Properties

Label 324.3.f.s.55.1
Level $324$
Weight $3$
Character 324.55
Analytic conductor $8.828$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,3,Mod(55,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.55"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.f (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5x^{14} + x^{12} + 40x^{10} - 80x^{8} + 640x^{6} + 256x^{4} - 20480x^{2} + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 55.1
Root \(-1.30766 + 1.51328i\) of defining polynomial
Character \(\chi\) \(=\) 324.55
Dual form 324.3.f.s.271.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.96437 - 0.375825i) q^{2} +(3.71751 + 1.47652i) q^{4} +(0.447399 + 0.774917i) q^{5} +(-1.36976 - 0.790831i) q^{7} +(-6.74766 - 4.29756i) q^{8} +(-0.587624 - 1.69037i) q^{10} +(-10.7156 - 6.18667i) q^{11} +(5.77492 + 10.0025i) q^{13} +(2.39350 + 2.06828i) q^{14} +(11.6398 + 10.9780i) q^{16} -26.0958 q^{17} -21.4313i q^{19} +(0.519030 + 3.54136i) q^{20} +(18.7244 + 16.1801i) q^{22} +(23.8038 - 13.7431i) q^{23} +(12.0997 - 20.9572i) q^{25} +(-7.58492 - 21.8189i) q^{26} +(-3.92442 - 4.96240i) q^{28} +(-4.74875 + 8.22508i) q^{29} +(-42.5991 + 24.5946i) q^{31} +(-18.7391 - 25.9393i) q^{32} +(51.2619 + 9.80747i) q^{34} -1.41527i q^{35} -20.4502 q^{37} +(-8.05440 + 42.0990i) q^{38} +(0.311362 - 7.15160i) q^{40} +(-2.62685 - 4.54983i) q^{41} +(-69.3777 - 40.0552i) q^{43} +(-30.7007 - 38.8209i) q^{44} +(-51.9244 + 18.0505i) q^{46} +(-52.3525 - 30.2257i) q^{47} +(-23.2492 - 40.2687i) q^{49} +(-31.6445 + 36.6205i) q^{50} +(6.69952 + 45.7110i) q^{52} -12.4121 q^{53} -11.0716i q^{55} +(5.84403 + 11.2229i) q^{56} +(12.4195 - 14.3724i) q^{58} +(26.1762 - 15.1129i) q^{59} +(28.4244 - 49.2325i) q^{61} +(92.9237 - 32.3031i) q^{62} +(27.0619 + 57.9970i) q^{64} +(-5.16738 + 8.95017i) q^{65} +(-61.1591 + 35.3102i) q^{67} +(-97.0116 - 38.5310i) q^{68} +(-0.531892 + 2.78011i) q^{70} +71.5006i q^{71} +31.9003 q^{73} +(40.1717 + 7.68568i) q^{74} +(31.6437 - 79.6710i) q^{76} +(9.78523 + 16.9485i) q^{77} +(-83.8284 - 48.3983i) q^{79} +(-3.29938 + 13.9314i) q^{80} +(3.45017 + 9.92480i) q^{82} +(21.4313 + 12.3733i) q^{83} +(-11.6752 - 20.2221i) q^{85} +(121.230 + 104.757i) q^{86} +(45.7178 + 87.7967i) q^{88} +68.1254 q^{89} -18.2679i q^{91} +(108.783 - 15.9435i) q^{92} +(91.4802 + 79.0499i) q^{94} +(16.6075 - 9.58832i) q^{95} +(-50.4502 + 87.3823i) q^{97} +(30.5360 + 87.8404i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{4} - 100 q^{10} + 32 q^{13} + 46 q^{16} + 36 q^{22} - 48 q^{25} + 360 q^{28} + 122 q^{34} - 448 q^{37} - 154 q^{40} - 408 q^{46} + 232 q^{49} - 154 q^{52} + 86 q^{58} + 32 q^{61} - 20 q^{64}+ \cdots - 928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.96437 0.375825i −0.982186 0.187912i
\(3\) 0 0
\(4\) 3.71751 + 1.47652i 0.929378 + 0.369130i
\(5\) 0.447399 + 0.774917i 0.0894797 + 0.154983i 0.907291 0.420503i \(-0.138146\pi\)
−0.817812 + 0.575486i \(0.804813\pi\)
\(6\) 0 0
\(7\) −1.36976 0.790831i −0.195680 0.112976i 0.398959 0.916969i \(-0.369372\pi\)
−0.594639 + 0.803993i \(0.702705\pi\)
\(8\) −6.74766 4.29756i −0.843458 0.537196i
\(9\) 0 0
\(10\) −0.587624 1.69037i −0.0587624 0.169037i
\(11\) −10.7156 6.18667i −0.974148 0.562425i −0.0736499 0.997284i \(-0.523465\pi\)
−0.900498 + 0.434859i \(0.856798\pi\)
\(12\) 0 0
\(13\) 5.77492 + 10.0025i 0.444224 + 0.769419i 0.997998 0.0632482i \(-0.0201460\pi\)
−0.553773 + 0.832667i \(0.686813\pi\)
\(14\) 2.39350 + 2.06828i 0.170965 + 0.147734i
\(15\) 0 0
\(16\) 11.6398 + 10.9780i 0.727487 + 0.686122i
\(17\) −26.0958 −1.53505 −0.767525 0.641019i \(-0.778512\pi\)
−0.767525 + 0.641019i \(0.778512\pi\)
\(18\) 0 0
\(19\) 21.4313i 1.12796i −0.825788 0.563981i \(-0.809269\pi\)
0.825788 0.563981i \(-0.190731\pi\)
\(20\) 0.519030 + 3.54136i 0.0259515 + 0.177068i
\(21\) 0 0
\(22\) 18.7244 + 16.1801i 0.851108 + 0.735460i
\(23\) 23.8038 13.7431i 1.03495 0.597526i 0.116548 0.993185i \(-0.462817\pi\)
0.918398 + 0.395659i \(0.129484\pi\)
\(24\) 0 0
\(25\) 12.0997 20.9572i 0.483987 0.838290i
\(26\) −7.58492 21.8189i −0.291728 0.839188i
\(27\) 0 0
\(28\) −3.92442 4.96240i −0.140158 0.177229i
\(29\) −4.74875 + 8.22508i −0.163750 + 0.283624i −0.936211 0.351439i \(-0.885692\pi\)
0.772461 + 0.635063i \(0.219026\pi\)
\(30\) 0 0
\(31\) −42.5991 + 24.5946i −1.37416 + 0.793374i −0.991449 0.130493i \(-0.958344\pi\)
−0.382714 + 0.923867i \(0.625011\pi\)
\(32\) −18.7391 25.9393i −0.585596 0.810603i
\(33\) 0 0
\(34\) 51.2619 + 9.80747i 1.50770 + 0.288455i
\(35\) 1.41527i 0.0404362i
\(36\) 0 0
\(37\) −20.4502 −0.552707 −0.276354 0.961056i \(-0.589126\pi\)
−0.276354 + 0.961056i \(0.589126\pi\)
\(38\) −8.05440 + 42.0990i −0.211958 + 1.10787i
\(39\) 0 0
\(40\) 0.311362 7.15160i 0.00778405 0.178790i
\(41\) −2.62685 4.54983i −0.0640695 0.110972i 0.832211 0.554459i \(-0.187075\pi\)
−0.896281 + 0.443487i \(0.853741\pi\)
\(42\) 0 0
\(43\) −69.3777 40.0552i −1.61343 0.931516i −0.988567 0.150785i \(-0.951820\pi\)
−0.624867 0.780731i \(-0.714847\pi\)
\(44\) −30.7007 38.8209i −0.697744 0.882292i
\(45\) 0 0
\(46\) −51.9244 + 18.0505i −1.12879 + 0.392403i
\(47\) −52.3525 30.2257i −1.11388 0.643101i −0.174051 0.984737i \(-0.555686\pi\)
−0.939832 + 0.341636i \(0.889019\pi\)
\(48\) 0 0
\(49\) −23.2492 40.2687i −0.474473 0.821811i
\(50\) −31.6445 + 36.6205i −0.632890 + 0.732409i
\(51\) 0 0
\(52\) 6.69952 + 45.7110i 0.128837 + 0.879058i
\(53\) −12.4121 −0.234190 −0.117095 0.993121i \(-0.537358\pi\)
−0.117095 + 0.993121i \(0.537358\pi\)
\(54\) 0 0
\(55\) 11.0716i 0.201302i
\(56\) 5.84403 + 11.2229i 0.104358 + 0.200409i
\(57\) 0 0
\(58\) 12.4195 14.3724i 0.214129 0.247800i
\(59\) 26.1762 15.1129i 0.443665 0.256150i −0.261486 0.965207i \(-0.584212\pi\)
0.705151 + 0.709057i \(0.250879\pi\)
\(60\) 0 0
\(61\) 28.4244 49.2325i 0.465974 0.807091i −0.533271 0.845945i \(-0.679037\pi\)
0.999245 + 0.0388538i \(0.0123707\pi\)
\(62\) 92.9237 32.3031i 1.49877 0.521018i
\(63\) 0 0
\(64\) 27.0619 + 57.9970i 0.422842 + 0.906203i
\(65\) −5.16738 + 8.95017i −0.0794982 + 0.137695i
\(66\) 0 0
\(67\) −61.1591 + 35.3102i −0.912822 + 0.527018i −0.881338 0.472486i \(-0.843357\pi\)
−0.0314841 + 0.999504i \(0.510023\pi\)
