Properties

Label 324.3.g.a
Level $324$
Weight $3$
Character orbit 324.g
Analytic conductor $8.828$
Analytic rank $0$
Dimension $2$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,3,Mod(53,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.53"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.g (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,-11] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 108)
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (11 \zeta_{6} - 11) q^{7} - 23 \zeta_{6} q^{13} - 37 q^{19} + (25 \zeta_{6} - 25) q^{25} + 46 \zeta_{6} q^{31} - 73 q^{37} + ( - 22 \zeta_{6} + 22) q^{43} - 72 \zeta_{6} q^{49} + (47 \zeta_{6} - 47) q^{61} + \cdots + ( - 169 \zeta_{6} + 169) q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 11 q^{7} - 23 q^{13} - 74 q^{19} - 25 q^{25} + 46 q^{31} - 146 q^{37} + 22 q^{43} - 72 q^{49} - 47 q^{61} + 13 q^{67} + 286 q^{73} - 11 q^{79} + 506 q^{91} + 169 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
53.1
0.500000 0.866025i
0.500000 + 0.866025i
0 0 0 0 0 −5.50000 9.52628i 0 0 0
269.1 0 0 0 0 0 −5.50000 + 9.52628i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 CM by \(\Q(\sqrt{-3}) \)
9.c even 3 1 inner
9.d odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 324.3.g.a 2
3.b odd 2 1 CM 324.3.g.a 2
4.b odd 2 1 1296.3.q.c 2
9.c even 3 1 108.3.c.a 1
9.c even 3 1 inner 324.3.g.a 2
9.d odd 6 1 108.3.c.a 1
9.d odd 6 1 inner 324.3.g.a 2
12.b even 2 1 1296.3.q.c 2
36.f odd 6 1 432.3.e.a 1
36.f odd 6 1 1296.3.q.c 2
36.h even 6 1 432.3.e.a 1
36.h even 6 1 1296.3.q.c 2
45.h odd 6 1 2700.3.g.b 1
45.j even 6 1 2700.3.g.b 1
45.k odd 12 2 2700.3.b.d 2
45.l even 12 2 2700.3.b.d 2
72.j odd 6 1 1728.3.e.c 1
72.l even 6 1 1728.3.e.b 1
72.n even 6 1 1728.3.e.c 1
72.p odd 6 1 1728.3.e.b 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
108.3.c.a 1 9.c even 3 1
108.3.c.a 1 9.d odd 6 1
324.3.g.a 2 1.a even 1 1 trivial
324.3.g.a 2 3.b odd 2 1 CM
324.3.g.a 2 9.c even 3 1 inner
324.3.g.a 2 9.d odd 6 1 inner
432.3.e.a 1 36.f odd 6 1
432.3.e.a 1 36.h even 6 1
1296.3.q.c 2 4.b odd 2 1
1296.3.q.c 2 12.b even 2 1
1296.3.q.c 2 36.f odd 6 1
1296.3.q.c 2 36.h even 6 1
1728.3.e.b 1 72.l even 6 1
1728.3.e.b 1 72.p odd 6 1
1728.3.e.c 1 72.j odd 6 1
1728.3.e.c 1 72.n even 6 1
2700.3.b.d 2 45.k odd 12 2
2700.3.b.d 2 45.l even 12 2
2700.3.g.b 1 45.h odd 6 1
2700.3.g.b 1 45.j even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(324, [\chi])\):

\( T_{5} \) Copy content Toggle raw display
\( T_{7}^{2} + 11T_{7} + 121 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 23T + 529 \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( (T + 37)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 46T + 2116 \) Copy content Toggle raw display
$37$ \( (T + 73)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 22T + 484 \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 47T + 2209 \) Copy content Toggle raw display
$67$ \( T^{2} - 13T + 169 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( (T - 143)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 11T + 121 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} \) Copy content Toggle raw display
$97$ \( T^{2} - 169T + 28561 \) Copy content Toggle raw display
show more
show less