Properties

Label 320.4.n.k.63.2
Level $320$
Weight $4$
Character 320.63
Analytic conductor $18.881$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,4,Mod(63,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 0, 3])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.63"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.n (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8806112018\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 7x^{10} + 44x^{8} - 156x^{6} + 704x^{4} - 1792x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 2^{24} \)
Twist minimal: no (minimal twist has level 20)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 63.2
Root \(-1.13579 - 1.64620i\) of defining polynomial
Character \(\chi\) \(=\) 320.63
Dual form 320.4.n.k.127.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.02923 + 4.02923i) q^{3} +(-10.9349 - 2.32970i) q^{5} +(-14.4440 - 14.4440i) q^{7} -5.46937i q^{9} -47.0607i q^{11} +(8.79525 + 8.79525i) q^{13} +(53.4462 - 34.6724i) q^{15} +(-26.4898 + 26.4898i) q^{17} +49.8054 q^{19} +116.396 q^{21} +(-41.2762 + 41.2762i) q^{23} +(114.145 + 50.9501i) q^{25} +(-86.7518 - 86.7518i) q^{27} +247.406i q^{29} -62.3240i q^{31} +(189.618 + 189.618i) q^{33} +(124.294 + 191.594i) q^{35} +(73.2182 - 73.2182i) q^{37} -70.8761 q^{39} +118.624 q^{41} +(-245.335 + 245.335i) q^{43} +(-12.7420 + 59.8071i) q^{45} +(125.525 + 125.525i) q^{47} +74.2578i q^{49} -213.467i q^{51} +(326.574 + 326.574i) q^{53} +(-109.637 + 514.605i) q^{55} +(-200.677 + 200.677i) q^{57} +365.123 q^{59} +268.160 q^{61} +(-78.9995 + 78.9995i) q^{63} +(-75.6851 - 116.666i) q^{65} +(112.617 + 112.617i) q^{67} -332.623i q^{69} -559.873i q^{71} +(215.825 + 215.825i) q^{73} +(-665.206 + 254.627i) q^{75} +(-679.744 + 679.744i) q^{77} +1172.36 q^{79} +846.759 q^{81} +(592.561 - 592.561i) q^{83} +(351.377 - 227.951i) q^{85} +(-996.857 - 996.857i) q^{87} +552.071i q^{89} -254.077i q^{91} +(251.118 + 251.118i) q^{93} +(-544.618 - 116.032i) q^{95} +(460.651 - 460.651i) q^{97} -257.392 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 116 q^{13} - 332 q^{17} + 144 q^{21} + 340 q^{25} + 80 q^{33} - 508 q^{37} - 656 q^{41} - 1180 q^{45} + 644 q^{53} - 960 q^{57} + 896 q^{61} - 2740 q^{65} + 1436 q^{73} - 3120 q^{77} + 5988 q^{81}+ \cdots - 4772 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.02923 + 4.02923i −0.775425 + 0.775425i −0.979049 0.203624i \(-0.934728\pi\)
0.203624 + 0.979049i \(0.434728\pi\)
\(4\) 0 0
\(5\) −10.9349 2.32970i −0.978049 0.208375i
\(6\) 0 0
\(7\) −14.4440 14.4440i −0.779902 0.779902i 0.199912 0.979814i \(-0.435934\pi\)
−0.979814 + 0.199912i \(0.935934\pi\)
\(8\) 0 0
