Properties

Label 324.3.f.s.271.4
Level $324$
Weight $3$
Character 324.271
Analytic conductor $8.828$
Analytic rank $0$
Dimension $16$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [324,3,Mod(55,324)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(324, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 4])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("324.55"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 324 = 2^{2} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 324.f (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,10,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.82836056527\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 5x^{14} + x^{12} + 40x^{10} - 80x^{8} + 640x^{6} + 256x^{4} - 20480x^{2} + 65536 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 271.4
Root \(-1.88429 + 0.670410i\) of defining polynomial
Character \(\chi\) \(=\) 324.271
Dual form 324.3.f.s.55.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.361553 + 1.96705i) q^{2} +(-3.73856 - 1.42238i) q^{4} +(-3.91150 + 6.77492i) q^{5} +(-10.7296 + 6.19472i) q^{7} +(4.14959 - 6.83966i) q^{8} +(-11.9124 - 10.1436i) q^{10} +(9.60079 - 5.54302i) q^{11} +(-1.77492 + 3.07425i) q^{13} +(-8.30601 - 23.3453i) q^{14} +(11.9536 + 10.6353i) q^{16} +8.77534 q^{17} -19.2016i q^{19} +(24.2599 - 19.7648i) q^{20} +(7.43220 + 20.8893i) q^{22} +(-0.617421 - 0.356468i) q^{23} +(-18.0997 - 31.3495i) q^{25} +(-5.40547 - 4.60285i) q^{26} +(48.9244 - 7.89776i) q^{28} +(-9.10765 - 15.7749i) q^{29} +(-9.66017 - 5.57730i) q^{31} +(-25.2421 + 19.6682i) q^{32} +(-3.17275 + 17.2615i) q^{34} -96.9226i q^{35} -35.5498 q^{37} +(37.7705 + 6.94239i) q^{38} +(30.1070 + 54.8664i) q^{40} +(6.09095 - 10.5498i) q^{41} +(-57.4086 + 33.1448i) q^{43} +(-43.7774 + 7.06689i) q^{44} +(0.924421 - 1.08561i) q^{46} +(-35.9335 + 20.7462i) q^{47} +(52.2492 - 90.4982i) q^{49} +(68.2101 - 24.2684i) q^{50} +(11.0084 - 8.96864i) q^{52} +74.7659 q^{53} +86.7261i q^{55} +(-2.15349 + 99.0922i) q^{56} +(34.3229 - 12.2117i) q^{58} +(17.9667 + 10.3731i) q^{59} +(-24.4244 - 42.3043i) q^{61} +(14.4635 - 16.9855i) q^{62} +(-29.5619 - 56.7635i) q^{64} +(-13.8852 - 24.0498i) q^{65} +(6.96889 + 4.02349i) q^{67} +(-32.8071 - 12.4819i) q^{68} +(190.652 + 35.0427i) q^{70} +87.9754i q^{71} +62.0997 q^{73} +(12.8531 - 69.9282i) q^{74} +(-27.3120 + 71.7863i) q^{76} +(-68.6750 + 118.949i) q^{77} +(-8.59076 + 4.95988i) q^{79} +(-118.810 + 39.3848i) q^{80} +(18.5498 + 15.7955i) q^{82} +(-19.2016 + 11.0860i) q^{83} +(-34.3248 + 59.4522i) q^{85} +(-44.4413 - 124.909i) q^{86} +(1.92694 - 88.6674i) q^{88} -106.231 q^{89} -43.9805i q^{91} +(1.80123 + 2.21089i) q^{92} +(-27.8169 - 78.1838i) q^{94} +(130.089 + 75.1070i) q^{95} +(-65.5498 - 113.536i) q^{97} +(159.124 + 135.497i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 10 q^{4} - 100 q^{10} + 32 q^{13} + 46 q^{16} + 36 q^{22} - 48 q^{25} + 360 q^{28} + 122 q^{34} - 448 q^{37} - 154 q^{40} - 408 q^{46} + 232 q^{49} - 154 q^{52} + 86 q^{58} + 32 q^{61} - 20 q^{64}+ \cdots - 928 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/324\mathbb{Z}\right)^\times\).

\(n\) \(163\) \(245\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.361553 + 1.96705i −0.180776 + 0.983524i
\(3\) 0 0
\(4\) −3.73856 1.42238i −0.934640 0.355596i
\(5\) −3.91150 + 6.77492i −0.782300 + 1.35498i 0.148299 + 0.988943i \(0.452620\pi\)
−0.930599 + 0.366041i \(0.880713\pi\)
\(6\) 0 0
\(7\) −10.7296 + 6.19472i −1.53280 + 0.884960i −0.533565 + 0.845759i \(0.679148\pi\)
−0.999231 + 0.0392013i \(0.987519\pi\)
\(8\) 4.14959 6.83966i 0.518698 0.854957i
\(9\) 0 0
\(10\) −11.9124 10.1436i −1.19124 1.01436i
\(11\) 9.60079 5.54302i 0.872799 0.503911i 0.00452195 0.999990i \(-0.498561\pi\)
0.868278 + 0.496079i \(0.165227\pi\)
\(12\) 0 0
\(13\) −1.77492 + 3.07425i −0.136532 + 0.236481i −0.926182 0.377078i \(-0.876929\pi\)
0.789650 + 0.613558i \(0.210262\pi\)
\(14\) −8.30601 23.3453i −0.593286 1.66752i
\(15\) 0 0
\(16\) 11.9536 + 10.6353i 0.747103 + 0.664708i
\(17\) 8.77534 0.516197 0.258098 0.966119i \(-0.416904\pi\)
0.258098 + 0.966119i \(0.416904\pi\)
\(18\) 0 0
\(19\) 19.2016i 1.01061i −0.862941 0.505305i \(-0.831380\pi\)
0.862941 0.505305i \(-0.168620\pi\)
\(20\) 24.2599 19.7648i 1.21300 0.988239i
\(21\) 0 0
\(22\) 7.43220 + 20.8893i 0.337827 + 0.949515i
\(23\) −0.617421 0.356468i −0.0268444 0.0154986i 0.486518 0.873671i \(-0.338267\pi\)
−0.513362 + 0.858172i \(0.671600\pi\)
\(24\) 0 0
\(25\) −18.0997 31.3495i −0.723987 1.25398i
\(26\) −5.40547 4.60285i −0.207903 0.177033i
\(27\) 0 0
\(28\) 48.9244 7.89776i 1.74730 0.282063i
\(29\) −9.10765 15.7749i −0.314057 0.543963i 0.665180 0.746683i \(-0.268355\pi\)
−0.979237 + 0.202721i \(0.935022\pi\)
\(30\) 0 0
\(31\) −9.66017 5.57730i −0.311618 0.179913i 0.336032 0.941851i \(-0.390915\pi\)
−0.647650 + 0.761938i \(0.724248\pi\)
\(32\) −25.2421 + 19.6682i −0.788815 + 0.614630i
\(33\) 0 0
\(34\) −3.17275 + 17.2615i −0.0933162 + 0.507692i
\(35\) 96.9226i 2.76922i
\(36\) 0 0
\(37\) −35.5498 −0.960806 −0.480403 0.877048i \(-0.659510\pi\)
−0.480403 + 0.877048i \(0.659510\pi\)
\(38\) 37.7705 + 6.94239i 0.993959 + 0.182694i
\(39\) 0 0
\(40\) 30.1070 + 54.8664i 0.752676 + 1.37166i
\(41\) 6.09095 10.5498i 0.148560 0.257313i −0.782136 0.623108i \(-0.785870\pi\)
0.930695 + 0.365795i \(0.119203\pi\)
\(42\) 0 0
\(43\) −57.4086 + 33.1448i −1.33508 + 0.770810i −0.986074 0.166309i \(-0.946815\pi\)
−0.349009 + 0.937119i \(0.613482\pi\)
\(44\) −43.7774 + 7.06689i −0.994942 + 0.160611i
\(45\) 0 0
\(46\) 0.924421 1.08561i 0.0200961 0.0236003i
\(47\) −35.9335 + 20.7462i −0.764542 + 0.441409i −0.830924 0.556386i \(-0.812188\pi\)
0.0663819 + 0.997794i \(0.478854\pi\)
\(48\) 0 0
\(49\) 52.2492 90.4982i 1.06631 1.84690i
\(50\) 68.2101 24.2684i 1.36420 0.485368i
\(51\) 0 0
\(52\) 11.0084 8.96864i 0.211700 0.172474i
\(53\) 74.7659 1.41068 0.705339 0.708870i \(-0.250795\pi\)
0.705339 + 0.708870i \(0.250795\pi\)
\(54\) 0 0
\(55\) 86.7261i 1.57684i
\(56\) −2.15349 + 99.0922i −0.0384553 + 1.76950i
\(57\) 0 0
\(58\) 34.3229 12.2117i 0.591775 0.210547i
\(59\) 17.9667 + 10.3731i 0.304521 + 0.175815i 0.644472 0.764628i \(-0.277077\pi\)
−0.339951 + 0.940443i \(0.610410\pi\)
\(60\) 0 0