\(68\) −97.0116 38.5310i −1.42664 0.566633i
\(69\) 0 0
\(70\) −0.531892 + 2.78011i −0.00759846 + 0.0397159i
\(71\) 71.5006i 1.00705i 0.863981 + 0.503525i \(0.167964\pi\)
−0.863981 + 0.503525i \(0.832036\pi\)
\(72\) 0 0
\(73\) 31.9003 0.436991 0.218495 0.975838i \(-0.429885\pi\)
0.218495 + 0.975838i \(0.429885\pi\)
\(74\) 40.1717 + 7.68568i 0.542861 + 0.103861i
\(75\) 0 0
\(76\) 31.6437 79.6710i 0.416364 1.04830i
\(77\) 9.78523 + 16.9485i 0.127081 + 0.220111i
\(78\) 0 0
\(79\) −83.8284 48.3983i −1.06112 0.612637i −0.135377 0.990794i \(-0.543225\pi\)
−0.925742 + 0.378157i \(0.876558\pi\)
\(80\) −3.29938 + 13.9314i −0.0412422 + 0.174142i
\(81\) 0 0
\(82\) 3.45017 + 9.92480i 0.0420752 + 0.121034i
\(83\) 21.4313 + 12.3733i 0.258208 + 0.149076i 0.623517 0.781810i \(-0.285703\pi\)
−0.365309 + 0.930886i \(0.619037\pi\)
\(84\) 0 0
\(85\) −11.6752 20.2221i −0.137356 0.237907i
\(86\) 121.230 + 104.757i 1.40965 + 1.21811i
\(87\) 0 0
\(88\) 45.7178 + 87.7967i 0.519521 + 0.997690i
\(89\) 68.1254 0.765454 0.382727 0.923861i \(-0.374985\pi\)
0.382727 + 0.923861i \(0.374985\pi\)
\(90\) 0 0
\(91\) 18.2679i 0.200747i
\(92\) 108.783 15.9435i 1.18242 0.173298i
\(93\) 0 0
\(94\) 91.4802 + 79.0499i 0.973193 + 0.840957i
\(95\) 16.6075 9.58832i 0.174815 0.100930i
\(96\) 0 0
\(97\) −50.4502 + 87.3823i −0.520105 + 0.900848i 0.479622 + 0.877475i \(0.340774\pi\)
−0.999727 + 0.0233727i \(0.992560\pi\)
\(98\) 30.5360 + 87.8404i 0.311592 + 0.896331i
\(99\) 0 0
\(100\) 75.9244 60.0434i 0.759244 0.600434i
\(101\) 99.1297 171.698i 0.981482 1.69998i 0.324851 0.945765i \(-0.394686\pi\)
0.656631 0.754212i \(-0.271981\pi\)
\(102\) 0 0
\(103\) 60.5425 34.9542i 0.587791 0.339361i −0.176433 0.984313i \(-0.556456\pi\)
0.764224 + 0.644951i \(0.223122\pi\)
\(104\) 4.01899 92.3112i 0.0386441 0.887608i
\(105\) 0 0
\(106\) 24.3819 + 4.66476i 0.230018 + 0.0440072i
\(107\) 153.959i 1.43887i 0.694559 + 0.719435i \(0.255599\pi\)
−0.694559 + 0.719435i \(0.744401\pi\)
\(108\) 0 0
\(109\) 103.447 0.949054 0.474527 0.880241i \(-0.342619\pi\)
0.474527 + 0.880241i \(0.342619\pi\)
\(110\) −4.16099 + 21.7488i −0.0378272 + 0.197716i
\(111\) 0 0
\(112\) −7.26200 24.2423i −0.0648393 0.216449i
\(113\) 61.5453 + 106.600i 0.544649 + 0.943360i 0.998629 + 0.0523479i \(0.0166705\pi\)
−0.453980 + 0.891012i \(0.649996\pi\)
\(114\) 0 0
\(115\) 21.2995 + 12.2973i 0.185213 + 0.106933i
\(116\) −29.7980 + 23.5652i −0.256880 + 0.203148i
\(117\) 0 0
\(118\) −57.0997 + 19.8496i −0.483895 + 0.168217i
\(119\) 35.7450 + 20.6374i 0.300379 + 0.173424i
\(120\) 0 0
\(121\) 16.0498 + 27.7991i 0.132643 + 0.229745i
\(122\) −74.3389 + 86.0284i −0.609335 + 0.705151i
\(123\) 0 0
\(124\) −194.677 + 28.5323i −1.56998 + 0.230099i
\(125\) 44.0234 0.352187
\(126\) 0 0
\(127\) 4.74499i 0.0373621i 0.999825 + 0.0186811i \(0.00594671\pi\)
−0.999825 + 0.0186811i \(0.994053\pi\)
\(128\) −31.3629 124.098i −0.245022 0.969517i
\(129\) 0 0
\(130\) 13.5143 15.6394i 0.103957 0.120303i
\(131\) −24.9506 + 14.4052i −0.190463 + 0.109964i −0.592199 0.805792i \(-0.701740\pi\)
0.401737 + 0.915755i \(0.368407\pi\)
\(132\) 0 0
\(133\) −16.9485 + 29.3557i −0.127432 + 0.220719i
\(134\) 133.410 46.3773i 0.995594 0.346099i
\(135\) 0 0
\(136\) 176.086 + 112.149i 1.29475 + 0.824622i
\(137\) −68.7037 + 118.998i −0.501487 + 0.868601i 0.498511 + 0.866883i \(0.333880\pi\)
−0.999999 + 0.00171795i \(0.999453\pi\)
\(138\) 0 0
\(139\) 122.318 70.6204i 0.879987 0.508061i 0.00933283 0.999956i \(-0.497029\pi\)
0.870654 + 0.491896i \(0.163696\pi\)
\(140\) 2.08967 5.26127i 0.0149262 0.0375805i
\(141\) 0 0
\(142\) 26.8717 140.454i 0.189237 0.989110i
\(143\) 142.910i 0.999371i
\(144\) 0 0
\(145\) −8.49834 −0.0586093
\(146\) −62.6641 11.9889i −0.429206 0.0821160i
\(147\) 0 0
\(148\) −76.0237 30.1951i −0.513674 0.204021i
\(149\) −69.9596 121.174i −0.469528 0.813246i 0.529865 0.848082i \(-0.322242\pi\)
−0.999393 + 0.0348361i \(0.988909\pi\)
\(150\) 0 0
\(151\) 64.5152 + 37.2479i 0.427253 + 0.246675i 0.698176 0.715926i \(-0.253995\pi\)
−0.270923 + 0.962601i \(0.587329\pi\)
\(152\) −92.1022 + 144.611i −0.605936 + 0.951388i
\(153\) 0 0
\(154\) −12.8522 36.9707i −0.0834555 0.240069i
\(155\) −38.1175 22.0072i −0.245920 0.141982i
\(156\) 0 0
\(157\) 26.7749 + 46.3755i 0.170541 + 0.295385i 0.938609 0.344983i \(-0.112115\pi\)
−0.768068 + 0.640368i \(0.778782\pi\)
\(158\) 146.481 + 126.577i 0.927094 + 0.801121i
\(159\) 0 0
\(160\) 11.7170 26.1264i 0.0732311 0.163290i
\(161\) −43.4739 −0.270024
\(162\) 0 0
\(163\) 204.823i 1.25658i 0.777979 + 0.628290i \(0.216245\pi\)
−0.777979 + 0.628290i \(0.783755\pi\)
\(164\) −3.04742 20.7927i −0.0185818 0.126784i
\(165\) 0 0
\(166\) −37.4488 32.3602i −0.225595 0.194941i
\(167\) −152.234 + 87.8922i −0.911579 + 0.526300i −0.880939 0.473230i \(-0.843088\pi\)
−0.0306401 + 0.999530i \(0.509755\pi\)
\(168\) 0 0
\(169\) 17.8007 30.8317i 0.105329 0.182436i
\(170\) 15.3346 + 44.1116i 0.0902032 + 0.259480i
\(171\) 0 0
\(172\) −198.770 251.343i −1.15564 1.46130i
\(173\) −15.4863 + 26.8231i −0.0895163 + 0.155047i −0.907307 0.420469i \(-0.861865\pi\)
0.817790 + 0.575516i \(0.195199\pi\)
\(174\) 0 0
\(175\) −33.1473 + 19.1376i −0.189413 + 0.109358i
\(176\) −56.8106 189.647i −0.322788 1.07754i
\(177\) 0 0
\(178\) −133.824 25.6032i −0.751818 0.143838i
\(179\) 250.115i 1.39729i −0.715467 0.698646i \(-0.753786\pi\)
0.715467 0.698646i \(-0.246214\pi\)
\(180\) 0 0
\(181\) −263.196 −1.45412 −0.727061 0.686573i \(-0.759114\pi\)
−0.727061 + 0.686573i \(0.759114\pi\)
\(182\) −6.86554 + 35.8850i −0.0377228 + 0.197170i
\(183\) 0 0
\(184\) −219.682 9.56435i −1.19392 0.0519802i
\(185\) −9.14938 15.8472i −0.0494561 0.0856605i
\(186\) 0 0
\(187\) 279.634 + 161.446i 1.49537 + 0.863350i
\(188\) −149.992 189.664i −0.797831 1.00885i
\(189\) 0 0
\(190\) −36.2267 + 12.5935i −0.190667 + 0.0662817i
\(191\) 268.880 + 155.238i 1.40775 + 0.812764i 0.995171 0.0981584i \(-0.0312952\pi\)
0.412578 + 0.910922i \(0.364629\pi\)
\(192\) 0 0
\(193\) −88.0498 152.507i −0.456217 0.790191i 0.542541 0.840030i \(-0.317462\pi\)
−0.998757 + 0.0498390i \(0.984129\pi\)
\(194\) 131.943 152.691i 0.680120 0.787066i
\(195\) 0 0
\(196\) −26.9715 184.027i −0.137610 0.938915i