\(9\) 5.46937i 0.202569i
\(10\) 0 0
\(11\) 47.0607i 1.28994i −0.764209 0.644969i \(-0.776870\pi\)
0.764209 0.644969i \(-0.223130\pi\)
\(12\) 0 0
\(13\) 8.79525 + 8.79525i 0.187643 + 0.187643i 0.794676 0.607033i \(-0.207640\pi\)
−0.607033 + 0.794676i \(0.707640\pi\)
\(14\) 0 0
\(15\) 53.4462 34.6724i 0.919983 0.596825i
\(16\) 0 0
\(17\) −26.4898 + 26.4898i −0.377925 + 0.377925i −0.870353 0.492428i \(-0.836109\pi\)
0.492428 + 0.870353i \(0.336109\pi\)
\(18\) 0 0
\(19\) 49.8054 0.601376 0.300688 0.953723i \(-0.402784\pi\)
0.300688 + 0.953723i \(0.402784\pi\)
\(20\) 0 0
\(21\) 116.396 1.20951
\(22\) 0 0
\(23\) −41.2762 + 41.2762i −0.374204 + 0.374204i −0.869006 0.494802i \(-0.835241\pi\)
0.494802 + 0.869006i \(0.335241\pi\)
\(24\) 0 0
\(25\) 114.145 + 50.9501i 0.913160 + 0.407601i
\(26\) 0 0
\(27\) −86.7518 86.7518i −0.618348 0.618348i
\(28\) 0 0
\(29\) 247.406i 1.58421i 0.610382 + 0.792107i \(0.291016\pi\)
−0.610382 + 0.792107i \(0.708984\pi\)
\(30\) 0 0
\(31\) 62.3240i 0.361088i −0.983567 0.180544i \(-0.942214\pi\)
0.983567 0.180544i \(-0.0577858\pi\)
\(32\) 0 0
\(33\) 189.618 + 189.618i 1.00025 + 1.00025i
\(34\) 0 0
\(35\) 124.294 + 191.594i 0.600271 + 0.925294i
\(36\) 0 0
\(37\) 73.2182 73.2182i 0.325324 0.325324i −0.525481 0.850805i \(-0.676115\pi\)
0.850805 + 0.525481i \(0.176115\pi\)
\(38\) 0 0
\(39\) −70.8761 −0.291007
\(40\) 0 0
\(41\) 118.624 0.451854 0.225927 0.974144i \(-0.427459\pi\)
0.225927 + 0.974144i \(0.427459\pi\)
\(42\) 0 0
\(43\) −245.335 + 245.335i −0.870076 + 0.870076i −0.992480 0.122404i \(-0.960940\pi\)
0.122404 + 0.992480i \(0.460940\pi\)
\(44\) 0 0
\(45\) −12.7420 + 59.8071i −0.0422103 + 0.198123i
\(46\) 0 0
\(47\) 125.525 + 125.525i 0.389567 + 0.389567i 0.874533 0.484966i \(-0.161168\pi\)
−0.484966 + 0.874533i \(0.661168\pi\)
\(48\) 0 0
\(49\) 74.2578i 0.216495i
\(50\) 0 0
\(51\) 213.467i 0.586105i
\(52\) 0 0
\(53\) 326.574 + 326.574i 0.846385 + 0.846385i 0.989680 0.143295i \(-0.0457699\pi\)
−0.143295 + 0.989680i \(0.545770\pi\)
\(54\) 0 0
\(55\) −109.637 + 514.605i −0.268790 + 1.26162i
\(56\) 0 0
\(57\) −200.677 + 200.677i −0.466322 + 0.466322i
\(58\) 0 0
\(59\) 365.123 0.805677 0.402839 0.915271i \(-0.368024\pi\)
0.402839 + 0.915271i \(0.368024\pi\)
\(60\) 0 0
\(61\) 268.160 0.562858 0.281429 0.959582i \(-0.409192\pi\)
0.281429 + 0.959582i \(0.409192\pi\)
\(62\) 0 0
\(63\) −78.9995 + 78.9995i −0.157984 + 0.157984i
\(64\) 0 0
\(65\) −75.6851 116.666i −0.144424 0.222624i
\(66\) 0 0
\(67\) 112.617 + 112.617i 0.205349 + 0.205349i 0.802287 0.596938i \(-0.203616\pi\)
−0.596938 + 0.802287i \(0.703616\pi\)
\(68\) 0 0
\(69\) 332.623i 0.580334i
\(70\) 0 0
\(71\) 559.873i 0.935841i −0.883771 0.467921i \(-0.845003\pi\)