\(61\) −24.4244 42.3043i −0.400400 0.693514i 0.593374 0.804927i \(-0.297796\pi\)
−0.993774 + 0.111413i \(0.964462\pi\)
\(62\) 14.4635 16.9855i 0.233282 0.273960i
\(63\) 0 0
\(64\) −29.5619 56.7635i −0.461904 0.886930i
\(65\) −13.8852 24.0498i −0.213618 0.369997i
\(66\) 0 0
\(67\) 6.96889 + 4.02349i 0.104013 + 0.0600521i 0.551104 0.834436i \(-0.314207\pi\)
−0.447091 + 0.894489i \(0.647540\pi\)
\(68\) −32.8071 12.4819i −0.482458 0.183557i
\(69\) 0 0
\(70\) 190.652 + 35.0427i 2.72359 + 0.500609i
\(71\) 87.9754i 1.23909i 0.784961 + 0.619545i \(0.212683\pi\)
−0.784961 + 0.619545i \(0.787317\pi\)
\(72\) 0 0
\(73\) 62.0997 0.850680 0.425340 0.905034i \(-0.360154\pi\)
0.425340 + 0.905034i \(0.360154\pi\)
\(74\) 12.8531 69.9282i 0.173691 0.944976i
\(75\) 0 0
\(76\) −27.3120 + 71.7863i −0.359369 + 0.944556i
\(77\) −68.6750 + 118.949i −0.891883 + 1.54479i
\(78\) 0 0
\(79\) −8.59076 + 4.95988i −0.108744 + 0.0627833i −0.553386 0.832925i \(-0.686664\pi\)
0.444642 + 0.895709i \(0.353331\pi\)
\(80\) −118.810 + 39.3848i −1.48513 + 0.492311i
\(81\) 0 0
\(82\) 18.5498 + 15.7955i 0.226217 + 0.192628i
\(83\) −19.2016 + 11.0860i −0.231344 + 0.133567i −0.611192 0.791482i \(-0.709310\pi\)
0.379848 + 0.925049i \(0.375976\pi\)
\(84\) 0 0
\(85\) −34.3248 + 59.4522i −0.403821 + 0.699438i
\(86\) −44.4413 124.909i −0.516759 1.45243i
\(87\) 0 0
\(88\) 1.92694 88.6674i 0.0218971 1.00758i
\(89\) −106.231 −1.19360 −0.596801 0.802389i \(-0.703562\pi\)
−0.596801 + 0.802389i \(0.703562\pi\)
\(90\) 0 0
\(91\) 43.9805i 0.483302i
\(92\) 1.80123 + 2.21089i 0.0195786 + 0.0240314i
\(93\) 0 0
\(94\) −27.8169 78.1838i −0.295925 0.831742i
\(95\) 130.089 + 75.1070i 1.36936 + 0.790600i
\(96\) 0 0
\(97\) −65.5498 113.536i −0.675771 1.17047i −0.976243 0.216680i \(-0.930477\pi\)
0.300471 0.953791i \(-0.402856\pi\)
\(98\) 159.124 + 135.497i 1.62371 + 1.38262i
\(99\) 0 0
\(100\) 23.0756 + 142.947i 0.230756 + 1.42947i
\(101\) −22.9195 39.6977i −0.226925 0.393046i 0.729970 0.683479i \(-0.239534\pi\)
−0.956895 + 0.290433i \(0.906201\pi\)
\(102\) 0 0
\(103\) −173.812 100.350i −1.68750 0.974276i −0.956427 0.291971i \(-0.905689\pi\)
−0.731068 0.682305i \(-0.760978\pi\)
\(104\) 13.6616 + 24.8967i 0.131362 + 0.239391i
\(105\) 0 0
\(106\) −27.0318 + 147.068i −0.255017 + 1.38744i
\(107\) 90.1142i 0.842189i 0.907017 + 0.421094i \(0.138354\pi\)
−0.907017 + 0.421094i \(0.861646\pi\)
\(108\) 0 0
\(109\) −183.447 −1.68300 −0.841499 0.540258i \(-0.818327\pi\)
−0.841499 + 0.540258i \(0.818327\pi\)
\(110\) −170.594 31.3561i −1.55086 0.285055i
\(111\) 0 0
\(112\) −194.140 40.0631i −1.73340 0.357706i
\(113\) 44.1098 76.4003i 0.390352 0.676109i −0.602144 0.798387i \(-0.705687\pi\)
0.992496 + 0.122278i \(0.0390201\pi\)
\(114\) 0 0
\(115\) 4.83008 2.78865i 0.0420007 0.0242491i
\(116\) 11.6115 + 71.9300i 0.100099 + 0.620087i
\(117\) 0 0
\(118\) −26.9003 + 31.5910i −0.227969 + 0.267721i
\(119\) −94.1557 + 54.3608i −0.791224 + 0.456813i
\(120\) 0 0
\(121\) 0.950166 1.64574i 0.00785261 0.0136011i
\(122\) 92.0454 32.7488i 0.754470 0.268432i
\(123\) 0 0
\(124\) 28.1820 + 34.5915i 0.227275 + 0.278964i
\(125\) 87.6124 0.700899
\(126\) 0 0
\(127\) 37.1683i 0.292664i −0.989236 0.146332i \(-0.953253\pi\)
0.989236 0.146332i \(-0.0467468\pi\)
\(128\) 122.345 37.6266i 0.955818 0.293958i
\(129\) 0 0
\(130\) 52.3274 18.6175i 0.402519 0.143212i
\(131\) −101.904 58.8344i −0.777895 0.449118i 0.0577889 0.998329i \(-0.481595\pi\)
−0.835684 + 0.549211i \(0.814928\pi\)
\(132\) 0 0
\(133\) 118.949 + 206.025i 0.894350 + 1.54906i
\(134\) −10.4340 + 12.2534i −0.0778659 + 0.0914436i
\(135\) 0 0
\(136\) 36.4140 60.0203i 0.267750 0.441326i
\(137\) 18.4743 + 31.9983i 0.134849 + 0.233565i 0.925540 0.378651i \(-0.123612\pi\)
−0.790691 + 0.612215i \(0.790279\pi\)
\(138\) 0 0
\(139\) −13.9378 8.04699i −0.100272 0.0578920i 0.449025 0.893519i \(-0.351771\pi\)
−0.549297 + 0.835627i \(0.685105\pi\)
\(140\) −137.861 + 362.351i −0.984723 + 2.58822i
\(141\) 0 0
\(142\) −173.052 31.8078i −1.21868 0.223998i
\(143\) 39.3536i 0.275200i
\(144\) 0 0
\(145\) 142.498 0.982747
\(146\) −22.4523 + 122.153i −0.153783 + 0.836665i
\(147\) 0 0
\(148\) 132.905 + 50.5655i 0.898008 + 0.341659i
\(149\) 4.14168 7.17359i 0.0277965 0.0481449i −0.851793 0.523879i \(-0.824484\pi\)
0.879589 + 0.475734i \(0.157818\pi\)
\(150\) 0 0
\(151\) 181.333 104.693i 1.20088 0.693330i 0.240132 0.970740i \(-0.422809\pi\)
0.960752 + 0.277410i \(0.0894761\pi\)
\(152\) −131.332 79.6786i −0.864028 0.524202i
\(153\) 0 0
\(154\) −209.148 178.093i −1.35810 1.15645i
\(155\) 75.5715 43.6312i 0.487558 0.281492i
\(156\) 0 0
\(157\) 19.2251 33.2988i 0.122453 0.212094i −0.798282 0.602284i \(-0.794257\pi\)
0.920734 + 0.390190i \(0.127591\pi\)
\(158\) −6.65031 18.6917i −0.0420906 0.118302i
\(159\) 0 0
\(160\) −34.5157 247.945i −0.215723 1.54966i
\(161\) 8.83289 0.0548626
\(162\) 0 0
\(163\) 266.353i 1.63406i 0.576592 + 0.817032i \(0.304382\pi\)
−0.576592 + 0.817032i \(0.695618\pi\)
\(164\) −37.7773 + 30.7775i −0.230349 + 0.187668i
\(165\) 0 0
\(166\) −14.8644 41.7786i −0.0895445 0.251679i
\(167\) −257.091 148.432i −1.53947 0.888813i −0.998870 0.0475320i \(-0.984864\pi\)
−0.540599 0.841281i \(-0.681802\pi\)
\(168\) 0 0
\(169\) 78.1993 + 135.445i 0.462718 + 0.801451i
\(170\) −104.535 89.0136i −0.614913 0.523609i
\(171\) 0 0
\(172\) 261.770 42.2569i 1.52192 0.245680i
\(173\) 84.7684 + 146.823i 0.489990 + 0.848688i 0.999934 0.0115197i \(-0.00366691\pi\)
−0.509943 + 0.860208i \(0.670334\pi\)
\(174\) 0 0
\(175\) 388.403 + 224.245i 2.21945 + 1.28140i
\(176\) 173.716 + 35.8483i 0.987025 + 0.203684i
\(177\) 0 0
\(178\) 38.4080 208.961i 0.215775 1.17394i
\(179\) 15.0427i 0.0840375i 0.999117 + 0.0420188i \(0.0133789\pi\)
−0.999117 + 0.0420188i \(0.986621\pi\)
\(180\) 0 0
\(181\) 99.1960 0.548044 0.274022 0.961723i \(-0.411646\pi\)
0.274022 + 0.961723i \(0.411646\pi\)
\(182\) 86.5117 + 15.9013i 0.475339 + 0.0873696i
\(183\) 0 0
\(184\) −5.00016 + 2.74375i −0.0271748 + 0.0149117i
\(185\) 139.053 240.847i 0.751639 1.30188i
\(186\) 0 0
\(187\) 84.2502 48.6419i 0.450536 0.260117i
\(188\) 163.849 26.4497i 0.871535 0.140690i
\(189\) 0 0
\(190\) −194.773 + 228.737i −1.02512 + 1.20388i
\(191\) 235.420 135.920i 1.23257 0.711622i 0.265001 0.964248i \(-0.414628\pi\)