\(197\) 117.920 0.598581 0.299290 0.954162i \(-0.403250\pi\)
0.299290 + 0.954162i \(0.403250\pi\)
\(198\) 0 0
\(199\) 100.118i 0.503104i −0.967844 0.251552i \(-0.919059\pi\)
0.967844 0.251552i \(-0.0809409\pi\)
\(200\) −171.710 + 89.4133i −0.858548 + 0.447066i
\(201\) 0 0
\(202\) −259.256 + 300.023i −1.28344 + 1.48526i
\(203\) 13.0093 7.51092i 0.0640852 0.0369996i
\(204\) 0 0
\(205\) 2.35050 4.07118i 0.0114658 0.0198594i
\(206\) −132.065 + 45.9097i −0.641090 + 0.222863i
\(207\) 0 0
\(208\) −42.5876 + 179.823i −0.204748 + 0.864534i
\(209\) −132.588 + 229.650i −0.634393 + 1.09880i
\(210\) 0 0
\(211\) −7.60194 + 4.38898i −0.0360282 + 0.0208009i −0.517906 0.855438i \(-0.673288\pi\)
0.481878 + 0.876238i \(0.339955\pi\)
\(212\) −46.1420 18.3267i −0.217651 0.0864465i
\(213\) 0 0
\(214\) 57.8617 302.433i 0.270382 1.41324i
\(215\) 71.6826i 0.333407i
\(216\) 0 0
\(217\) 77.8007 0.358528
\(218\) −203.208 38.8779i −0.932147 0.178339i
\(219\) 0 0
\(220\) 16.3475 41.1589i 0.0743067 0.187086i
\(221\) −150.701 261.022i −0.681907 1.18110i
\(222\) 0 0
\(223\) 303.809 + 175.404i 1.36237 + 0.786566i 0.989939 0.141493i \(-0.0451902\pi\)
0.372433 + 0.928059i \(0.378524\pi\)
\(224\) 5.15443 + 50.3500i 0.0230108 + 0.224777i
\(225\) 0 0
\(226\) −80.8351 232.532i −0.357678 1.02890i
\(227\) −15.4606 8.92619i −0.0681084 0.0393224i 0.465559 0.885017i \(-0.345853\pi\)
−0.533668 + 0.845694i \(0.679187\pi\)
\(228\) 0 0
\(229\) 207.672 + 359.698i 0.906864 + 1.57074i 0.818395 + 0.574656i \(0.194864\pi\)
0.0884695 + 0.996079i \(0.471802\pi\)
\(230\) −37.2186 32.1613i −0.161820 0.139832i
\(231\) 0 0
\(232\) 67.3908 35.0920i 0.290478 0.151259i
\(233\) −311.712 −1.33782 −0.668909 0.743344i \(-0.733238\pi\)
−0.668909 + 0.743344i \(0.733238\pi\)
\(234\) 0 0
\(235\) 54.0918i 0.230178i
\(236\) 119.625 17.5325i 0.506885 0.0742904i
\(237\) 0 0
\(238\) −62.4605 53.9734i −0.262439 0.226779i
\(239\) −38.1175 + 22.0072i −0.159488 + 0.0920802i −0.577620 0.816306i \(-0.696018\pi\)
0.418132 + 0.908386i \(0.362685\pi\)
\(240\) 0 0
\(241\) −59.4003 + 102.884i −0.246474 + 0.426906i −0.962545 0.271122i \(-0.912605\pi\)
0.716071 + 0.698028i \(0.245939\pi\)
\(242\) −21.0802 60.6397i −0.0871084 0.250577i
\(243\) 0 0
\(244\) 178.361 141.053i 0.730987 0.578087i
\(245\) 20.8033 36.0324i 0.0849114 0.147071i
\(246\) 0 0
\(247\) 214.365 123.764i 0.867875 0.501068i
\(248\) 393.141 + 17.1163i 1.58525 + 0.0690174i
\(249\) 0 0
\(250\) −86.4784 16.5451i −0.345914 0.0661804i
\(251\) 342.026i 1.36265i −0.731980 0.681326i \(-0.761403\pi\)
0.731980 0.681326i \(-0.238597\pi\)
\(252\) 0 0
\(253\) −340.096 −1.34425
\(254\) 1.78328 9.32092i 0.00702080 0.0366965i
\(255\) 0 0
\(256\) 14.9691 + 255.562i 0.0584732 + 0.998289i
\(257\) 101.121 + 175.146i 0.393466 + 0.681503i 0.992904 0.118918i \(-0.0379427\pi\)
−0.599438 + 0.800421i \(0.704609\pi\)
\(258\) 0 0
\(259\) 28.0118 + 16.1726i 0.108154 + 0.0624426i
\(260\) −32.4249 + 25.6426i −0.124711 + 0.0986254i
\(261\) 0 0
\(262\) 54.4261 18.9202i 0.207733 0.0722144i
\(263\) −300.038 173.227i −1.14083 0.658657i −0.194192 0.980963i \(-0.562209\pi\)
−0.946635 + 0.322306i \(0.895542\pi\)
\(264\) 0 0
\(265\) −5.55315 9.61833i −0.0209553 0.0362956i
\(266\) 44.3258 51.2958i 0.166638 0.192841i
\(267\) 0 0
\(268\) −279.496 + 40.9636i −1.04289 + 0.152849i
\(269\) −123.174 −0.457896 −0.228948 0.973439i \(-0.573529\pi\)
−0.228948 + 0.973439i \(0.573529\pi\)
\(270\) 0 0
\(271\) 247.528i 0.913386i 0.889624 + 0.456693i \(0.150966\pi\)
−0.889624 + 0.456693i \(0.849034\pi\)
\(272\) −303.750 286.479i −1.11673 1.05323i
\(273\) 0 0
\(274\) 179.682 207.936i 0.655774 0.758892i
\(275\) −259.311 + 149.713i −0.942950 + 0.544412i
\(276\) 0 0
\(277\) 115.900 200.745i 0.418413 0.724712i −0.577367 0.816485i \(-0.695920\pi\)
0.995780 + 0.0917724i \(0.0292532\pi\)
\(278\) −266.819 + 92.7546i −0.959782 + 0.333650i
\(279\) 0 0
\(280\) −6.08220 + 9.54974i −0.0217222 + 0.0341062i
\(281\) −86.1134 + 149.153i −0.306453 + 0.530793i −0.977584 0.210546i \(-0.932476\pi\)
0.671130 + 0.741339i \(0.265809\pi\)
\(282\) 0 0
\(283\) 39.8596 23.0129i 0.140846 0.0813178i −0.427921 0.903816i \(-0.640754\pi\)
0.568767 + 0.822498i \(0.307420\pi\)
\(284\) −105.572 + 265.804i −0.371732 + 0.935930i
\(285\) 0 0
\(286\) −53.7091 + 280.729i −0.187794 + 0.981568i
\(287\) 8.30957i 0.0289532i
\(288\) 0 0
\(289\) 391.993 1.35638
\(290\) 16.6939 + 3.19389i 0.0575652 + 0.0110134i
\(291\) 0 0
\(292\) 118.590 + 47.1014i 0.406130 + 0.161306i
\(293\) 21.2320 + 36.7749i 0.0724642 + 0.125512i 0.899981 0.435930i \(-0.143580\pi\)
−0.827517 + 0.561441i \(0.810247\pi\)
\(294\) 0 0
\(295\) 23.4224 + 13.5230i 0.0793981 + 0.0458405i
\(296\) 137.991 + 87.8859i 0.466185 + 0.296912i
\(297\) 0 0
\(298\) 91.8866 + 264.323i 0.308344 + 0.886988i
\(299\) 274.929 + 158.731i 0.919496 + 0.530872i
\(300\) 0 0
\(301\) 63.3538 + 109.732i 0.210478 + 0.364558i
\(302\) −112.733 97.4151i −0.373289 0.322567i
\(303\) 0 0
\(304\) 235.271 249.455i 0.773919 0.820577i
\(305\) 50.8682 0.166781
\(306\) 0 0
\(307\) 304.625i 0.992264i −0.868247 0.496132i \(-0.834753\pi\)
0.868247 0.496132i \(-0.165247\pi\)
\(308\) 11.3519 + 77.4544i 0.0368568 + 0.251475i
\(309\) 0 0
\(310\) 66.6062 + 57.5558i 0.214859 + 0.185664i
\(311\) 338.155 195.234i 1.08732 0.627762i 0.154455 0.988000i \(-0.450638\pi\)
0.932861 + 0.360238i \(0.117304\pi\)
\(312\) 0 0
\(313\) −274.194 + 474.919i −0.876020 + 1.51731i −0.0203485 + 0.999793i \(0.506478\pi\)
−0.855672 + 0.517519i \(0.826856\pi\)
\(314\) −35.1668 101.161i −0.111996 0.322170i
\(315\) 0 0
\(316\) −240.172 303.696i −0.760038 0.961062i
\(317\) 284.932 493.517i 0.898841 1.55684i 0.0698622 0.997557i \(-0.477744\pi\)
0.828978 0.559281i \(-0.188923\pi\)
\(318\) 0 0
\(319\) 101.772 58.7580i 0.319034 0.184194i
\(320\) −32.8354 + 46.9185i −0.102611 + 0.146620i
\(321\) 0 0
\(322\) 85.3989 + 16.3386i 0.265214 + 0.0507409i
\(323\) 559.267i 1.73148i
\(324\) 0 0
\(325\) 279.498 0.859995
\(326\) 76.9774 402.348i 0.236127 1.23420i
\(327\) 0 0
\(328\) −1.82812 + 41.9898i −0.00557355 + 0.128018i
\(329\) 47.8069 + 82.8040i 0.145310 + 0.251684i
\(330\) 0 0
\(331\) −139.372 80.4664i −0.421063 0.243101i 0.274469 0.961596i \(-0.411498\pi\)