0.883771 0.467921i \(-0.154997\pi\)
\(72\) 0 0
\(73\) 215.825 + 215.825i 0.346033 + 0.346033i 0.858629 0.512597i \(-0.171316\pi\)
−0.512597 + 0.858629i \(0.671316\pi\)
\(74\) 0 0
\(75\) −665.206 + 254.627i −1.02415 + 0.392023i
\(76\) 0 0
\(77\) −679.744 + 679.744i −1.00603 + 1.00603i
\(78\) 0 0
\(79\) 1172.36 1.66963 0.834816 0.550528i \(-0.185574\pi\)
0.834816 + 0.550528i \(0.185574\pi\)
\(80\) 0 0
\(81\) 846.759 1.16153
\(82\) 0 0
\(83\) 592.561 592.561i 0.783639 0.783639i −0.196804 0.980443i \(-0.563056\pi\)
0.980443 + 0.196804i \(0.0630562\pi\)
\(84\) 0 0
\(85\) 351.377 227.951i 0.448379 0.290879i
\(86\) 0 0
\(87\) −996.857 996.857i −1.22844 1.22844i
\(88\) 0 0
\(89\) 552.071i 0.657522i 0.944413 + 0.328761i \(0.106631\pi\)
−0.944413 + 0.328761i \(0.893369\pi\)
\(90\) 0 0
\(91\) 254.077i 0.292687i
\(92\) 0 0
\(93\) 251.118 + 251.118i 0.279997 + 0.279997i
\(94\) 0 0
\(95\) −544.618 116.032i −0.588175 0.125311i
\(96\) 0 0
\(97\) 460.651 460.651i 0.482186 0.482186i −0.423643 0.905829i \(-0.639249\pi\)
0.905829 + 0.423643i \(0.139249\pi\)
\(98\) 0 0
\(99\) −257.392 −0.261302
\(100\) 0 0
\(101\) 5.97644 0.00588790 0.00294395 0.999996i \(-0.499063\pi\)
0.00294395 + 0.999996i \(0.499063\pi\)
\(102\) 0 0
\(103\) −137.824 + 137.824i −0.131847 + 0.131847i −0.769951 0.638104i \(-0.779719\pi\)
0.638104 + 0.769951i \(0.279719\pi\)
\(104\) 0 0
\(105\) −1272.78 271.168i −1.18296 0.252032i
\(106\) 0 0
\(107\) −723.943 723.943i −0.654077 0.654077i 0.299895 0.953972i \(-0.403048\pi\)
−0.953972 + 0.299895i \(0.903048\pi\)
\(108\) 0 0
\(109\) 896.758i 0.788017i −0.919107 0.394009i \(-0.871088\pi\)
0.919107 0.394009i \(-0.128912\pi\)
\(110\) 0 0
\(111\) 590.026i 0.504530i
\(112\) 0 0
\(113\) −525.727 525.727i −0.437665 0.437665i 0.453560 0.891226i \(-0.350154\pi\)
−0.891226 + 0.453560i \(0.850154\pi\)
\(114\) 0 0
\(115\) 547.513 355.191i 0.443964 0.288015i
\(116\) 0 0
\(117\) 48.1045 48.1045i 0.0380108 0.0380108i
\(118\) 0 0
\(119\) 765.237 0.589488
\(120\) 0 0
\(121\) −883.705 −0.663941
\(122\) 0 0
\(123\) −477.965 + 477.965i −0.350379 + 0.350379i
\(124\) 0 0
\(125\) −1129.47 823.059i −0.808182 0.588933i
\(126\) 0 0
\(127\) −75.4237 75.4237i −0.0526990 0.0526990i 0.680266 0.732965i \(-0.261864\pi\)
−0.732965 + 0.680266i \(0.761864\pi\)
\(128\) 0 0
\(129\) 1977.02i 1.34936i
\(130\) 0 0
\(131\) 1374.47i 0.916701i 0.888771 + 0.458351i \(0.151560\pi\)
−0.888771 + 0.458351i \(0.848440\pi\)
\(132\) 0 0
\(133\) −719.389 719.389i −0.469014 0.469014i
\(134\) 0 0
\(135\) 746.519 + 1150.73i 0.475927 + 0.733623i
\(136\) 0 0
\(137\) −2002.37 + 2002.37i −1.24871 + 1.24871i −0.292424 + 0.956289i \(0.594462\pi\)