0.967564 + 0.252626i \(0.0812943\pi\)
\(192\) 0 0
\(193\) −72.9502 + 126.353i −0.377980 + 0.654681i −0.990768 0.135566i \(-0.956715\pi\)
0.612788 + 0.790247i \(0.290048\pi\)
\(194\) 247.030 87.8906i 1.27335 0.453044i
\(195\) 0 0
\(196\) −324.060 + 264.015i −1.65337 + 1.34701i
\(197\) −187.202 −0.950266 −0.475133 0.879914i \(-0.657600\pi\)
−0.475133 + 0.879914i \(0.657600\pi\)
\(198\) 0 0
\(199\) 338.220i 1.69960i −0.527109 0.849798i \(-0.676724\pi\)
0.527109 0.849798i \(-0.323276\pi\)
\(200\) −289.526 6.29206i −1.44763 0.0314603i
\(201\) 0 0
\(202\) 86.3739 30.7309i 0.427593 0.152133i
\(203\) 195.442 + 112.839i 0.962771 + 0.555856i
\(204\) 0 0
\(205\) 47.6495 + 82.5314i 0.232437 + 0.402592i
\(206\) 260.236 305.615i 1.26328 1.48357i
\(207\) 0 0
\(208\) −53.9124 + 17.8716i −0.259194 + 0.0859213i
\(209\) −106.435 184.350i −0.509257 0.882060i
\(210\) 0 0
\(211\) 102.466 + 59.1586i 0.485619 + 0.280372i 0.722755 0.691104i \(-0.242875\pi\)
−0.237136 + 0.971476i \(0.576209\pi\)
\(212\) −279.517 106.346i −1.31848 0.501631i
\(213\) 0 0
\(214\) −177.259 32.5811i −0.828313 0.152248i
\(215\) 518.584i 2.41202i
\(216\) 0 0
\(217\) 138.199 0.636863
\(218\) 66.3257 360.849i 0.304247 1.65527i
\(219\) 0 0
\(220\) 123.358 324.231i 0.560718 1.47378i
\(221\) −15.5755 + 26.9776i −0.0704774 + 0.122070i
\(222\) 0 0
\(223\) −212.417 + 122.639i −0.952543 + 0.549951i −0.893870 0.448326i \(-0.852020\pi\)
−0.0586732 + 0.998277i \(0.518687\pi\)
\(224\) 148.998 367.399i 0.665170 1.64017i
\(225\) 0 0
\(226\) 134.335 + 114.389i 0.594403 + 0.506145i
\(227\) −27.5675 + 15.9161i −0.121443 + 0.0701151i −0.559491 0.828836i \(-0.689003\pi\)
0.438048 + 0.898952i \(0.355670\pi\)
\(228\) 0 0
\(229\) −71.6719 + 124.139i −0.312978 + 0.542094i −0.979006 0.203833i \(-0.934660\pi\)
0.666028 + 0.745927i \(0.267993\pi\)
\(230\) 3.73908 + 10.5093i 0.0162569 + 0.0456924i
\(231\) 0 0
\(232\) −145.688 3.16613i −0.627966 0.0136471i
\(233\) −329.147 −1.41265 −0.706324 0.707888i \(-0.749648\pi\)
−0.706324 + 0.707888i \(0.749648\pi\)
\(234\) 0 0
\(235\) 324.595i 1.38126i
\(236\) −52.4152 64.3361i −0.222098 0.272611i
\(237\) 0 0
\(238\) −72.8881 204.863i −0.306252 0.860769i
\(239\) 75.5715 + 43.6312i 0.316199 + 0.182557i 0.649697 0.760193i \(-0.274896\pi\)
−0.333498 + 0.942751i \(0.608229\pi\)
\(240\) 0 0
\(241\) −89.5997 155.191i −0.371783 0.643947i 0.618057 0.786133i \(-0.287920\pi\)
−0.989840 + 0.142186i \(0.954587\pi\)
\(242\) 2.89371 + 2.46404i 0.0119575 + 0.0101820i
\(243\) 0 0
\(244\) 31.1391 + 192.898i 0.127619 + 0.790566i
\(245\) 408.745 + 707.968i 1.66835 + 2.88966i
\(246\) 0 0
\(247\) 59.0304 + 34.0812i 0.238990 + 0.137981i
\(248\) −78.2325 + 42.9288i −0.315454 + 0.173100i
\(249\) 0 0
\(250\) −31.6765 + 172.338i −0.126706 + 0.689352i
\(251\) 410.968i 1.63732i 0.574278 + 0.818660i \(0.305283\pi\)
−0.574278 + 0.818660i \(0.694717\pi\)
\(252\) 0 0
\(253\) −7.90364 −0.0312397
\(254\) 73.1119 + 13.4383i 0.287842 + 0.0529068i
\(255\) 0 0
\(256\) 29.7793 + 254.262i 0.116325 + 0.993211i
\(257\) −99.3887 + 172.146i −0.386726 + 0.669830i −0.992007 0.126183i \(-0.959728\pi\)
0.605281 + 0.796012i \(0.293061\pi\)
\(258\) 0 0
\(259\) 381.435 220.221i 1.47272 0.850276i
\(260\) 17.7025 + 109.662i 0.0680864 + 0.421776i
\(261\) 0 0
\(262\) 152.574 179.179i 0.582343 0.683888i
\(263\) 268.822 155.205i 1.02214 0.590132i 0.107415 0.994214i \(-0.465743\pi\)
0.914722 + 0.404083i \(0.132409\pi\)
\(264\) 0 0
\(265\) −292.447 + 506.533i −1.10357 + 1.91144i
\(266\) −448.267 + 159.489i −1.68521 + 0.599581i
\(267\) 0 0
\(268\) −20.3307 24.9545i −0.0758607 0.0931138i
\(269\) 199.384 0.741206 0.370603 0.928791i \(-0.379151\pi\)
0.370603 + 0.928791i \(0.379151\pi\)
\(270\) 0 0
\(271\) 68.1625i 0.251522i −0.992061 0.125761i \(-0.959863\pi\)
0.992061 0.125761i \(-0.0401372\pi\)
\(272\) 104.897 + 93.3287i 0.385652 + 0.343120i
\(273\) 0 0
\(274\) −69.6217 + 24.7707i −0.254094 + 0.0904038i
\(275\) −347.542 200.654i −1.26379 0.729650i
\(276\) 0 0
\(277\) 146.100 + 253.052i 0.527436 + 0.913545i 0.999489 + 0.0319752i \(0.0101797\pi\)
−0.472053 + 0.881570i \(0.656487\pi\)
\(278\) 20.8681 24.5069i 0.0750650 0.0881543i
\(279\) 0 0
\(280\) −662.918 402.189i −2.36756 1.43639i
\(281\) −234.316 405.847i −0.833865 1.44430i −0.894951 0.446164i \(-0.852790\pi\)
0.0610867 0.998132i \(-0.480543\pi\)
\(282\) 0 0
\(283\) −11.7990 6.81214i −0.0416925 0.0240712i 0.479009 0.877810i \(-0.340996\pi\)
−0.520701 + 0.853739i \(0.674330\pi\)
\(284\) 125.135 328.901i 0.440616 1.15810i
\(285\) 0 0
\(286\) −77.4105 14.2284i −0.270666 0.0497497i
\(287\) 150.927i 0.525878i
\(288\) 0 0
\(289\) −211.993 −0.733541
\(290\) −51.5207 + 280.301i −0.177658 + 0.966556i
\(291\) 0 0
\(292\) −232.163 88.3296i −0.795080 0.302499i
\(293\) 16.8731 29.2251i 0.0575874 0.0997443i −0.835795 0.549042i \(-0.814993\pi\)
0.893382 + 0.449298i \(0.148326\pi\)
\(294\) 0 0
\(295\) −140.554 + 81.1488i −0.476454 + 0.275081i
\(296\) −147.517 + 243.149i −0.498369 + 0.821449i
\(297\) 0 0
\(298\) 12.6134 + 10.7405i 0.0423267 + 0.0360420i
\(299\) 2.19174 1.26540i 0.00733024 0.00423212i
\(300\) 0 0
\(301\) 410.646 711.260i 1.36427 2.36299i
\(302\) 140.374 + 394.543i 0.464816 + 1.30644i
\(303\) 0 0
\(304\) 204.215 229.529i 0.671761 0.755030i
\(305\) 382.145 1.25293
\(306\) 0 0
\(307\) 141.264i 0.460144i 0.973174 + 0.230072i \(0.0738962\pi\)
−0.973174 + 0.230072i \(0.926104\pi\)
\(308\) 425.936 347.014i 1.38291 1.12667i
\(309\) 0 0
\(310\) 58.5016 + 164.428i 0.188715 + 0.530412i
\(311\) −344.394 198.836i −1.10738 0.639343i −0.169227 0.985577i \(-0.554127\pi\)
−0.938148 + 0.346234i \(0.887460\pi\)
\(312\) 0 0
\(313\) 239.194 + 414.297i 0.764199 + 1.32363i 0.940669 + 0.339326i \(0.110199\pi\)
−0.176470 + 0.984306i \(0.556468\pi\)
\(314\) 58.5495 + 49.8560i 0.186463 + 0.158777i
\(315\) 0 0
\(316\) 39.1719 6.32344i 0.123962 0.0200109i
\(317\) −111.727 193.517i −0.352452 0.610465i 0.634226 0.773147i \(-0.281319\pi\)
−0.986679 + 0.162682i \(0.947985\pi\)
\(318\) 0 0
\(319\) −174.881 100.968i −0.548218 0.316514i
\(320\) 500.199 + 21.7512i 1.56312 + 0.0679724i
\(321\) 0 0
\(322\) −3.19356 + 17.3747i −0.00991787 + 0.0539587i
\(323\) 168.500i 0.521673i
\(324\) 0 0