−0.695532 + 0.718495i \(0.744831\pi\)
\(332\) 61.4015 + 77.6417i 0.184944 + 0.233861i
\(333\) 0 0
\(334\) 332.076 115.440i 0.994238 0.345628i
\(335\) −54.7250 31.5955i −0.163358 0.0943149i
\(336\) 0 0
\(337\) −23.1512 40.0990i −0.0686978 0.118988i 0.829631 0.558313i \(-0.188551\pi\)
−0.898328 + 0.439325i \(0.855218\pi\)
\(338\) −46.5544 + 53.8749i −0.137735 + 0.159393i
\(339\) 0 0
\(340\) −13.5445 92.4147i −0.0398368 0.271808i
\(341\) 608.635 1.78485
\(342\) 0 0
\(343\) 151.046i 0.440368i
\(344\) 295.997 + 568.434i 0.860457 + 1.65242i
\(345\) 0 0
\(346\) 40.5017 46.8704i 0.117057 0.135464i
\(347\) 179.557 103.667i 0.517455 0.298753i −0.218438 0.975851i \(-0.570096\pi\)
0.735893 + 0.677098i \(0.236763\pi\)
\(348\) 0 0
\(349\) 196.746 340.774i 0.563742 0.976429i −0.433424 0.901190i \(-0.642695\pi\)
0.997166 0.0752391i \(-0.0239720\pi\)
\(350\) 72.3060 25.1358i 0.206588 0.0718165i
\(351\) 0 0
\(352\) 40.3231 + 393.888i 0.114554 + 1.11900i
\(353\) −129.501 + 224.302i −0.366858 + 0.635417i −0.989073 0.147430i \(-0.952900\pi\)
0.622214 + 0.782847i \(0.286233\pi\)
\(354\) 0 0
\(355\) −55.4070 + 31.9893i −0.156076 + 0.0901106i
\(356\) 253.257 + 100.588i 0.711396 + 0.282552i
\(357\) 0 0
\(358\) −93.9996 + 491.320i −0.262569 + 1.37240i
\(359\) 219.981i 0.612760i 0.951909 + 0.306380i \(0.0991177\pi\)
−0.951909 + 0.306380i \(0.900882\pi\)
\(360\) 0 0
\(361\) −98.2990 −0.272296
\(362\) 517.015 + 98.9156i 1.42822 + 0.273247i
\(363\) 0 0
\(364\) 26.9730 67.9113i 0.0741015 0.186569i
\(365\) 14.2722 + 24.7201i 0.0391018 + 0.0677263i
\(366\) 0 0
\(367\) −459.138 265.083i −1.25106 0.722298i −0.279738 0.960076i \(-0.590248\pi\)
−0.971319 + 0.237778i \(0.923581\pi\)
\(368\) 427.942 + 101.350i 1.16289 + 0.275407i
\(369\) 0 0
\(370\) 12.0170 + 34.5683i 0.0324784 + 0.0934279i
\(371\) 17.0016 + 9.81586i 0.0458263 + 0.0264578i
\(372\) 0 0
\(373\) −254.595 440.971i −0.682560 1.18223i −0.974197 0.225699i \(-0.927533\pi\)
0.291638 0.956529i \(-0.405800\pi\)
\(374\) −488.629 422.234i −1.30649 1.12897i
\(375\) 0 0
\(376\) 223.360 + 428.941i 0.594042 + 1.14080i
\(377\) −109.695 −0.290967
\(378\) 0 0
\(379\) 9.48997i 0.0250395i −0.999922 0.0125198i \(-0.996015\pi\)
0.999922 0.0125198i \(-0.00398527\pi\)
\(380\) 75.8957 11.1235i 0.199726 0.0292723i
\(381\) 0 0
\(382\) −469.838 405.997i −1.22994 1.06282i
\(383\) −342.979 + 198.019i −0.895507 + 0.517021i −0.875740 0.482784i \(-0.839626\pi\)
−0.0197669 + 0.999805i \(0.506292\pi\)
\(384\) 0 0
\(385\) −8.75579 + 15.1655i −0.0227423 + 0.0393909i
\(386\) 115.647 + 332.671i 0.299603 + 0.861843i
\(387\) 0 0
\(388\) −316.571 + 250.354i −0.815904 + 0.645242i
\(389\) 309.142 535.450i 0.794710 1.37648i −0.128313 0.991734i \(-0.540956\pi\)
0.923023 0.384745i \(-0.125711\pi\)
\(390\) 0 0
\(391\) −621.179 + 358.638i −1.58869 + 0.917233i
\(392\) −16.1800 + 371.635i −0.0412755 + 0.948048i
\(393\) 0 0
\(394\) −231.640 44.3174i −0.587918 0.112481i
\(395\) 86.6134i 0.219274i
\(396\) 0 0
\(397\) −377.151 −0.950003 −0.475001 0.879985i \(-0.657552\pi\)
−0.475001 + 0.879985i \(0.657552\pi\)
\(398\) −37.6267 + 196.668i −0.0945394 + 0.494141i
\(399\) 0 0
\(400\) 370.905 111.108i 0.927263 0.277770i
\(401\) 121.905 + 211.146i 0.304003 + 0.526549i 0.977039 0.213061i \(-0.0683433\pi\)
−0.673036 + 0.739610i \(0.735010\pi\)
\(402\) 0 0
\(403\) −492.012 284.063i −1.22087 0.704872i
\(404\) 622.031 491.921i 1.53968 1.21763i
\(405\) 0 0
\(406\) −28.3779 + 9.86503i −0.0698963 + 0.0242981i
\(407\) 219.136 + 126.518i 0.538419 + 0.310856i
\(408\) 0 0
\(409\) −256.349 444.009i −0.626770 1.08560i −0.988196 0.153196i \(-0.951043\pi\)
0.361426 0.932401i \(-0.382290\pi\)
\(410\) −6.14730 + 7.11393i −0.0149934 + 0.0173511i
\(411\) 0 0
\(412\) 276.678 40.5506i 0.671548 0.0984238i
\(413\) −47.8069 −0.115755
\(414\) 0 0
\(415\) 22.1433i 0.0533573i
\(416\) 151.240 337.234i 0.363557 0.810659i
\(417\) 0 0
\(418\) 346.760 401.287i 0.829570 0.960017i
\(419\) 364.016 210.165i 0.868774 0.501587i 0.00183316 0.999998i \(-0.499416\pi\)
0.866941 + 0.498412i \(0.166083\pi\)
\(420\) 0 0
\(421\) 55.4244 95.9979i 0.131649 0.228024i −0.792663 0.609660i \(-0.791306\pi\)
0.924313 + 0.381636i \(0.124639\pi\)
\(422\) 16.5825 5.76459i 0.0392951 0.0136602i
\(423\) 0 0
\(424\) 83.7525 + 53.3417i 0.197529 + 0.125806i
\(425\) −315.751 + 546.897i −0.742944 + 1.28682i
\(426\) 0 0
\(427\) −77.8693 + 44.9578i −0.182364 + 0.105288i
\(428\) −227.324 + 572.345i −0.531130 + 1.33725i
\(429\) 0 0
\(430\) −26.9401 + 140.811i −0.0626514 + 0.327468i
\(431\) 621.316i 1.44157i 0.693160 + 0.720784i \(0.256218\pi\)
−0.693160 + 0.720784i \(0.743782\pi\)
\(432\) 0 0
\(433\) 431.797 0.997223 0.498611 0.866826i \(-0.333844\pi\)
0.498611 + 0.866826i \(0.333844\pi\)
\(434\) −152.829 29.2394i −0.352142 0.0673719i
\(435\) 0 0
\(436\) 384.565 + 152.741i 0.882030 + 0.350324i
\(437\) −294.532 510.145i −0.673986 1.16738i
\(438\) 0 0
\(439\) −261.073 150.731i −0.594700 0.343350i 0.172253 0.985053i \(-0.444895\pi\)
−0.766954 + 0.641702i \(0.778229\pi\)
\(440\) −47.5811 + 74.7077i −0.108139 + 0.169790i
\(441\) 0 0
\(442\) 197.935 + 569.382i 0.447816 + 1.28820i
\(443\) −566.703 327.186i −1.27924 0.738569i −0.302530 0.953140i \(-0.597831\pi\)
−0.976708 + 0.214571i \(0.931165\pi\)
\(444\) 0 0
\(445\) 30.4792 + 52.7916i 0.0684926 + 0.118633i
\(446\) −530.873 458.738i −1.19030 1.02856i
\(447\) 0 0
\(448\) 8.79758 100.843i 0.0196375 0.225097i
\(449\) 384.567 0.856497 0.428248 0.903661i \(-0.359131\pi\)
0.428248 + 0.903661i \(0.359131\pi\)
\(450\) 0 0
\(451\) 65.0058i 0.144137i
\(452\) 71.3991 + 487.158i 0.157963 + 1.07778i
\(453\) 0 0
\(454\) 27.0157 + 23.3448i 0.0595060 + 0.0514204i
\(455\) 14.1561 8.17305i 0.0311124 0.0179627i
\(456\) 0 0
\(457\) 14.2492 24.6803i 0.0311798 0.0540050i −0.850014 0.526759i \(-0.823407\pi\)
0.881194 + 0.472754i \(0.156740\pi\)
\(458\) −272.761 784.629i −0.595549 1.71316i
\(459\) 0 0
\(460\) 61.0241 + 77.1645i 0.132661 + 0.167749i
\(461\) 226.004 391.450i 0.490247 0.849133i −0.509690 0.860358i \(-0.670240\pi\)
0.999937 + 0.0112254i \(0.00357324\pi\)
\(462\) 0 0
\(463\) −83.6919 + 48.3195i −0.180760 + 0.104362i −0.587650 0.809115i \(-0.699947\pi\)