−0.956289 + 0.292424i \(0.905538\pi\)
\(138\) 0 0
\(139\) 2575.00 1.57129 0.785643 0.618679i \(-0.212332\pi\)
0.785643 + 0.618679i \(0.212332\pi\)
\(140\) 0 0
\(141\) −1011.53 −0.604160
\(142\) 0 0
\(143\) 413.910 413.910i 0.242048 0.242048i
\(144\) 0 0
\(145\) 576.382 2705.37i 0.330110 1.54944i
\(146\) 0 0
\(147\) −299.202 299.202i −0.167876 0.167876i
\(148\) 0 0
\(149\) 1322.91i 0.727364i −0.931523 0.363682i \(-0.881519\pi\)
0.931523 0.363682i \(-0.118481\pi\)
\(150\) 0 0
\(151\) 57.2419i 0.0308495i −0.999881 0.0154248i \(-0.995090\pi\)
0.999881 0.0154248i \(-0.00491005\pi\)
\(152\) 0 0
\(153\) 144.882 + 144.882i 0.0765559 + 0.0765559i
\(154\) 0 0
\(155\) −145.196 + 681.508i −0.0752415 + 0.353162i
\(156\) 0 0
\(157\) −1622.22 + 1622.22i −0.824634 + 0.824634i −0.986769 0.162134i \(-0.948162\pi\)
0.162134 + 0.986769i \(0.448162\pi\)
\(158\) 0 0
\(159\) −2631.68 −1.31262
\(160\) 0 0
\(161\) 1192.39 0.583685
\(162\) 0 0
\(163\) −1696.16 + 1696.16i −0.815052 + 0.815052i −0.985386 0.170334i \(-0.945515\pi\)
0.170334 + 0.985386i \(0.445515\pi\)
\(164\) 0 0
\(165\) −1631.71 2515.21i −0.769868 1.18672i
\(166\) 0 0
\(167\) 2015.29 + 2015.29i 0.933819 + 0.933819i 0.997942 0.0641235i \(-0.0204251\pi\)
−0.0641235 + 0.997942i \(0.520425\pi\)
\(168\) 0 0
\(169\) 2042.29i 0.929580i
\(170\) 0 0
\(171\) 272.404i 0.121820i
\(172\) 0 0
\(173\) −317.896 317.896i −0.139706 0.139706i 0.633795 0.773501i \(-0.281496\pi\)
−0.773501 + 0.633795i \(0.781496\pi\)
\(174\) 0 0
\(175\) −912.786 2384.63i −0.394287 1.03006i
\(176\) 0 0
\(177\) −1471.16 + 1471.16i −0.624743 + 0.624743i
\(178\) 0 0
\(179\) −3518.04 −1.46900 −0.734499 0.678610i \(-0.762583\pi\)
−0.734499 + 0.678610i \(0.762583\pi\)
\(180\) 0 0
\(181\) 4769.86 1.95879 0.979395 0.201955i \(-0.0647294\pi\)
0.979395 + 0.201955i \(0.0647294\pi\)
\(182\) 0 0
\(183\) −1080.48 + 1080.48i −0.436455 + 0.436455i
\(184\) 0 0
\(185\) −971.212 + 630.059i −0.385972 + 0.250394i
\(186\) 0 0
\(187\) 1246.63 + 1246.63i 0.487499 + 0.487499i
\(188\) 0 0
\(189\) 2506.09i 0.964502i
\(190\) 0 0
\(191\) 1728.42i 0.654787i 0.944888 + 0.327393i \(0.106170\pi\)
−0.944888 + 0.327393i \(0.893830\pi\)
\(192\) 0 0
\(193\) 1439.32 + 1439.32i 0.536813 + 0.536813i 0.922591 0.385779i \(-0.126067\pi\)
−0.385779 + 0.922591i \(0.626067\pi\)
\(194\) 0 0
\(195\) 775.025 + 165.120i 0.284619 + 0.0606384i
\(196\) 0 0
\(197\) 658.673 658.673i 0.238216 0.238216i −0.577895 0.816111i \(-0.696126\pi\)
0.816111 + 0.577895i \(0.196126\pi\)
\(198\) 0 0
\(199\) −658.733 −0.234655 −0.117327 0.993093i \(-0.537433\pi\)
−0.117327 + 0.993093i \(0.537433\pi\)
\(200\) 0 0
\(201\) −907.523 −0.318466
\(202\) 0 0