\(325\) 128.502 0.395390
\(326\) −523.928 96.3005i −1.60714 0.295400i
\(327\) 0 0
\(328\) −46.8824 85.4375i −0.142934 0.260480i
\(329\) 257.034 445.196i 0.781258 1.35318i
\(330\) 0 0
\(331\) −281.660 + 162.617i −0.850937 + 0.491289i −0.860967 0.508661i \(-0.830141\pi\)
0.0100298 + 0.999950i \(0.496807\pi\)
\(332\) 87.5549 14.1338i 0.263720 0.0425716i
\(333\) 0 0
\(334\) 384.924 452.045i 1.15247 1.35343i
\(335\) −54.5177 + 31.4758i −0.162739 + 0.0939576i
\(336\) 0 0
\(337\) −128.849 + 223.173i −0.382341 + 0.662234i −0.991396 0.130894i \(-0.958215\pi\)
0.609056 + 0.793128i \(0.291549\pi\)
\(338\) −294.701 + 104.851i −0.871895 + 0.310211i
\(339\) 0 0
\(340\) 212.889 173.443i 0.626144 0.510125i
\(341\) −123.660 −0.362640
\(342\) 0 0
\(343\) 687.594i 2.00465i
\(344\) −11.5223 + 530.192i −0.0334950 + 1.54126i
\(345\) 0 0
\(346\) −319.456 + 113.659i −0.923284 + 0.328495i
\(347\) 377.580 + 217.996i 1.08813 + 0.628230i 0.933077 0.359677i \(-0.117113\pi\)
0.155049 + 0.987907i \(0.450446\pi\)
\(348\) 0 0
\(349\) −180.746 313.061i −0.517896 0.897023i −0.999784 0.0207898i \(-0.993382\pi\)
0.481887 0.876233i \(-0.339951\pi\)
\(350\) −581.529 + 682.932i −1.66151 + 1.95123i
\(351\) 0 0
\(352\) −133.323 + 328.747i −0.378759 + 0.933942i
\(353\) −251.550 435.698i −0.712607 1.23427i −0.963875 0.266354i \(-0.914181\pi\)
0.251269 0.967917i \(-0.419152\pi\)
\(354\) 0 0
\(355\) −596.026 344.116i −1.67895 0.969340i
\(356\) 397.149 + 151.101i 1.11559 + 0.424440i
\(357\) 0 0
\(358\) −29.5898 5.43874i −0.0826530 0.0151920i
\(359\) 221.008i 0.615621i 0.951448 + 0.307810i \(0.0995963\pi\)
−0.951448 + 0.307810i \(0.900404\pi\)
\(360\) 0 0
\(361\) −7.70099 −0.0213324
\(362\) −35.8646 + 195.123i −0.0990735 + 0.539015i
\(363\) 0 0
\(364\) −62.5571 + 164.424i −0.171860 + 0.451713i
\(365\) −242.903 + 420.720i −0.665487 + 1.15266i
\(366\) 0 0
\(367\) 291.802 168.472i 0.795100 0.459051i −0.0466548 0.998911i \(-0.514856\pi\)
0.841755 + 0.539860i \(0.181523\pi\)
\(368\) −3.58927 10.8276i −0.00975346 0.0294228i
\(369\) 0 0
\(370\) 423.483 + 360.603i 1.14455 + 0.974604i
\(371\) −802.206 + 463.154i −2.16228 + 1.24839i
\(372\) 0 0
\(373\) 228.595 395.938i 0.612854 1.06150i −0.377902 0.925845i \(-0.623355\pi\)
0.990757 0.135650i \(-0.0433121\pi\)
\(374\) 65.2201 + 183.311i 0.174385 + 0.490136i
\(375\) 0 0
\(376\) −7.21208 + 331.861i −0.0191811 + 0.882609i
\(377\) 64.6613 0.171515
\(378\) 0 0
\(379\) 74.3367i 0.196139i 0.995180 + 0.0980695i \(0.0312667\pi\)
−0.995180 + 0.0980695i \(0.968733\pi\)
\(380\) −379.515 465.829i −0.998724 1.22587i
\(381\) 0 0
\(382\) 182.244 + 512.225i 0.477079 + 1.34090i
\(383\) 493.685 + 285.029i 1.28899 + 0.744201i 0.978475 0.206367i \(-0.0661639\pi\)
0.310519 + 0.950567i \(0.399497\pi\)
\(384\) 0 0
\(385\) −537.244 930.534i −1.39544 2.41697i
\(386\) −222.168 189.180i −0.575564 0.490103i
\(387\) 0 0
\(388\) 83.5706 + 517.697i 0.215388 + 1.33427i
\(389\) 317.860 + 550.550i 0.817121 + 1.41530i 0.907795 + 0.419415i \(0.137765\pi\)
−0.0906738 + 0.995881i \(0.528902\pi\)
\(390\) 0 0
\(391\) −5.41808 3.12813i −0.0138570 0.00800033i
\(392\) −402.165 732.897i −1.02593 1.86963i
\(393\) 0 0
\(394\) 67.6836 368.236i 0.171786 0.934610i
\(395\) 77.6023i 0.196462i
\(396\) 0 0
\(397\) −482.849 −1.21624 −0.608122 0.793844i \(-0.708077\pi\)
−0.608122 + 0.793844i \(0.708077\pi\)
\(398\) 665.294 + 122.284i 1.67159 + 0.307247i
\(399\) 0 0
\(400\) 117.056 567.237i 0.292640 1.41809i
\(401\) −78.6040 + 136.146i −0.196020 + 0.339517i −0.947234 0.320542i \(-0.896135\pi\)
0.751214 + 0.660058i \(0.229468\pi\)
\(402\) 0 0
\(403\) 34.2920 19.7985i 0.0850918 0.0491278i
\(404\) 29.2204 + 181.012i 0.0723278 + 0.448051i
\(405\) 0 0
\(406\) −292.622 + 343.648i −0.720744 + 0.846423i
\(407\) −341.307 + 197.053i −0.838591 + 0.484161i
\(408\) 0 0
\(409\) −150.651 + 260.935i −0.368340 + 0.637984i −0.989306 0.145854i \(-0.953407\pi\)
0.620966 + 0.783838i \(0.286741\pi\)
\(410\) −179.571 + 63.8894i −0.437978 + 0.155828i
\(411\) 0 0
\(412\) 507.070 + 622.393i 1.23075 + 1.51066i
\(413\) −257.034 −0.622358
\(414\) 0 0
\(415\) 173.452i 0.417957i
\(416\) −15.6622 112.510i −0.0376494 0.270456i
\(417\) 0 0
\(418\) 401.108 142.710i 0.959589 0.341411i
\(419\) 419.409 + 242.146i 1.00098 + 0.577914i 0.908537 0.417804i \(-0.137200\pi\)
0.0924398 + 0.995718i \(0.470533\pi\)
\(420\) 0 0
\(421\) 2.57558 + 4.46103i 0.00611777 + 0.0105963i 0.869068 0.494693i \(-0.164719\pi\)
−0.862950 + 0.505289i \(0.831386\pi\)
\(422\) −153.415 + 180.166i −0.363542 + 0.426934i
\(423\) 0 0
\(424\) 310.248 511.373i 0.731716 1.20607i
\(425\) −158.831 275.103i −0.373719 0.647301i
\(426\) 0 0
\(427\) 524.127 + 302.605i 1.22746 + 0.708677i
\(428\) 128.177 336.897i 0.299479 0.787143i
\(429\) 0 0
\(430\) 1020.08 + 187.496i 2.37228 + 0.436036i
\(431\) 317.539i 0.736748i 0.929678 + 0.368374i \(0.120085\pi\)
−0.929678 + 0.368374i \(0.879915\pi\)
\(432\) 0 0
\(433\) 190.203 0.439267 0.219634 0.975582i \(-0.429514\pi\)
0.219634 + 0.975582i \(0.429514\pi\)
\(434\) −49.9664 + 271.845i −0.115130 + 0.626370i
\(435\) 0 0
\(436\) 685.827 + 260.932i 1.57300 + 0.598468i
\(437\) −6.84476 + 11.8555i −0.0156631 + 0.0271292i
\(438\) 0 0
\(439\) −100.879 + 58.2427i −0.229793 + 0.132671i −0.610477 0.792034i \(-0.709022\pi\)
0.380683 + 0.924705i \(0.375689\pi\)
\(440\) 593.177 + 359.877i 1.34813 + 0.817903i
\(441\) 0 0
\(442\) −47.4348 40.3916i −0.107319 0.0913837i
\(443\) 424.905 245.319i 0.959153 0.553767i 0.0632405 0.997998i \(-0.479856\pi\)
0.895912 + 0.444231i \(0.146523\pi\)
\(444\) 0 0
\(445\) 415.521 719.703i 0.933755 1.61731i
\(446\) −164.437 462.175i −0.368693 1.03627i
\(447\) 0 0
\(448\) 668.821 + 425.921i 1.49290 + 0.950716i
\(449\) −155.936 −0.347297 −0.173649 0.984808i \(-0.555556\pi\)
−0.173649 + 0.984808i \(0.555556\pi\)
\(450\) 0 0
\(451\) 135.049i 0.299444i
\(452\) −273.578 + 222.886i −0.605260 + 0.493111i
\(453\) 0 0
\(454\) −21.3407 59.9812i −0.0470059 0.132117i
\(455\) 297.964 + 172.030i 0.654866 + 0.378087i
\(456\) 0 0
\(457\) −61.2492 106.087i −0.134024 0.232137i 0.791200 0.611558i \(-0.209457\pi\)
−0.925224 + 0.379420i \(0.876123\pi\)
\(458\) −218.275 185.865i −0.476583 0.405819i
\(459\) 0 0
\(460\) −22.0241 + 3.55530i −0.0478785 + 0.00772891i