0.406890 + 0.913477i \(0.366613\pi\)
\(464\) −145.569 + 43.6066i −0.313726 + 0.0939797i
\(465\) 0 0
\(466\) 612.317 + 117.149i 1.31399 + 0.251393i
\(467\) 197.791i 0.423536i 0.977320 + 0.211768i \(0.0679222\pi\)
−0.977320 + 0.211768i \(0.932078\pi\)
\(468\) 0 0
\(469\) 111.698 0.238161
\(470\) −20.3290 + 106.256i −0.0432533 + 0.226077i
\(471\) 0 0
\(472\) −241.577 10.5176i −0.511816 0.0222831i
\(473\) 495.617 + 858.434i 1.04782 + 1.81487i
\(474\) 0 0
\(475\) −449.140 259.311i −0.945558 0.545918i
\(476\) 102.411 + 129.498i 0.215149 + 0.272055i
\(477\) 0 0
\(478\) 83.1478 28.9047i 0.173949 0.0604702i
\(479\) −425.780 245.824i −0.888893 0.513203i −0.0153129 0.999883i \(-0.504874\pi\)
−0.873580 + 0.486680i \(0.838208\pi\)
\(480\) 0 0
\(481\) −118.098 204.552i −0.245526 0.425264i
\(482\) 155.351 179.779i 0.322305 0.372986i
\(483\) 0 0
\(484\) 18.6195 + 127.041i 0.0384701 + 0.262482i
\(485\) −90.2853 −0.186155
\(486\) 0 0
\(487\) 566.388i 1.16301i −0.813542 0.581507i \(-0.802463\pi\)
0.813542 0.581507i \(-0.197537\pi\)
\(488\) −403.378 + 210.049i −0.826595 + 0.430428i
\(489\) 0 0
\(490\) −54.4073 + 62.9626i −0.111035 + 0.128495i
\(491\) −289.007 + 166.858i −0.588608 + 0.339833i −0.764547 0.644568i \(-0.777037\pi\)
0.175939 + 0.984401i \(0.443704\pi\)
\(492\) 0 0
\(493\) 123.923 214.641i 0.251365 0.435376i
\(494\) −467.606 + 162.554i −0.946571 + 0.329057i
\(495\) 0 0
\(496\) −765.842 181.375i −1.54404 0.365675i
\(497\) 56.5449 97.9386i 0.113772 0.197060i
\(498\) 0 0
\(499\) −24.0391 + 13.8790i −0.0481745 + 0.0278135i −0.523894 0.851784i \(-0.675521\pi\)
0.475719 + 0.879597i \(0.342188\pi\)
\(500\) 163.658 + 65.0014i 0.327315 + 0.130003i
\(501\) 0 0
\(502\) −128.542 + 671.866i −0.256059 + 1.33838i
\(503\) 494.752i 0.983602i −0.870708 0.491801i \(-0.836339\pi\)
0.870708 0.491801i \(-0.163661\pi\)
\(504\) 0 0
\(505\) 177.402 0.351291
\(506\) 668.076 + 127.817i 1.32031 + 0.252602i
\(507\) 0 0
\(508\) −7.00606 + 17.6395i −0.0137915 + 0.0347235i
\(509\) −282.874 489.952i −0.555744 0.962577i −0.997845 0.0656120i \(-0.979100\pi\)
0.442101 0.896965i \(-0.354233\pi\)
\(510\) 0 0
\(511\) −43.6958 25.2278i −0.0855104 0.0493694i
\(512\) 66.6415 507.644i 0.130159 0.991493i
\(513\) 0 0
\(514\) −132.814 382.056i −0.258394 0.743299i
\(515\) 54.1732 + 31.2769i 0.105191 + 0.0607319i
\(516\) 0 0
\(517\) 373.993 + 647.776i 0.723391 + 1.25295i
\(518\) −48.9475 42.2966i −0.0944933 0.0816536i
\(519\) 0 0
\(520\) 73.3316 38.1855i 0.141022 0.0734337i
\(521\) −896.794 −1.72129 −0.860647 0.509203i \(-0.829940\pi\)
−0.860647 + 0.509203i \(0.829940\pi\)
\(522\) 0 0
\(523\) 216.764i 0.414463i 0.978292 + 0.207231i \(0.0664453\pi\)
−0.978292 + 0.207231i \(0.933555\pi\)
\(524\) −114.024 + 16.7116i −0.217602 + 0.0318924i
\(525\) 0 0
\(526\) 524.283 + 453.043i 0.996735 + 0.861299i
\(527\) 1111.66 641.817i 2.10941 1.21787i
\(528\) 0 0
\(529\) 113.246 196.148i 0.214075 0.370789i
\(530\) 7.29364 + 20.9810i 0.0137616 + 0.0395868i
\(531\) 0 0
\(532\) −106.350 + 84.1053i −0.199907 + 0.158093i
\(533\) 30.3397 52.5498i 0.0569224 0.0985926i
\(534\) 0 0
\(535\) −119.306 + 68.8811i −0.223001 + 0.128750i
\(536\) 564.429 + 24.5737i 1.05304 + 0.0458465i
\(537\) 0 0
\(538\) 241.960 + 46.2919i 0.449739 + 0.0860444i
\(539\) 575.340i 1.06742i
\(540\) 0 0
\(541\) −639.646 −1.18234 −0.591170 0.806547i \(-0.701334\pi\)
−0.591170 + 0.806547i \(0.701334\pi\)
\(542\) 93.0270 486.236i 0.171636 0.897114i
\(543\) 0 0
\(544\) 489.012 + 676.908i 0.898919 + 1.24432i
\(545\) 46.2820 + 80.1627i 0.0849211 + 0.147088i
\(546\) 0 0
\(547\) 514.201 + 296.874i 0.940039 + 0.542732i 0.889973 0.456014i \(-0.150723\pi\)
0.0500666 + 0.998746i \(0.484057\pi\)
\(548\) −431.110 + 340.935i −0.786697 + 0.622145i
\(549\) 0 0
\(550\) 565.650 196.637i 1.02845 0.357522i
\(551\) 176.274 + 101.772i 0.319916 + 0.184704i
\(552\) 0 0
\(553\) 76.5498 + 132.588i 0.138426 + 0.239762i
\(554\) −303.116 + 350.780i −0.547141 + 0.633177i
\(555\) 0 0
\(556\) 558.992 81.9272i 1.00538 0.147351i
\(557\) −426.623 −0.765929 −0.382965 0.923763i \(-0.625097\pi\)
−0.382965 + 0.923763i \(0.625097\pi\)
\(558\) 0 0
\(559\) 925.262i 1.65521i
\(560\) 15.5367 16.4734i 0.0277442 0.0294168i
\(561\) 0 0
\(562\) 225.214 260.628i 0.400737 0.463751i
\(563\) 285.960 165.099i 0.507922 0.293249i −0.224057 0.974576i \(-0.571930\pi\)
0.731979 + 0.681327i \(0.238597\pi\)
\(564\) 0 0
\(565\) −55.0706 + 95.3851i −0.0974701 + 0.168823i
\(566\) −86.9478 + 30.2257i −0.153618 + 0.0534023i
\(567\) 0 0
\(568\) 307.278 482.462i 0.540983 0.849404i
\(569\) −399.264 + 691.545i −0.701694 + 1.21537i 0.266178 + 0.963924i \(0.414239\pi\)
−0.967872 + 0.251445i \(0.919094\pi\)
\(570\) 0 0
\(571\) −694.050 + 400.710i −1.21550 + 0.701768i −0.963952 0.266077i \(-0.914272\pi\)
−0.251547 + 0.967845i \(0.580939\pi\)
\(572\) 211.009 531.270i 0.368898 0.928794i
\(573\) 0 0
\(574\) 3.12294 16.3231i 0.00544067 0.0284374i
\(575\) 665.148i 1.15678i
\(576\) 0 0
\(577\) 345.694 0.599124 0.299562 0.954077i \(-0.403160\pi\)
0.299562 + 0.954077i \(0.403160\pi\)
\(578\) −770.021 147.321i −1.33222 0.254880i
\(579\) 0 0
\(580\) −31.5927 12.5480i −0.0544702 0.0216344i
\(581\) −19.5705 33.8970i −0.0336841 0.0583425i
\(582\) 0 0
\(583\) 133.003 + 76.7894i 0.228136 + 0.131714i
\(584\) −215.253 137.094i −0.368583 0.234750i
\(585\) 0 0
\(586\) −27.8866 80.2191i −0.0475881 0.136893i
\(587\) −284.262 164.119i −0.484262 0.279589i 0.237929 0.971283i \(-0.423531\pi\)
−0.722191 + 0.691694i \(0.756865\pi\)
\(588\) 0 0
\(589\) 527.093 + 912.952i 0.894895 + 1.55000i
\(590\) −40.9281 35.3668i −0.0693697 0.0599438i
\(591\) 0 0
\(592\) −238.036 224.501i −0.402087 0.379225i
\(593\) −529.415 −0.892774 −0.446387 0.894840i \(-0.647289\pi\)
−0.446387 + 0.894840i \(0.647289\pi\)
\(594\) 0 0
\(595\) 36.9326i 0.0620716i
\(596\) −81.1605 553.761i −0.136175 0.929129i
\(597\) 0 0
\(598\) −480.409 415.131i −0.803359 0.694199i
\(599\) −697.426 + 402.659i −1.16432 + 0.672219i −0.952335 0.305054i \(-0.901325\pi\)
−0.211983 + 0.977273i \(0.567992\pi\)
\(600\) 0 0
\(601\) 55.9502 96.9085i 0.0930951 0.161245i −0.815717 0.578451i \(-0.803657\pi\)
0.908812 + 0.417206i \(0.136991\pi\)
