.705231\pi\)
\(912\) 0 0
\(913\) 327.356 1856.53i 0.358550 2.03344i
\(914\) −798.194 + 1336.66i −0.873298 + 1.46243i
\(915\) 0 0
\(916\) −932.985 27.4874i −1.01854 0.0300081i
\(917\) 265.934 0.290004
\(918\) 0 0
\(919\) 651.417i 0.708832i −0.935088 0.354416i \(-0.884680\pi\)
0.935088 0.354416i \(-0.115320\pi\)
\(920\) 961.762 126.083i 1.04539 0.137047i
\(921\) 0 0
\(922\) −45.4258 + 76.0702i −0.0492687 + 0.0825057i
\(923\) 1383.25 + 243.904i 1.49864 + 0.264251i
\(924\) 0 0
\(925\) −242.850 + 203.775i −0.262540 + 0.220297i
\(926\) −1032.16 1267.53i −1.11464 1.36882i
\(927\) 0 0
\(928\) 1211.15 342.290i 1.30512 0.368847i
\(929\) 155.604 + 882.473i 0.167496 + 0.949917i 0.946454 + 0.322840i \(0.104638\pi\)
−0.778958 + 0.627077i \(0.784251\pi\)
\(930\) 0 0
\(931\) 4.23011 + 11.6221i 0.00454362 + 0.0124835i
\(932\) 1342.89 1061.03i 1.44087 1.13844i
\(933\) 0 0
\(934\) −297.661 856.872i −0.318694 0.917422i
\(935\) −1775.15 1024.88i −1.89855 1.09613i
\(936\) 0 0
\(937\) −442.521 766.469i −0.472275 0.818003i 0.527222 0.849727i \(-0.323234\pi\)
−0.999497 + 0.0317240i \(0.989900\pi\)
\(938\) 331.280 + 286.396i 0.353177 + 0.305326i
\(939\) 0 0
\(940\) −659.845 + 96.4074i −0.701963 + 0.102561i
\(941\) −127.082 106.635i −0.135050 0.113321i 0.572760 0.819723i \(-0.305873\pi\)
−0.707811 + 0.706402i \(0.750317\pi\)
\(942\) 0 0
\(943\) −343.177 + 942.872i −0.363921 + 0.999864i
\(944\) −798.554 1074.28i −0.845926 1.13801i
\(945\) 0 0
\(946\) −147.902 917.615i −0.156344 0.969994i
\(947\) 140.590 386.269i 0.148459 0.407887i −0.843065 0.537811i \(-0.819251\pi\)
0.991524 + 0.129924i \(0.0414735\pi\)
\(948\) 0 0
\(949\) −441.209 370.219i −0.464920 0.390114i
\(950\) −0.327083 + 22.2087i −0.000344298 + 0.0233776i
\(951\) 0 0
\(952\) −191.406 + 461.381i −0.201056 + 0.484644i
\(953\) −673.325 1166.23i −0.706532 1.22375i −0.966136 0.258034i \(-0.916925\pi\)
0.259604 0.965715i \(-0.416408\pi\)
\(954\) 0 0
\(955\) −1347.01 777.696i −1.41048 0.814342i
\(956\) 162.928 87.7736i 0.170427 0.0918134i
\(957\) 0 0
\(958\) −1072.80 + 598.494i −1.11983 + 0.624732i
\(959\) 272.434 + 748.506i 0.284081 + 0.780507i
\(960\) 0 0
\(961\) 84.3912 + 478.606i 0.0878160 + 0.498029i
\(962\) −335.381 127.693i −0.348629 0.132737i
\(963\) 0 0
\(964\) 763.099 + 679.599i 0.791597 + 0.704979i
\(965\) −83.7591 + 70.2822i −0.0867970 + 0.0728313i
\(966\) 0 0
\(967\) 714.553 + 125.995i 0.738938 + 0.130295i 0.530433 0.847727i \(-0.322029\pi\)
0.208505 + 0.978021i \(0.433140\pi\)
\(968\) 396.840 1785.41i 0.409958 1.84443i
\(969\) 0 0
\(970\) 23.0475 120.320i 0.0237603 0.124041i
\(971\) 1795.99i 1.84963i 0.380419 + 0.924814i \(0.375780\pi\)
−0.380419 + 0.924814i \(0.624220\pi\)
\(972\) 0 0
\(973\) −577.188 −0.593205
\(974\) 1297.59 + 248.556i 1.33223 + 0.255191i
\(975\) 0 0
\(976\) 396.681 + 23.3942i 0.406435 + 0.0239694i
\(977\) −132.058 + 748.936i −0.135166 + 0.766567i 0.839577 + 0.543240i \(0.182803\pi\)
−0.974744 + 0.223327i \(0.928308\pi\)
\(978\) 0 0
\(979\) −175.459 209.104i −0.179223 0.213589i
\(980\) 691.430 + 615.772i 0.705540 + 0.628339i
\(981\) 0 0
\(982\) 513.969 1349.93i 0.523390 1.37467i
\(983\) −994.218 + 175.308i −1.01141 + 0.178339i −0.654711 0.755879i \(-0.727210\pi\)
−0.356701 + 0.934219i \(0.616099\pi\)
\(984\) 0 0
\(985\) 473.302 172.268i 0.480510 0.174891i
\(986\) 574.728 + 1030.20i 0.582889 + 1.04483i
\(987\) 0 0
\(988\) −22.1354 + 11.9249i −0.0224043 + 0.0120697i
\(989\) −206.130 + 357.028i −0.208423 + 0.360999i
\(990\) 0 0
\(991\) 892.014 515.005i 0.900115 0.519682i 0.0228778 0.999738i \(-0.492717\pi\)
0.877238 + 0.480056i \(0.159384\pi\)
\(992\) 51.3077 695.542i 0.0517215 0.701151i
\(993\) 0 0
\(994\) 726.672 + 10.7022i 0.731058 + 0.0107668i
\(995\) −259.073 + 308.751i −0.260375 + 0.310302i
\(996\) 0 0
\(997\) 707.962 + 257.677i 0.710092 + 0.258452i 0.671714 0.740811i \(-0.265559\pi\)
0.0383783 + 0.999263i \(0.487781\pi\)
\(998\) 460.956 74.2972i 0.461879 0.0744461i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.3.j.a.307.14 204
3.2 odd 2 108.3.j.a.31.21 yes 204
4.3 odd 2 inner 324.3.j.a.307.21 204
12.11 even 2 108.3.j.a.31.14 yes 204
27.7 even 9 inner 324.3.j.a.19.21 204
27.20 odd 18 108.3.j.a.7.14 204
108.7 odd 18 inner 324.3.j.a.19.14 204
108.47 even 18 108.3.j.a.7.21 yes 204
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
108.3.j.a.7.14 204 27.20 odd 18
108.3.j.a.7.21 yes 204 108.47 even 18
108.3.j.a.31.14 yes 204 12.11 even 2
108.3.j.a.31.21 yes 204 3.2 odd 2
324.3.j.a.19.14 204 108.7 odd 18 inner
324.3.j.a.19.21 204 27.7 even 9 inner
324.3.j.a.307.14 204 1.1 even 1 trivial
324.3.j.a.307.21 204 4.3 odd 2 inner