\(461\) 234.722 + 406.550i 0.509158 + 0.881887i 0.999944 + 0.0106068i \(0.00337630\pi\)
−0.490786 + 0.871280i \(0.663290\pi\)
\(462\) 0 0
\(463\) −331.547 191.419i −0.716085 0.413432i 0.0972250 0.995262i \(-0.469003\pi\)
−0.813310 + 0.581831i \(0.802337\pi\)
\(464\) 58.9019 285.431i 0.126944 0.615152i
\(465\) 0 0
\(466\) 119.004 647.448i 0.255374 1.38937i
\(467\) 253.232i 0.542253i −0.962544 0.271127i \(-0.912604\pi\)
0.962544 0.271127i \(-0.0873962\pi\)
\(468\) 0 0
\(469\) −99.6977 −0.212575
\(470\) 638.495 + 117.358i 1.35850 + 0.249699i
\(471\) 0 0
\(472\) 145.503 79.8423i 0.308269 0.169157i
\(473\) −367.445 + 636.434i −0.776840 + 1.34553i
\(474\) 0 0
\(475\) −601.961 + 347.542i −1.26729 + 0.731668i
\(476\) 429.329 69.3055i 0.901951 0.145600i
\(477\) 0 0
\(478\) −113.148 + 132.878i −0.236711 + 0.277987i
\(479\) −716.139 + 413.463i −1.49507 + 0.863179i −0.999984 0.00566464i \(-0.998197\pi\)
−0.495086 + 0.868844i \(0.664864\pi\)
\(480\) 0 0
\(481\) 63.0980 109.289i 0.131181 0.227212i
\(482\) 337.664 120.137i 0.700547 0.249247i
\(483\) 0 0
\(484\) −5.89312 + 4.80118i −0.0121759 + 0.00991979i
\(485\) 1025.59 2.11462
\(486\) 0 0
\(487\) 320.932i 0.658997i 0.944156 + 0.329499i \(0.106880\pi\)
−0.944156 + 0.329499i \(0.893120\pi\)
\(488\) −390.698 8.49075i −0.800612 0.0173991i
\(489\) 0 0
\(490\) −1540.39 + 548.054i −3.14365 + 1.11848i
\(491\) −486.615 280.947i −0.991069 0.572194i −0.0854754 0.996340i \(-0.527241\pi\)
−0.905594 + 0.424146i \(0.860574\pi\)
\(492\) 0 0
\(493\) −79.9228 138.430i −0.162115 0.280792i
\(494\) −88.3821 + 103.794i −0.178911 + 0.210108i
\(495\) 0 0
\(496\) −56.1578 169.408i −0.113221 0.341549i
\(497\) −544.983 943.939i −1.09655 1.89927i
\(498\) 0 0
\(499\) −26.2892 15.1781i −0.0526838 0.0304170i 0.473427 0.880833i \(-0.343017\pi\)
−0.526111 + 0.850416i \(0.676350\pi\)
\(500\) −327.544 124.619i −0.655088 0.249237i
\(501\) 0 0
\(502\) −808.393 148.587i −1.61034 0.295989i
\(503\) 12.8329i 0.0255126i −0.999919 0.0127563i \(-0.995939\pi\)
0.999919 0.0127563i \(-0.00406057\pi\)
\(504\) 0 0
\(505\) 358.598 0.710095
\(506\) 2.85759 15.5468i 0.00564740 0.0307250i
\(507\) 0 0
\(508\) −52.8677 + 138.956i −0.104070 + 0.273535i
\(509\) −378.770 + 656.048i −0.744145 + 1.28890i 0.206449 + 0.978457i \(0.433809\pi\)
−0.950593 + 0.310439i \(0.899524\pi\)
\(510\) 0 0
\(511\) −666.303 + 384.690i −1.30392 + 0.752818i
\(512\) −510.913 33.3518i −0.997876 0.0651403i
\(513\) 0 0
\(514\) −302.686 257.742i −0.588883 0.501444i
\(515\) 1359.73 785.041i 2.64025 1.52435i
\(516\) 0 0
\(517\) −229.993 + 398.360i −0.444861 + 0.770523i
\(518\) 295.277 + 829.922i 0.570033 + 1.60217i
\(519\) 0 0
\(520\) −222.110 4.82696i −0.427135 0.00928261i
\(521\) −495.775 −0.951584 −0.475792 0.879558i \(-0.657838\pi\)
−0.475792 + 0.879558i \(0.657838\pi\)
\(522\) 0 0
\(523\) 359.891i 0.688128i 0.938946 + 0.344064i \(0.111804\pi\)
−0.938946 + 0.344064i \(0.888196\pi\)
\(524\) 297.290 + 364.903i 0.567347 + 0.696380i
\(525\) 0 0
\(526\) 208.101 + 584.901i 0.395630 + 1.11198i
\(527\) −84.7713 48.9427i −0.160856 0.0928704i
\(528\) 0 0
\(529\) −264.246 457.687i −0.499520 0.865193i
\(530\) −890.640 758.396i −1.68045 1.43093i
\(531\) 0 0
\(532\) −151.650 939.427i −0.285055 1.76584i
\(533\) 21.6219 + 37.4502i 0.0405663 + 0.0702630i
\(534\) 0 0
\(535\) −610.516 352.482i −1.14115 0.658844i
\(536\) 56.4373 30.9690i 0.105294 0.0577780i
\(537\) 0 0
\(538\) −72.0880 + 392.199i −0.133993 + 0.728994i
\(539\) 1158.47i 2.14930i
\(540\) 0 0
\(541\) −292.354 −0.540395 −0.270198 0.962805i \(-0.587089\pi\)
−0.270198 + 0.962805i \(0.587089\pi\)
\(542\) 134.079 + 24.6443i 0.247378 + 0.0454693i
\(543\) 0 0
\(544\) −221.508 + 172.595i −0.407184 + 0.317270i
\(545\) 717.552 1242.84i 1.31661 2.28044i
\(546\) 0 0
\(547\) −508.532 + 293.601i −0.929675 + 0.536748i −0.886709 0.462329i \(-0.847014\pi\)
−0.0429660 + 0.999077i \(0.513681\pi\)
\(548\) −23.5531 145.905i −0.0429802 0.266250i
\(549\) 0 0
\(550\) 520.350 611.086i 0.946092 1.11107i
\(551\) −302.903 + 174.881i −0.549734 + 0.317389i
\(552\) 0 0
\(553\) 61.4502 106.435i 0.111121 0.192468i
\(554\) −550.588 + 195.893i −0.993842 + 0.353598i
\(555\) 0 0
\(556\) 40.6613 + 49.9090i 0.0731319 + 0.0897644i
\(557\) 523.617 0.940067 0.470034 0.882649i \(-0.344242\pi\)
0.470034 + 0.882649i \(0.344242\pi\)
\(558\) 0 0
\(559\) 235.317i 0.420961i
\(560\) 1030.80 1158.58i 1.84072 2.06889i
\(561\) 0 0
\(562\) 883.039 314.176i 1.57124 0.559031i
\(563\) −753.245 434.886i −1.33791 0.772445i −0.351416 0.936219i \(-0.614300\pi\)
−0.986498 + 0.163775i \(0.947633\pi\)
\(564\) 0 0
\(565\) 345.071 + 597.680i 0.610744 + 1.05784i
\(566\) 17.6658 20.7462i 0.0312116 0.0366541i
\(567\) 0 0
\(568\) 601.722 + 365.061i 1.05937 + 0.642714i
\(569\) −129.012 223.455i −0.226734 0.392716i 0.730104 0.683336i \(-0.239472\pi\)
−0.956838 + 0.290621i \(0.906138\pi\)
\(570\) 0 0
\(571\) 71.8277 + 41.4698i 0.125793 + 0.0726266i 0.561576 0.827425i \(-0.310195\pi\)
−0.435783 + 0.900052i \(0.643529\pi\)
\(572\) 55.9760 147.126i 0.0978601 0.257213i
\(573\) 0 0
\(574\) −296.881 54.5681i −0.517214 0.0950664i
\(575\) 25.8078i 0.0448832i
\(576\) 0 0
\(577\) −167.694 −0.290631 −0.145316 0.989385i \(-0.546420\pi\)
−0.145316 + 0.989385i \(0.546420\pi\)
\(578\) 76.6468 417.001i 0.132607 0.721455i
\(579\) 0 0
\(580\) −532.738 202.687i −0.918515 0.349461i
\(581\) 137.350 237.897i 0.236403 0.409461i
\(582\) 0 0
\(583\) 717.812 414.429i 1.23124 0.710856i
\(584\) 257.688 424.741i 0.441246 0.727296i
\(585\) 0 0
\(586\) 51.3866 + 43.7566i 0.0876905 + 0.0746700i
\(587\) −449.447 + 259.488i −0.765667 + 0.442058i −0.831327 0.555784i \(-0.812418\pi\)
0.0656596 + 0.997842i \(0.479085\pi\)
\(588\) 0 0
\(589\) −107.093 + 185.491i −0.181822 + 0.314925i
\(590\) −108.806 305.816i −0.184417 0.518332i
\(591\) 0 0
\(592\) −424.950 378.084i −0.717821 0.638656i
\(593\) 865.433 1.45941 0.729707 0.683760i \(-0.239656\pi\)
0.729707 + 0.683760i \(0.239656\pi\)
\(594\) 0 0
\(595\) 850.529i 1.42946i
\(596\) −25.6875 + 20.9278i −0.0430998 + 0.0351138i
\(597\) 0 0
\(598\) 1.69668 + 4.76877i 0.00283725 + 0.00797454i
\(599\) −37.8473 21.8511i −0.0631841 0.0364794i 0.468075 0.883689i \(-0.344948\pi\)
−0.531259 + 0.847209i \(0.678281\pi\)
\(600\) 0 0