\(602\) −83.2104 239.364i −0.138223 0.397615i
\(603\) 0 0
\(604\) 184.839 + 233.727i 0.306025 + 0.386966i
\(605\) −14.3613 + 24.8746i −0.0237378 + 0.0411150i
\(606\) 0 0
\(607\) 757.195 437.167i 1.24744 0.720209i 0.276840 0.960916i \(-0.410713\pi\)
0.970598 + 0.240707i \(0.0773793\pi\)
\(608\) −555.912 + 401.602i −0.914329 + 0.660530i
\(609\) 0 0
\(610\) −99.9240 19.1175i −0.163810 0.0313402i
\(611\) 698.204i 1.14272i
\(612\) 0 0
\(613\) −152.804 −0.249272 −0.124636 0.992203i \(-0.539776\pi\)
−0.124636 + 0.992203i \(0.539776\pi\)
\(614\) −114.486 + 598.397i −0.186459 + 0.974588i
\(615\) 0 0
\(616\) 6.80991 156.415i 0.0110551 0.253921i
\(617\) −35.7056 61.8439i −0.0578697 0.100233i 0.835639 0.549279i \(-0.185097\pi\)
−0.893509 + 0.449045i \(0.851764\pi\)
\(618\) 0 0
\(619\) 278.744 + 160.933i 0.450313 + 0.259988i 0.707962 0.706250i \(-0.249615\pi\)
−0.257649 + 0.966239i \(0.582948\pi\)
\(620\) −109.208 138.093i −0.176143 0.222731i
\(621\) 0 0
\(622\) −737.636 + 256.425i −1.18591 + 0.412259i
\(623\) −93.3155 53.8757i −0.149784 0.0864779i
\(624\) 0 0
\(625\) −282.796 489.817i −0.452473 0.783706i
\(626\) 717.106 829.868i 1.14554 1.32567i
\(627\) 0 0
\(628\) 31.0617 + 211.935i 0.0494614 + 0.337476i
\(629\) 533.664 0.848433
\(630\) 0 0
\(631\) 642.307i 1.01792i 0.860790 + 0.508960i \(0.169970\pi\)
−0.860790 + 0.508960i \(0.830030\pi\)
\(632\) 357.651 + 686.834i 0.565903 + 1.08676i
\(633\) 0 0
\(634\) −745.189 + 862.367i −1.17538 + 1.36020i
\(635\) −3.67697 + 2.12290i −0.00579051 + 0.00334315i
\(636\) 0 0
\(637\) 268.524 465.097i 0.421545 0.730137i
\(638\) −222.000 + 77.1741i −0.347963 + 0.120963i
\(639\) 0 0
\(640\) 82.1341 79.8250i 0.128335 0.124727i
\(641\) 49.5994 85.9086i 0.0773781 0.134023i −0.824740 0.565512i \(-0.808678\pi\)
0.902118 + 0.431490i \(0.142012\pi\)
\(642\) 0 0
\(643\) 443.661 256.148i 0.689986 0.398364i −0.113621 0.993524i \(-0.536245\pi\)
0.803607 + 0.595161i \(0.202912\pi\)
\(644\) −161.615 64.1900i −0.250955 0.0996740i
\(645\) 0 0
\(646\) 210.186 1098.61i 0.325366 1.70063i
\(647\) 142.728i 0.220600i 0.993898 + 0.110300i \(0.0351811\pi\)
−0.993898 + 0.110300i \(0.964819\pi\)
\(648\) 0 0
\(649\) −373.993 −0.576261
\(650\) −549.039 105.042i −0.844675 0.161604i
\(651\) 0 0
\(652\) −302.425 + 761.431i −0.463841 + 1.16784i
\(653\) −110.883 192.055i −0.169805 0.294111i 0.768546 0.639795i \(-0.220981\pi\)
−0.938351 + 0.345683i \(0.887647\pi\)
\(654\) 0 0
\(655\) −22.3257 12.8898i −0.0340851 0.0196790i
\(656\) 19.3719 81.7965i 0.0295304 0.124690i
\(657\) 0 0
\(658\) −62.7907 180.625i −0.0954266 0.274506i
\(659\) −112.969 65.2229i −0.171425 0.0989725i 0.411832 0.911260i \(-0.364889\pi\)
−0.583258 + 0.812287i \(0.698222\pi\)
\(660\) 0 0
\(661\) −358.875 621.589i −0.542927 0.940377i −0.998734 0.0502983i \(-0.983983\pi\)
0.455807 0.890078i \(-0.349351\pi\)
\(662\) 243.537 + 210.445i 0.367881 + 0.317893i
\(663\) 0 0
\(664\) −91.4357 175.593i −0.137704 0.264448i
\(665\) −30.3310 −0.0456105
\(666\) 0 0
\(667\) 261.050i 0.391380i
\(668\) −695.705 + 101.964i −1.04147 + 0.152641i
\(669\) 0 0
\(670\) 95.6259 + 82.6323i 0.142725 + 0.123332i
\(671\) −609.171 + 351.705i −0.907856 + 0.524151i
\(672\) 0 0
\(673\) −529.947 + 917.895i −0.787440 + 1.36389i 0.140091 + 0.990139i \(0.455260\pi\)
−0.927531 + 0.373747i \(0.878073\pi\)
\(674\) 30.4073 + 87.4701i 0.0451147 + 0.129778i
\(675\) 0 0
\(676\) 111.698 88.3340i 0.165233 0.130672i
\(677\) 214.576 371.656i 0.316951 0.548975i −0.662899 0.748709i \(-0.730674\pi\)
0.979850 + 0.199733i \(0.0640076\pi\)
\(678\) 0 0
\(679\) 138.209 79.7951i 0.203548 0.117519i
\(680\) −8.12525 + 186.627i −0.0119489 + 0.274452i
\(681\) 0 0
\(682\) −1195.58 228.740i −1.75306 0.335396i
\(683\) 565.979i 0.828667i −0.910125 0.414333i \(-0.864015\pi\)
0.910125 0.414333i \(-0.135985\pi\)
\(684\) 0 0
\(685\) −122.952 −0.179492
\(686\) 56.7669 296.711i 0.0827505 0.432523i
\(687\) 0 0
\(688\) −367.817 1227.86i −0.534617 1.78468i
\(689\) −71.6787 124.151i −0.104033 0.180190i
\(690\) 0 0
\(691\) 751.509 + 433.884i 1.08757 + 0.627907i 0.932928 0.360064i \(-0.117245\pi\)
0.154639 + 0.987971i \(0.450578\pi\)
\(692\) −97.1754 + 76.8493i −0.140427 + 0.111054i
\(693\) 0 0
\(694\) −391.677 + 136.159i −0.564376 + 0.196194i
\(695\) 109.450 + 63.1910i 0.157482 + 0.0909223i
\(696\) 0 0
\(697\) 68.5498 + 118.732i 0.0983498 + 0.170347i
\(698\) −514.553 + 595.464i −0.737182 + 0.853101i
\(699\) 0 0
\(700\) −151.482 + 22.2016i −0.216403 + 0.0317166i
\(701\) 405.608 0.578613 0.289307 0.957237i \(-0.406575\pi\)
0.289307 + 0.957237i \(0.406575\pi\)
\(702\) 0 0
\(703\) 438.273i 0.623432i
\(704\) 68.8235 788.898i 0.0977606 1.12059i
\(705\) 0 0
\(706\) 338.686 391.943i 0.479726 0.555161i
\(707\) −271.568 + 156.790i −0.384113 + 0.221768i
\(708\) 0 0
\(709\) −185.318 + 320.980i −0.261380 + 0.452723i −0.966609 0.256257i \(-0.917511\pi\)
0.705229 + 0.708979i \(0.250844\pi\)
\(710\) 120.862 42.0155i 0.170229 0.0591767i
\(711\) 0 0
\(712\) −459.687 292.773i −0.645628 0.411199i
\(713\) −676.012 + 1170.89i −0.948123 + 1.64220i
\(714\) 0 0
\(715\) 110.743 63.9378i 0.154886 0.0894235i
\(716\) 369.300 929.807i 0.515782 1.29861i
\(717\) 0 0
\(718\) 82.6742 432.124i 0.115145 0.601844i
\(719\) 24.6557i 0.0342916i −0.999853 0.0171458i \(-0.994542\pi\)
0.999853 0.0171458i \(-0.00545795\pi\)
\(720\) 0 0
\(721\) −110.572 −0.153359
\(722\) 193.096 + 36.9432i 0.267446 + 0.0511679i
\(723\) 0 0
\(724\) −978.434 388.614i −1.35143 0.536760i
\(725\) 114.917 + 199.042i 0.158506 + 0.274540i
\(726\) 0 0
\(727\) 497.628 + 287.306i 0.684495 + 0.395193i 0.801546 0.597933i \(-0.204011\pi\)
−0.117052 + 0.993126i \(0.537344\pi\)
\(728\) −78.5076 + 123.266i −0.107840 + 0.169321i
\(729\) 0 0
\(730\) −18.7454 53.9233i −0.0256786 0.0738676i
\(731\) 1810.47 + 1045.27i 2.47670 + 1.42992i
\(732\) 0 0
\(733\) 105.096 + 182.032i 0.143378 + 0.248339i 0.928767 0.370665i \(-0.120870\pi\)
−0.785388 + 0.619003i \(0.787537\pi\)
\(734\) 802.293 + 693.278i 1.09304 + 0.944520i
\(735\) 0 0
\(736\) −802.547 359.920i −1.09042 0.489021i
\(737\) 873.811 1.18563
\(738\) 0 0
\(739\) 270.937i 0.366627i −0.983055 0.183313i \(-0.941318\pi\)
0.983055 0.183313i \(-0.0586823\pi\)