\(601\) 71.0498 + 123.062i 0.118219 + 0.204762i 0.919062 0.394113i \(-0.128948\pi\)
−0.800843 + 0.598875i \(0.795615\pi\)
\(602\) 1250.61 + 1064.92i 2.07743 + 1.76897i
\(603\) 0 0
\(604\) −826.839 + 133.475i −1.36894 + 0.220985i
\(605\) 7.43315 + 12.8746i 0.0122862 + 0.0212803i
\(606\) 0 0
\(607\) 98.7760 + 57.0284i 0.162728 + 0.0939512i 0.579153 0.815219i \(-0.303384\pi\)
−0.416424 + 0.909170i \(0.636717\pi\)
\(608\) 377.660 + 484.688i 0.621151 + 0.797185i
\(609\) 0 0
\(610\) −138.165 + 751.697i −0.226501 + 1.23229i
\(611\) 147.291i 0.241066i
\(612\) 0 0
\(613\) −515.196 −0.840450 −0.420225 0.907420i \(-0.638049\pi\)
−0.420225 + 0.907420i \(0.638049\pi\)
\(614\) −277.874 51.0745i −0.452563 0.0831833i
\(615\) 0 0
\(616\) 528.595 + 963.300i 0.858108 + 1.56380i
\(617\) 286.853 496.844i 0.464916 0.805257i −0.534282 0.845306i \(-0.679418\pi\)
0.999198 + 0.0400487i \(0.0127513\pi\)
\(618\) 0 0
\(619\) 563.320 325.233i 0.910049 0.525417i 0.0296022 0.999562i \(-0.490576\pi\)
0.880447 + 0.474145i \(0.157243\pi\)
\(620\) −344.589 + 55.6262i −0.555789 + 0.0897197i
\(621\) 0 0
\(622\) 515.636 605.550i 0.828997 0.973552i
\(623\) 1139.81 658.069i 1.82955 1.05629i
\(624\) 0 0
\(625\) 109.796 190.172i 0.175673 0.304275i
\(626\) −901.423 + 320.717i −1.43997 + 0.512327i
\(627\) 0 0
\(628\) −119.238 + 97.1441i −0.189869 + 0.154688i
\(629\) −311.962 −0.495965
\(630\) 0 0
\(631\) 915.625i 1.45107i −0.688185 0.725535i \(-0.741592\pi\)
0.688185 0.725535i \(-0.258408\pi\)
\(632\) −1.72422 + 79.3394i −0.00272820 + 0.125537i
\(633\) 0 0
\(634\) 421.054 149.806i 0.664122 0.236288i
\(635\) 251.812 + 145.384i 0.396555 + 0.228951i
\(636\) 0 0
\(637\) 185.476 + 321.254i 0.291171 + 0.504323i
\(638\) 261.837 307.495i 0.410404 0.481967i
\(639\) 0 0
\(640\) −223.634 + 976.052i −0.349428 + 1.52508i
\(641\) 502.925 + 871.091i 0.784594 + 1.35896i 0.929241 + 0.369474i \(0.120462\pi\)
−0.144647 + 0.989483i \(0.546205\pi\)
\(642\) 0 0
\(643\) 559.043 + 322.764i 0.869429 + 0.501965i 0.867158 0.498032i \(-0.165944\pi\)
0.00227048 + 0.999997i \(0.499277\pi\)
\(644\) −33.0223 12.5638i −0.0512768 0.0195089i
\(645\) 0 0
\(646\) 331.449 + 60.9218i 0.513078 + 0.0943063i
\(647\) 469.962i 0.726372i −0.931717 0.363186i \(-0.881689\pi\)
0.931717 0.363186i \(-0.118311\pi\)
\(648\) 0 0
\(649\) 229.993 0.354381
\(650\) −46.4601 + 252.769i −0.0714772 + 0.388875i
\(651\) 0 0
\(652\) 378.856 995.775i 0.581067 1.52726i
\(653\) −363.699 + 629.945i −0.556966 + 0.964694i 0.440781 + 0.897615i \(0.354701\pi\)
−0.997748 + 0.0670795i \(0.978632\pi\)
\(654\) 0 0
\(655\) 797.197 460.262i 1.21709 0.702690i
\(656\) 185.010 61.3297i 0.282028 0.0934904i
\(657\) 0 0
\(658\) 782.791 + 666.560i 1.18965 + 1.01301i
\(659\) −230.141 + 132.872i −0.349228 + 0.201627i −0.664345 0.747426i \(-0.731289\pi\)
0.315117 + 0.949053i \(0.397956\pi\)
\(660\) 0 0
\(661\) −321.125 + 556.206i −0.485818 + 0.841461i −0.999867 0.0162998i \(-0.994811\pi\)
0.514050 + 0.857760i \(0.328145\pi\)
\(662\) −218.040 612.834i −0.329365 0.925731i
\(663\) 0 0
\(664\) −3.85388 + 177.335i −0.00580404 + 0.267070i
\(665\) −1861.07 −2.79860
\(666\) 0 0
\(667\) 12.9864i 0.0194698i
\(668\) 750.024 + 920.603i 1.12279 + 1.37815i
\(669\) 0 0
\(670\) −42.2034 118.619i −0.0629901 0.177043i
\(671\) −468.988 270.770i −0.698938 0.403532i
\(672\) 0 0
\(673\) −243.053 420.980i −0.361149 0.625528i 0.627001 0.779018i \(-0.284282\pi\)
−0.988150 + 0.153490i \(0.950949\pi\)
\(674\) −392.406 334.141i −0.582205 0.495758i
\(675\) 0 0
\(676\) −99.6977 617.599i −0.147482 0.913609i
\(677\) 537.134 + 930.344i 0.793404 + 1.37422i 0.923848 + 0.382760i \(0.125026\pi\)
−0.130444 + 0.991456i \(0.541640\pi\)
\(678\) 0 0
\(679\) 1406.64 + 812.126i 2.07164 + 1.19606i
\(680\) 264.199 + 481.472i 0.388529 + 0.708047i
\(681\) 0 0
\(682\) 44.7098 243.246i 0.0655569 0.356666i
\(683\) 545.105i 0.798104i 0.916928 + 0.399052i \(0.130661\pi\)
−0.916928 + 0.399052i \(0.869339\pi\)
\(684\) 0 0
\(685\) −289.048 −0.421968
\(686\) −1352.53 248.602i −1.97162 0.362393i
\(687\) 0 0
\(688\) −1038.75 214.357i −1.50981 0.311566i
\(689\) −132.703 + 229.849i −0.192603 + 0.333598i
\(690\) 0 0
\(691\) −1079.86 + 623.455i −1.56274 + 0.902250i −0.565765 + 0.824567i \(0.691419\pi\)
−0.996978 + 0.0776832i \(0.975248\pi\)
\(692\) −108.073 669.480i −0.156174 0.967457i
\(693\) 0 0
\(694\) −565.323 + 663.900i −0.814587 + 0.956629i
\(695\) 109.035 62.9516i 0.156885 0.0905778i
\(696\) 0 0
\(697\) 53.4502 92.5784i 0.0766860 0.132824i
\(698\) 681.155 242.348i 0.975867 0.347203i
\(699\) 0 0
\(700\) −1133.11 1390.81i −1.61872 1.98687i
\(701\) −474.890 −0.677446 −0.338723 0.940886i \(-0.609995\pi\)
−0.338723 + 0.940886i \(0.609995\pi\)
\(702\) 0 0
\(703\) 682.613i 0.971000i
\(704\) −598.459 381.113i −0.850084 0.541353i
\(705\) 0 0
\(706\) 947.987 337.284i 1.34276 0.477739i
\(707\) 491.832 + 283.959i 0.695661 + 0.401640i
\(708\) 0 0
\(709\) 441.318 + 764.385i 0.622452 + 1.07812i 0.989028 + 0.147730i \(0.0471966\pi\)
−0.366576 + 0.930388i \(0.619470\pi\)
\(710\) 892.387 1048.00i 1.25688 1.47605i
\(711\) 0 0
\(712\) −440.813 + 726.581i −0.619119 + 1.02048i
\(713\) 3.97626 + 6.88709i 0.00557680 + 0.00965931i
\(714\) 0 0
\(715\) −266.617 153.932i −0.372892 0.215289i
\(716\) 21.3965 56.2381i 0.0298834 0.0785448i
\(717\) 0 0
\(718\) −434.733 79.9061i −0.605478 0.111290i
\(719\) 193.132i 0.268612i 0.990940 + 0.134306i \(0.0428806\pi\)
−0.990940 + 0.134306i \(0.957119\pi\)
\(720\) 0 0
\(721\) 2486.57 3.44878
\(722\) 2.78432 15.1482i 0.00385639 0.0209809i
\(723\) 0 0
\(724\) −370.850 141.095i −0.512224 0.194882i
\(725\) −329.691 + 571.042i −0.454746 + 0.787644i
\(726\) 0 0
\(727\) −314.330 + 181.479i −0.432366 + 0.249627i −0.700354 0.713795i \(-0.746975\pi\)
0.267988 + 0.963422i \(0.413641\pi\)
\(728\) −300.811 182.501i −0.413203 0.250688i
\(729\) 0 0
\(730\) −739.755 629.914i −1.01336 0.862896i
\(731\) −503.780 + 290.857i −0.689165 + 0.397890i
\(732\) 0 0
\(733\) −227.096 + 393.342i −0.309818 + 0.536620i −0.978322 0.207088i \(-0.933601\pi\)
0.668505 + 0.743708i \(0.266935\pi\)
\(734\) 225.890 + 634.900i 0.307753 + 0.864986i
\(735\) 0 0
\(736\) 22.5961 3.14553i 0.0307012 0.00427382i
\(737\) 89.2092 0.121044
\(738\) 0 0
\(739\) 999.841i 1.35296i 0.736459 + 0.676482i \(0.236496\pi\)
−0.736459 + 0.676482i \(0.763504\pi\)
\(740\) −862.436 + 702.634i −1.16545 + 0.949506i
\(741\) 0 0
\(742\) −621.006 1745.43i −0.836936 2.35234i
\(743\) 1147.83 + 662.703i 1.54487 + 0.891928i 0.998521 + 0.0543677i \(0.0173143\pi\)
0.546344 + 0.837561i \(0.316019\pi\)
\(744\) 0 0
\(745\) 32.4003 + 56.1190i 0.0434904 + 0.0753275i
\(746\) 696.179 + 592.809i 0.933216 + 0.794650i
\(747\) 0 0
\(748\) −384.162 + 62.0144i −0.513586 + 0.0829070i
\(749\) −558.233 966.887i −0.745304 1.29090i
\(750\) 0 0
\(751\) −313.368 180.923i −0.417267 0.240909i 0.276640 0.960974i \(-0.410779\pi\)
−0.693907 + 0.720064i \(0.744112\pi\)
\(752\) −650.179 134.172i −0.864600 0.178420i
\(753\) 0 0
\(754\) −23.3785 + 127.192i −0.0310060 + 0.168690i
\(755\) 1638.02i 2.16957i
\(756\) 0 0
\(757\) 99.1960 0.131038 0.0655192 0.997851i \(-0.479130\pi\)
0.0655192 + 0.997851i \(0.479130\pi\)
\(758\) −146.224 26.8766i −0.192907 0.0354573i
\(759\) 0 0
\(760\) 1053.52 578.103i 1.38621 0.760661i
\(761\) 697.772 1208.58i 0.916915 1.58814i 0.112841 0.993613i \(-0.464005\pi\)
0.804074 0.594529i \(-0.202662\pi\)
\(762\) 0 0
\(763\) 1968.31 1136.40i 2.57969 1.48939i
\(764\) −1073.46 + 173.286i −1.40505 + 0.226815i
\(765\) 0 0
\(766\) −739.159 + 868.048i −0.964959 + 1.13322i
\(767\) −63.7790 + 36.8228i −0.0831538 + 0.0480089i
\(768\) 0 0
\(769\) −240.950 + 417.338i −0.313329 + 0.542702i −0.979081 0.203471i \(-0.934778\pi\)
0.665752 + 0.746173i \(0.268111\pi\)
\(770\) 2024.65 720.348i 2.62941 0.935517i
\(771\) 0 0
\(772\) 452.452 368.616i 0.586077 0.477482i
\(773\) 1026.09 1.32741 0.663707 0.747993i \(-0.268982\pi\)
0.663707 + 0.747993i \(0.268982\pi\)
\(774\) 0 0
\(775\) 403.789i 0.521018i
\(776\) −1048.55 22.7873i −1.35122 0.0293651i
\(777\) 0 0
\(778\) −1197.88 + 426.193i −1.53969 + 0.547806i
\(779\) −202.574 116.956i −0.260043 0.150136i
\(780\) 0 0
\(781\) 487.650 + 844.634i 0.624391 + 1.08148i
\(782\) 8.11211 9.52664i 0.0103735 0.0121824i
\(783\) 0 0
\(784\) 1587.05 526.096i 2.02429 0.671041i
\(785\) 150.398 + 260.497i 0.191590 + 0.331843i
\(786\) 0 0
\(787\) 589.681 + 340.452i 0.749277 + 0.432595i 0.825432 0.564501i \(-0.190931\pi\)
−0.0761559 + 0.997096i \(0.524265\pi\)
\(788\) 699.868 + 266.274i 0.888157 + 0.337911i
\(789\) 0 0
\(790\) 152.647 + 28.0573i 0.193225 + 0.0355156i
\(791\) 1092.99i 1.38178i
\(792\) 0 0
\(793\) 173.405 0.218670
\(794\) 174.575 949.787i 0.219868 1.19621i
\(795\) 0 0
\(796\) −481.078 + 1264.45i −0.604370 + 1.58851i
\(797\) 98.0177 169.772i 0.122983 0.213013i −0.797960 0.602711i \(-0.794087\pi\)
0.920943 + 0.389698i \(0.127421\pi\)
\(798\) 0 0
\(799\) −315.329 + 182.055i −0.394654 + 0.227854i
\(800\) 1073.46 + 435.341i 1.34183 + 0.544176i
\(801\) 0 0
\(802\) −239.387 203.842i −0.298487 0.254167i
\(803\) 596.206 344.220i 0.742473 0.428667i
\(804\) 0 0
\(805\) −34.5498 + 59.8421i −0.0429190 + 0.0743380i
\(806\) 26.5462 + 74.6122i 0.0329358 + 0.0925710i
\(807\) 0 0
\(808\) −366.625 7.96758i −0.453744 0.00986087i
\(809\) −579.944 −0.716865 −0.358432 0.933556i \(-0.616689\pi\)
−0.358432 + 0.933556i \(0.616689\pi\)
\(810\) 0 0
\(811\) 527.766i 0.650759i −0.945583 0.325380i \(-0.894508\pi\)
0.945583 0.325380i \(-0.105492\pi\)
\(812\) −570.173 699.849i −0.702184 0.861883i
\(813\) 0 0
\(814\) −264.213 742.612i −0.324586 0.912300i
\(815\) −1804.52 1041.84i −2.21413 1.27833i
\(816\) 0 0
\(817\) 636.434 + 1102.34i 0.778989 + 1.34925i
\(818\) −458.804 390.680i −0.560885 0.477604i
\(819\) 0 0
\(820\) −60.7492 376.324i −0.0740844 0.458932i
\(821\) 324.749 + 562.483i 0.395554 + 0.685119i 0.993172 0.116662i \(-0.0372194\pi\)
−0.597618 + 0.801781i \(0.703886\pi\)
\(822\) 0 0
\(823\) −232.736 134.370i −0.282790 0.163269i 0.351896 0.936039i \(-0.385537\pi\)
−0.634686 + 0.772770i \(0.718870\pi\)
\(824\) −1407.61 + 772.402i −1.70826 + 0.937381i
\(825\) 0 0
\(826\) 92.9314 505.598i 0.112508 0.612105i
\(827\) 799.300i 0.966505i 0.875481 + 0.483253i \(0.160545\pi\)
−0.875481 + 0.483253i \(0.839455\pi\)
\(828\) 0 0
\(829\) −1149.38 −1.38647 −0.693234 0.720712i \(-0.743815\pi\)
−0.693234 + 0.720712i \(0.743815\pi\)
\(830\) 341.189 + 62.7122i 0.411071 + 0.0755568i
\(831\) 0 0
\(832\) 226.975 + 9.87001i 0.272806 + 0.0118630i
\(833\) 458.504 794.153i 0.550425 0.953365i
\(834\) 0 0
\(835\) 2011.22 1161.18i 2.40865 1.39064i
\(836\) 135.696 + 840.596i 0.162315 + 1.00550i
\(837\) 0 0
\(838\) −627.952 + 737.450i −0.749346 + 0.880012i
\(839\) 153.674 88.7239i 0.183164 0.105750i −0.405615 0.914044i \(-0.632942\pi\)
0.588778 + 0.808295i \(0.299609\pi\)
\(840\) 0 0
\(841\) 254.601 440.982i 0.302736 0.524355i
\(842\) −9.70628 + 3.45339i −0.0115276 + 0.00410141i
\(843\) 0 0
\(844\) −298.928 366.913i −0.354180 0.434731i
\(845\) −1223.51 −1.44794
\(846\) 0 0
\(847\) 23.5440i 0.0277970i
\(848\) 893.725 + 795.160i 1.05392 + 0.937689i
\(849\) 0 0
\(850\) 598.567 212.964i 0.704196 0.250545i
\(851\) 21.9492 + 12.6724i 0.0257923 + 0.0148912i
\(852\) 0 0
\(853\) −550.498 953.491i −0.645367 1.11781i −0.984217 0.176968i \(-0.943371\pi\)
0.338849 0.940841i \(-0.389962\pi\)
\(854\) −784.738 + 921.576i −0.918897 + 1.07913i
\(855\) 0 0
\(856\) 616.350 + 373.937i 0.720036 + 0.436842i
\(857\) −413.229 715.734i −0.482181 0.835163i 0.517609 0.855617i \(-0.326822\pi\)
−0.999791 + 0.0204545i \(0.993489\pi\)
\(858\) 0 0
\(859\) −1032.11 595.887i −1.20152 0.693699i −0.240628 0.970617i \(-0.577353\pi\)
−0.960893 + 0.276919i \(0.910687\pi\)
\(860\) −737.626 + 1938.76i −0.857705 + 2.25437i
\(861\) 0 0
\(862\) −624.614 114.807i −0.724610 0.133187i
\(863\) 1491.45i 1.72821i −0.503311 0.864106i \(-0.667885\pi\)
0.503311 0.864106i \(-0.332115\pi\)
\(864\) 0 0
\(865\) −1326.29 −1.53328
\(866\) −68.7683 + 374.138i −0.0794092 + 0.432030i
\(867\) 0 0
\(868\) −516.666 196.573i −0.595238 0.226466i
\(869\) −54.9854 + 95.2376i −0.0632744 + 0.109594i
\(870\) 0 0
\(871\) −24.7384 + 14.2827i −0.0284023 + 0.0163981i
\(872\) −761.228 + 1254.71i −0.872968 + 1.43889i
\(873\) 0 0
\(874\) −20.8455 17.7503i −0.0238507 0.0203093i
\(875\) −940.044 + 542.735i −1.07434 + 0.620268i
\(876\) 0 0
\(877\) −405.270 + 701.948i −0.462109 + 0.800397i −0.999066 0.0432130i \(-0.986241\pi\)
0.536956 + 0.843610i \(0.319574\pi\)