\(740\) −10.6142 72.4213i −0.0143436 0.0978667i
\(741\) 0 0
\(742\) −29.7083 25.6716i −0.0400382 0.0345978i
\(743\) −402.764 + 232.536i −0.542078 + 0.312969i −0.745921 0.666035i \(-0.767990\pi\)
0.203842 + 0.979004i \(0.434657\pi\)
\(744\) 0 0
\(745\) 62.5997 108.426i 0.0840264 0.145538i
\(746\) 334.391 + 961.914i 0.448245 + 1.28943i
\(747\) 0 0
\(748\) 801.162 + 1013.06i 1.07107 + 1.35436i
\(749\) 121.756 210.887i 0.162558 0.281558i
\(750\) 0 0
\(751\) −784.590 + 452.983i −1.04473 + 0.603174i −0.921169 0.389164i \(-0.872764\pi\)
−0.123559 + 0.992337i \(0.539431\pi\)
\(752\) −277.555 926.544i −0.369089 1.23211i
\(753\) 0 0
\(754\) 215.481 + 41.2260i 0.285784 + 0.0546763i
\(755\) 66.6586i 0.0882896i
\(756\) 0 0
\(757\) −263.196 −0.347683 −0.173841 0.984774i \(-0.555618\pi\)
−0.173841 + 0.984774i \(0.555618\pi\)
\(758\) −3.56657 + 18.6418i −0.00470523 + 0.0245934i
\(759\) 0 0
\(760\) −153.268 6.67288i −0.201668 0.00878010i
\(761\) −540.155 935.576i −0.709797 1.22940i −0.964932 0.262499i \(-0.915453\pi\)
0.255136 0.966905i \(-0.417880\pi\)
\(762\) 0 0
\(763\) −141.697 81.8090i −0.185711 0.107220i
\(764\) 770.353 + 974.105i 1.00832 + 1.27501i
\(765\) 0 0
\(766\) 748.159 260.083i 0.976708 0.339534i
\(767\) 302.331 + 174.551i 0.394174 + 0.227576i
\(768\) 0 0
\(769\) −256.050 443.491i −0.332965 0.576712i 0.650127 0.759826i \(-0.274716\pi\)
−0.983092 + 0.183114i \(0.941382\pi\)
\(770\) 22.8992 26.5000i 0.0297392 0.0344156i
\(771\) 0 0
\(772\) −102.147 696.953i −0.132315 0.902789i
\(773\) 546.612 0.707130 0.353565 0.935410i \(-0.384969\pi\)
0.353565 + 0.935410i \(0.384969\pi\)
\(774\) 0 0
\(775\) 1190.35i 1.53593i
\(776\) 715.952 372.813i 0.922618 0.480429i
\(777\) 0 0
\(778\) −808.506 + 935.640i −1.03921 + 1.20262i
\(779\) −97.5087 + 56.2967i −0.125172 + 0.0722679i
\(780\) 0 0
\(781\) 442.350 766.174i 0.566390 0.981016i
\(782\) 1355.01 471.044i 1.73275 0.602358i
\(783\) 0 0
\(784\) 171.453 723.948i 0.218690 0.923403i
\(785\) −23.9581 + 41.4967i −0.0305199 + 0.0528620i
\(786\) 0 0
\(787\) 1130.11 652.469i 1.43597 0.829058i 0.438404 0.898778i \(-0.355544\pi\)
0.997567 + 0.0697202i \(0.0222107\pi\)
\(788\) 438.371 + 174.112i 0.556308 + 0.220954i
\(789\) 0 0
\(790\) −32.5515 + 170.141i −0.0412044 + 0.215368i
\(791\) 194.688i 0.246129i
\(792\) 0 0
\(793\) 656.595 0.827988
\(794\) 740.865 + 141.743i 0.933079 + 0.178517i
\(795\) 0 0
\(796\) 147.826 372.189i 0.185711 0.467574i
\(797\) −80.6972 139.772i −0.101251 0.175372i 0.810949 0.585117i \(-0.198951\pi\)
−0.912200 + 0.409744i \(0.865618\pi\)
\(798\) 0 0
\(799\) 1366.18 + 788.766i 1.70987 + 0.987192i
\(800\) −770.353 + 78.8624i −0.962941 + 0.0985781i
\(801\) 0 0
\(802\) −160.113 460.585i −0.199643 0.574295i
\(803\) −341.832 197.357i −0.425694 0.245774i
\(804\) 0 0
\(805\) −19.4502 33.6887i −0.0241617 0.0418493i
\(806\) 859.737 + 742.916i 1.06667 + 0.921733i
\(807\) 0 0
\(808\) −1406.78 + 732.542i −1.74106 + 0.906611i
\(809\) −144.054 −0.178064 −0.0890319 0.996029i \(-0.528377\pi\)
−0.0890319 + 0.996029i \(0.528377\pi\)
\(810\) 0 0
\(811\) 219.215i 0.270302i −0.990825 0.135151i \(-0.956848\pi\)
0.990825 0.135151i \(-0.0431520\pi\)
\(812\) 59.4523 8.71347i 0.0732171 0.0107309i
\(813\) 0 0
\(814\) −382.917 330.886i −0.470414 0.406494i
\(815\) −158.721 + 91.6374i −0.194749 + 0.112439i
\(816\) 0 0
\(817\) −858.434 + 1486.85i −1.05071 + 1.81989i
\(818\) 336.695 + 968.541i 0.411607 + 1.18404i
\(819\) 0 0
\(820\) 14.7492 11.6641i 0.0179868 0.0142245i
\(821\) 721.409 1249.52i 0.878696 1.52195i 0.0259228 0.999664i \(-0.491748\pi\)
0.852773 0.522282i \(-0.174919\pi\)
\(822\) 0 0
\(823\) 1087.17 627.676i 1.32098 0.762668i 0.337095 0.941471i \(-0.390556\pi\)
0.983885 + 0.178803i \(0.0572225\pi\)
\(824\) −558.738 24.3260i −0.678080 0.0295218i
\(825\) 0 0
\(826\) 93.9105 + 17.9670i 0.113693 + 0.0217518i
\(827\) 518.447i 0.626901i 0.949605 + 0.313451i \(0.101485\pi\)
−0.949605 + 0.313451i \(0.898515\pi\)
\(828\) 0 0
\(829\) 481.382 0.580678 0.290339 0.956924i \(-0.406232\pi\)
0.290339 + 0.956924i \(0.406232\pi\)
\(830\) 8.32199 43.4976i 0.0100265 0.0524068i
\(831\) 0 0
\(832\) −423.832 + 605.613i −0.509414 + 0.727900i
\(833\) 606.707 + 1050.85i 0.728340 + 1.26152i
\(834\) 0 0
\(835\) −136.218 78.6457i −0.163136 0.0941864i
\(836\) −831.980 + 657.956i −0.995191 + 0.787028i
\(837\) 0 0
\(838\) −794.048 + 276.036i −0.947552 + 0.329398i
\(839\) 545.035 + 314.676i 0.649625 + 0.375061i 0.788312 0.615275i \(-0.210955\pi\)
−0.138688 + 0.990336i \(0.544288\pi\)
\(840\) 0 0
\(841\) 375.399 + 650.210i 0.446372 + 0.773139i
\(842\) −144.953 + 167.746i −0.172153 + 0.199223i
\(843\) 0 0
\(844\) −34.7407 + 5.09168i −0.0411620 + 0.00603280i
\(845\) 31.8560 0.0376994
\(846\) 0 0
\(847\) 50.7708i 0.0599420i
\(848\) −144.474 136.259i −0.170370 0.160683i
\(849\) 0 0
\(850\) 825.790 955.642i 0.971518 1.12428i
\(851\) −486.791 + 281.049i −0.572022 + 0.330257i
\(852\) 0 0
\(853\) −399.502 + 691.957i −0.468349 + 0.811204i −0.999346 0.0361697i \(-0.988484\pi\)
0.530997 + 0.847374i \(0.321818\pi\)
\(854\) 169.860 59.0487i 0.198900 0.0691437i
\(855\) 0 0
\(856\) 661.650 1038.86i 0.772955 1.21363i
\(857\) 414.961 718.734i 0.484202 0.838663i −0.515633 0.856810i \(-0.672443\pi\)
0.999835 + 0.0181465i \(0.00577652\pi\)
\(858\) 0 0
\(859\) 778.288 449.344i 0.906039 0.523102i 0.0268844 0.999639i \(-0.491441\pi\)
0.879155 + 0.476537i \(0.158108\pi\)
\(860\) 105.841 266.481i 0.123071 0.309861i
\(861\) 0 0
\(862\) 233.506 1220.50i 0.270888 1.41589i
\(863\) 604.060i 0.699953i 0.936758 + 0.349977i \(0.113810\pi\)
−0.936758 + 0.349977i \(0.886190\pi\)
\(864\) 0 0
\(865\) −27.7142 −0.0320396
\(866\) −848.210 162.280i −0.979458 0.187390i
\(867\) 0 0
\(868\) 289.225 + 114.874i 0.333208 + 0.132343i
\(869\) 598.849 + 1037.24i 0.689125 + 1.19360i
\(870\) 0 0
\(871\) −706.377 407.827i −0.810996 0.468229i
\(872\) −698.024 444.570i −0.800487 0.509827i
\(873\) 0 0
\(874\) 386.846 + 1112.81i 0.442615 + 1.27323i
\(875\) −60.3015 34.8151i −0.0689160 0.0397887i
\(876\) 0 0
\(877\) 55.2700 + 95.7304i 0.0630216 + 0.109157i 0.895815 0.444428i \(-0.146593\pi\)
−0.832793 + 0.553584i \(0.813260\pi\)
\(878\) 456.197 + 394.209i 0.519587 + 0.448985i
\(879\) 0 0