\(878\) −78.0930 219.492i −0.0889442 0.249991i
\(879\) 0 0
\(880\) −922.361 + 1036.69i −1.04814 + 1.17806i
\(881\) −251.884 −0.285907 −0.142953 0.989729i \(-0.545660\pi\)
−0.142953 + 0.989729i \(0.545660\pi\)
\(882\) 0 0
\(883\) 1150.98i 1.30349i −0.758437 0.651746i \(-0.774037\pi\)
0.758437 0.651746i \(-0.225963\pi\)
\(884\) 96.6024 78.7029i 0.109279 0.0890304i
\(885\) 0 0
\(886\) 328.928 + 924.504i 0.371251 + 1.04346i
\(887\) 146.265 + 84.4462i 0.164899 + 0.0952043i 0.580178 0.814490i \(-0.302983\pi\)
−0.415279 + 0.909694i \(0.636316\pi\)
\(888\) 0 0
\(889\) 230.248 + 398.800i 0.258996 + 0.448594i
\(890\) 1265.46 + 1077.56i 1.42186 + 1.21074i
\(891\) 0 0
\(892\) 968.574 156.355i 1.08585 0.175286i
\(893\) 398.360 + 689.980i 0.446092 + 0.772654i
\(894\) 0 0
\(895\) −101.913 58.8396i −0.113869 0.0657426i
\(896\) −1079.62 + 1161.61i −1.20493 + 1.29644i
\(897\) 0 0
\(898\) 56.3793 306.734i 0.0627831 0.341575i
\(899\) 203.184i 0.226012i
\(900\) 0 0
\(901\) 656.096 0.728187
\(902\) 265.648 + 48.8274i 0.294510 + 0.0541324i
\(903\) 0 0
\(904\) −339.515 618.725i −0.375570 0.684431i
\(905\) −388.005 + 672.045i −0.428735 + 0.742591i
\(906\) 0 0
\(907\) −408.758 + 235.996i −0.450670 + 0.260194i −0.708113 0.706099i \(-0.750453\pi\)
0.257443 + 0.966293i \(0.417120\pi\)
\(908\) 125.702 20.2917i 0.138438 0.0223477i
\(909\) 0 0
\(910\) −446.120 + 523.912i −0.490242 + 0.575727i
\(911\) 164.788 95.1403i 0.180887 0.104435i −0.406822 0.913507i \(-0.633363\pi\)
0.587709 + 0.809072i \(0.300030\pi\)
\(912\) 0 0
\(913\) −122.900 + 212.870i −0.134612 + 0.233154i
\(914\) 230.822 82.1241i 0.252541 0.0898514i
\(915\) 0 0
\(916\) 444.524 362.158i 0.485288 0.395369i
\(917\) 1457.85 1.58981
\(918\) 0 0
\(919\) 1046.89i 1.13916i −0.821936 0.569580i \(-0.807106\pi\)
0.821936 0.569580i \(-0.192894\pi\)
\(920\) 0.969429 44.6079i 0.00105373 0.0484868i
\(921\) 0 0
\(922\) −884.568 + 314.720i −0.959401 + 0.341344i
\(923\) −270.458 156.149i −0.293021 0.169176i
\(924\) 0 0
\(925\) 643.440 + 1114.47i 0.695611 + 1.20483i
\(926\) 496.402 582.962i 0.536072 0.629548i
\(927\) 0 0
\(928\) 540.160 + 219.061i 0.582069 + 0.236057i
\(929\) 345.832 + 598.998i 0.372262 + 0.644778i 0.989913 0.141675i \(-0.0452488\pi\)
−0.617651 + 0.786453i \(0.711915\pi\)
\(930\) 0 0
\(931\) −1737.71 1003.27i −1.86650 1.07762i
\(932\) 1230.54 + 468.174i 1.32032 + 0.502332i
\(933\) 0 0
\(934\) 498.120 + 91.5568i 0.533319 + 0.0980266i
\(935\) 761.051i 0.813959i
\(936\) 0 0
\(937\) −1413.88 −1.50894 −0.754472 0.656332i \(-0.772107\pi\)
−0.754472 + 0.656332i \(0.772107\pi\)
\(938\) 36.0460 196.110i 0.0384286 0.209073i
\(939\) 0 0
\(940\) −461.699 + 1213.52i −0.491169 + 1.29098i
\(941\) 561.243 972.102i 0.596433 1.03305i −0.396910 0.917858i \(-0.629917\pi\)
0.993343 0.115195i \(-0.0367492\pi\)
\(942\) 0 0
\(943\) −7.52136 + 4.34246i −0.00797599 + 0.00460494i
\(944\) 104.447 + 315.079i 0.110643 + 0.333770i
\(945\) 0 0
\(946\) −1119.04 952.887i −1.18292 1.00728i
\(947\) −1428.85 + 824.947i −1.50882 + 0.871116i −0.508871 + 0.860843i \(0.669937\pi\)
−0.999947 + 0.0102736i \(0.996730\pi\)
\(948\) 0 0
\(949\) −110.222 + 190.910i −0.116145 + 0.201169i
\(950\) −465.992 1309.74i −0.490518 1.37868i
\(951\) 0 0
\(952\) −18.8976 + 869.568i −0.0198505 + 0.913411i
\(953\) 828.887 0.869766 0.434883 0.900487i \(-0.356790\pi\)
0.434883 + 0.900487i \(0.356790\pi\)
\(954\) 0 0
\(955\) 2126.60i 2.22681i
\(956\) −220.468 270.610i −0.230615 0.283064i
\(957\) 0 0
\(958\) −554.379 1558.17i −0.578684 1.62648i
\(959\) −396.442 228.886i −0.413391 0.238671i
\(960\) 0 0
\(961\) −418.287 724.495i −0.435263 0.753897i
\(962\) 192.163 + 163.631i 0.199754 + 0.170094i
\(963\) 0 0
\(964\) 114.232 + 707.637i 0.118498 + 0.734063i
\(965\) −570.689 988.463i −0.591388 1.02431i
\(966\) 0 0
\(967\) 1216.72 + 702.473i 1.25824 + 0.726446i 0.972732 0.231930i \(-0.0745040\pi\)
0.285509 + 0.958376i \(0.407837\pi\)
\(968\) −7.31347 13.3279i −0.00755524 0.0137685i
\(969\) 0 0
\(970\) −370.806 + 2017.39i −0.382274 + 2.07978i
\(971\) 331.476i 0.341376i −0.985325 0.170688i \(-0.945401\pi\)
0.985325 0.170688i \(-0.0545991\pi\)
\(972\) 0 0
\(973\) 199.395 0.204928
\(974\) −631.288 116.034i −0.648140 0.119131i
\(975\) 0 0
\(976\) 157.960 765.453i 0.161844 0.784276i
\(977\) −558.546 + 967.430i −0.571695 + 0.990205i 0.424697 + 0.905336i \(0.360381\pi\)
−0.996392 + 0.0848694i \(0.972953\pi\)
\(978\) 0 0
\(979\) −1019.90 + 588.838i −1.04177 + 0.601469i
\(980\) −521.116 3228.17i −0.531751 3.29405i
\(981\) 0 0
\(982\) 728.574 855.618i 0.741929 0.871301i
\(983\) 1205.44 695.961i 1.22629 0.707997i 0.260035 0.965599i \(-0.416266\pi\)
0.966251 + 0.257602i \(0.0829324\pi\)
\(984\) 0 0
\(985\) 732.243 1268.28i 0.743393 1.28760i
\(986\) 301.195 107.162i 0.305472 0.108684i
\(987\) 0 0
\(988\) −172.212 211.379i −0.174304 0.213946i
\(989\) 47.2603 0.0477860
\(990\) 0 0
\(991\) 226.715i 0.228773i −0.993436 0.114387i \(-0.963510\pi\)
0.993436 0.114387i \(-0.0364903\pi\)
\(992\) 353.538 49.2150i 0.356389 0.0496119i
\(993\) 0 0
\(994\) 2053.81 730.725i 2.06621 0.735135i
\(995\) 2291.41 + 1322.95i 2.30292 + 1.32959i
\(996\) 0 0
\(997\) −639.868 1108.28i −0.641793 1.11162i −0.985032 0.172371i \(-0.944857\pi\)
0.343239 0.939248i \(-0.388476\pi\)
\(998\) 39.3610 46.2245i 0.0394399 0.0463171i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 324.3.f.s.271.4 16
3.2 odd 2 inner 324.3.f.s.271.5 16
4.3 odd 2 inner 324.3.f.s.271.7 16
9.2 odd 6 inner 324.3.f.s.55.2 16
9.4 even 3 324.3.d.h.163.1 8
9.5 odd 6 324.3.d.h.163.8 yes 8
9.7 even 3 inner 324.3.f.s.55.7 16
12.11 even 2 inner 324.3.f.s.271.2 16
36.7 odd 6 inner 324.3.f.s.55.4 16
36.11 even 6 inner 324.3.f.s.55.5 16
36.23 even 6 324.3.d.h.163.7 yes 8
36.31 odd 6 324.3.d.h.163.2 yes 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
324.3.d.h.163.1 8 9.4 even 3
324.3.d.h.163.2 yes 8 36.31 odd 6
324.3.d.h.163.7 yes 8 36.23 even 6
324.3.d.h.163.8 yes 8 9.5 odd 6
324.3.f.s.55.2 16 9.2 odd 6 inner
324.3.f.s.55.4 16 36.7 odd 6 inner
324.3.f.s.55.5 16 36.11 even 6 inner
324.3.f.s.55.7 16 9.7 even 3 inner
324.3.f.s.271.2 16 12.11 even 2 inner
324.3.f.s.271.4 16 1.1 even 1 trivial
324.3.f.s.271.5 16 3.2 odd 2 inner
324.3.f.s.271.7 16 4.3 odd 2 inner