\(880\) 121.544 128.871i 0.138118 0.146445i
\(881\) 1020.91 1.15881 0.579407 0.815039i \(-0.303284\pi\)
0.579407 + 0.815039i \(0.303284\pi\)
\(882\) 0 0
\(883\) 194.702i 0.220501i 0.993904 + 0.110250i \(0.0351653\pi\)
−0.993904 + 0.110250i \(0.964835\pi\)
\(884\) −174.830 1192.87i −0.197771 1.34940i
\(885\) 0 0
\(886\) 990.250 + 855.696i 1.11766 + 0.965797i
\(887\) 830.680 479.593i 0.936505 0.540692i 0.0476422 0.998864i \(-0.484829\pi\)
0.888863 + 0.458173i \(0.151496\pi\)
\(888\) 0 0
\(889\) 3.75248 6.49949i 0.00422102 0.00731101i
\(890\) −40.0321 115.157i −0.0449799 0.129390i
\(891\) 0 0
\(892\) 870.426 + 1100.65i 0.975814 + 1.23391i
\(893\) −647.776 + 1121.98i −0.725393 + 1.25642i
\(894\) 0 0
\(895\) 193.819 111.901i 0.216557 0.125029i
\(896\) −55.1811 + 194.787i −0.0615861 + 0.217397i
\(897\) 0 0
\(898\) −755.433 144.530i −0.841239 0.160946i
\(899\) 467.175i 0.519660i
\(900\) 0 0
\(901\) 323.904 0.359493
\(902\) 24.4308 127.696i 0.0270851 0.141569i
\(903\) 0 0
\(904\) 42.8318 983.794i 0.0473803 1.08827i
\(905\) −117.754 203.955i −0.130114 0.225365i
\(906\) 0 0
\(907\) 402.841 + 232.581i 0.444147 + 0.256428i 0.705355 0.708854i \(-0.250788\pi\)
−0.261208 + 0.965283i \(0.584121\pi\)
\(908\) −44.2953 56.0111i −0.0487834 0.0616863i
\(909\) 0 0
\(910\) −30.8796 + 10.7347i −0.0339336 + 0.0117964i
\(911\) 116.567 + 67.3003i 0.127956 + 0.0738751i 0.562612 0.826721i \(-0.309797\pi\)
−0.434656 + 0.900597i \(0.643130\pi\)
\(912\) 0 0
\(913\) −153.100 265.176i −0.167689 0.290445i
\(914\) −37.2661 + 43.1261i −0.0407726 + 0.0471839i
\(915\) 0 0
\(916\) 240.921 + 1643.81i 0.263015 + 1.79456i
\(917\) 45.5684 0.0496929
\(918\) 0 0
\(919\) 105.178i 0.114448i −0.998361 0.0572241i \(-0.981775\pi\)
0.998361 0.0572241i \(-0.0182250\pi\)
\(920\) −90.8737 174.514i −0.0987757 0.189689i
\(921\) 0 0
\(922\) −591.072 + 684.016i −0.641076 + 0.741883i
\(923\) −715.181 + 412.910i −0.774844 + 0.447356i
\(924\) 0 0
\(925\) −247.440 + 428.579i −0.267503 + 0.463329i
\(926\) 182.562 63.4640i 0.197151 0.0685357i
\(927\) 0 0
\(928\) 302.340 30.9511i 0.325798 0.0333525i
\(929\) 258.654 448.002i 0.278422 0.482241i −0.692571 0.721350i \(-0.743522\pi\)
0.970993 + 0.239109i \(0.0768554\pi\)
\(930\) 0 0
\(931\) −863.010 + 498.259i −0.926971 + 0.535187i
\(932\) −1158.79 460.248i −1.24334 0.493828i
\(933\) 0 0
\(934\) 74.3349 388.536i 0.0795877 0.415991i
\(935\) 288.924i 0.309009i
\(936\) 0 0
\(937\) 367.880 0.392615 0.196308 0.980542i \(-0.437105\pi\)
0.196308 + 0.980542i \(0.437105\pi\)
\(938\) −219.416 41.9788i −0.233919 0.0447535i
\(939\) 0 0
\(940\) 79.8676 201.087i 0.0849655 0.213922i
\(941\) −637.454 1104.10i −0.677422 1.17333i −0.975755 0.218867i \(-0.929764\pi\)
0.298333 0.954462i \(-0.403569\pi\)
\(942\) 0 0
\(943\) −125.058 72.2021i −0.132617 0.0765664i
\(944\) 470.594 + 111.451i 0.498511 + 0.118063i
\(945\) 0 0
\(946\) −650.955 1872.55i −0.688113 1.97944i
\(947\) −624.238 360.404i −0.659174 0.380574i 0.132788 0.991144i \(-0.457607\pi\)
−0.791962 + 0.610570i \(0.790940\pi\)
\(948\) 0 0
\(949\) 184.222 + 319.081i 0.194122 + 0.336229i
\(950\) 784.823 + 678.181i 0.826129 + 0.713875i
\(951\) 0 0
\(952\) −152.505 292.871i −0.160194 0.307638i
\(953\) −513.654 −0.538986 −0.269493 0.963002i \(-0.586856\pi\)
−0.269493 + 0.963002i \(0.586856\pi\)
\(954\) 0 0
\(955\) 277.813i 0.290904i
\(956\) −174.196 + 25.5306i −0.182214 + 0.0267057i
\(957\) 0 0
\(958\) 744.003 + 642.908i 0.776621 + 0.671094i
\(959\) 188.215 108.666i 0.196262 0.113312i
\(960\) 0 0
\(961\) 729.287 1263.16i 0.758884 1.31443i
\(962\) 155.113 + 446.200i 0.161240 + 0.463825i
\(963\) 0 0
\(964\) −372.732 + 294.768i −0.386652 + 0.305776i
\(965\) 78.7868 136.463i 0.0816443 0.141412i
\(966\) 0 0
\(967\) −10.1344 + 5.85110i −0.0104803 + 0.00605078i −0.505231 0.862984i \(-0.668593\pi\)
0.494751 + 0.869035i \(0.335259\pi\)
\(968\) 11.1697 256.554i 0.0115389 0.265035i
\(969\) 0 0
\(970\) 177.354 + 33.9315i 0.182839 + 0.0349809i
\(971\) 743.634i 0.765843i −0.923781 0.382922i \(-0.874918\pi\)
0.923781 0.382922i \(-0.125082\pi\)
\(972\) 0 0
\(973\) −223.395 −0.229594
\(974\) −212.862 + 1112.60i −0.218545 + 1.14230i
\(975\) 0 0
\(976\) 871.327 261.014i 0.892753 0.267433i
\(977\) 478.872 + 829.430i 0.490145 + 0.848956i 0.999936 0.0113423i \(-0.00361043\pi\)
−0.509791 + 0.860299i \(0.670277\pi\)
\(978\) 0 0
\(979\) −730.007 421.470i −0.745666 0.430510i
\(980\) 130.539 103.234i 0.133203 0.105341i
\(981\) 0 0
\(982\) 630.426 219.155i 0.641982 0.223173i
\(983\) −467.058 269.656i −0.475135 0.274320i 0.243252 0.969963i \(-0.421786\pi\)
−0.718387 + 0.695644i \(0.755119\pi\)
\(984\) 0 0
\(985\) 52.7575 + 91.3786i 0.0535609 + 0.0927701i
\(986\) −324.098 + 375.061i −0.328699 + 0.380386i
\(987\) 0 0
\(988\) 979.644 143.579i 0.991543 0.145323i
\(989\) −2201.93 −2.22642
\(990\) 0 0
\(991\) 114.353i 0.115391i −0.998334 0.0576956i \(-0.981625\pi\)
0.998334 0.0576956i \(-0.0183753\pi\)
\(992\) 1436.23 + 644.110i 1.44782 + 0.649305i
\(993\) 0 0
\(994\) −147.883 + 171.137i −0.148776 + 0.172170i
\(995\) 77.5829 44.7925i 0.0779728 0.0450176i
\(996\) 0 0
\(997\) 1.86796 3.23541i 0.00187358 0.00324514i −0.865087 0.501622i \(-0.832737\pi\)
0.866961 + 0.498377i \(0.166070\pi\)
\(998\) 52.4377 18.2290i 0.0525428 0.0182655i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.3.f.s.55.1 16
3.2 odd 2 inner 324.3.f.s.55.8 16
4.3 odd 2 inner 324.3.f.s.55.6 16
9.2 odd 6 324.3.d.h.163.3 8
9.4 even 3 inner 324.3.f.s.271.6 16
9.5 odd 6 inner 324.3.f.s.271.3 16
9.7 even 3 324.3.d.h.163.6 yes 8
12.11 even 2 inner 324.3.f.s.55.3 16
36.7 odd 6 324.3.d.h.163.5 yes 8
36.11 even 6 324.3.d.h.163.4 yes 8
36.23 even 6 inner 324.3.f.s.271.8 16
36.31 odd 6 inner 324.3.f.s.271.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.3.d.h.163.3 8 9.2 odd 6
324.3.d.h.163.4 yes 8 36.11 even 6
324.3.d.h.163.5 yes 8 36.7 odd 6
324.3.d.h.163.6 yes 8 9.7 even 3
324.3.f.s.55.1 16 1.1 even 1 trivial
324.3.f.s.55.3 16 12.11 even 2 inner
324.3.f.s.55.6 16 4.3 odd 2 inner
324.3.f.s.55.8 16 3.2 odd 2 inner
324.3.f.s.271.1 16 36.31 odd 6 inner
324.3.f.s.271.3 16 9.5 odd 6 inner
324.3.f.s.271.6 16 9.4 even 3 inner
324.3.f.s.271.8 16 36.23 even 6 inner