\(203\) 3573.53 3573.53i 1.23553 1.23553i
\(204\) 0 0
\(205\) −1297.15 276.359i −0.441935 0.0941549i
\(206\) 0 0
\(207\) 225.755 + 225.755i 0.0758022 + 0.0758022i
\(208\) 0 0
\(209\) 2343.87i 0.775738i
\(210\) 0 0
\(211\) 5821.53i 1.89939i −0.313182 0.949693i \(-0.601395\pi\)
0.313182 0.949693i \(-0.398605\pi\)
\(212\) 0 0
\(213\) 2255.86 + 2255.86i 0.725675 + 0.725675i
\(214\) 0 0
\(215\) 3254.28 2111.16i 1.03228 0.669675i
\(216\) 0 0
\(217\) −900.208 + 900.208i −0.281613 + 0.281613i
\(218\) 0 0
\(219\) −1739.22 −0.536645
\(220\) 0 0
\(221\) −465.969 −0.141830
\(222\) 0 0
\(223\) 2315.57 2315.57i 0.695347 0.695347i −0.268056 0.963403i \(-0.586381\pi\)
0.963403 + 0.268056i \(0.0863814\pi\)
\(224\) 0 0
\(225\) 278.665 624.301i 0.0825674 0.184978i
\(226\) 0 0
\(227\) 2970.19 + 2970.19i 0.868450 + 0.868450i 0.992301 0.123851i \(-0.0395243\pi\)
−0.123851 + 0.992301i \(0.539524\pi\)
\(228\) 0 0
\(229\) 4981.25i 1.43742i −0.695308 0.718712i \(-0.744732\pi\)
0.695308 0.718712i \(-0.255268\pi\)
\(230\) 0 0
\(231\) 5477.69i 1.56020i
\(232\) 0 0
\(233\) 1649.04 + 1649.04i 0.463659 + 0.463659i 0.899853 0.436194i \(-0.143674\pi\)
−0.436194 + 0.899853i \(0.643674\pi\)
\(234\) 0 0
\(235\) −1080.17 1665.04i −0.299840 0.462191i
\(236\) 0 0
\(237\) −4723.71 + 4723.71i −1.29468 + 1.29468i
\(238\) 0 0
\(239\) −3574.98 −0.967558 −0.483779 0.875190i \(-0.660736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(240\) 0 0
\(241\) 5135.22 1.37257 0.686283 0.727334i \(-0.259241\pi\)
0.686283 + 0.727334i \(0.259241\pi\)
\(242\) 0 0
\(243\) −1069.49 + 1069.49i −0.282336 + 0.282336i
\(244\) 0 0
\(245\) 172.998 812.003i 0.0451121 0.211743i
\(246\) 0 0
\(247\) 438.051 + 438.051i 0.112844 + 0.112844i
\(248\) 0 0
\(249\) 4775.13i 1.21531i
\(250\) 0 0
\(251\) 6648.06i 1.67180i 0.548882 + 0.835900i \(0.315054\pi\)
−0.548882 + 0.835900i \(0.684946\pi\)
\(252\) 0 0
\(253\) 1942.49 + 1942.49i 0.482700 + 0.482700i
\(254\) 0 0
\(255\) −497.313 + 2334.24i −0.122129 + 0.573239i
\(256\) 0 0
\(257\) −448.260 + 448.260i −0.108800 + 0.108800i −0.759411 0.650611i \(-0.774513\pi\)
0.650611 + 0.759411i \(0.274513\pi\)
\(258\) 0 0
\(259\) −2115.13 −0.507442
\(260\) 0 0
\(261\) 1353.16 0.320913
\(262\) 0 0
\(263\) −145.529 + 145.529i −0.0341205 + 0.0341205i −0.723961 0.689841i \(-0.757681\pi\)
0.689841 + 0.723961i \(0.257681\pi\)
\(264\) 0 0
\(265\) −2810.24 4331.88i −0.651441 1.00417i
\(266\) 0 0
\(267\) −2224.42 2224.42i −0.509859 0.509859i
\(268\) 0 0
\(269\) 2764.90i 0.626687i 0.949640 + 0.313344i \(0.101449\pi\)
−0.949640 + 0.313344i \(0.898551\pi\)
\(270\) 0 0
\(271\) 6372.29i 1.42837i 0.699955 + 0.714187i \(0.253203\pi\)
−0.699955 + 0.714187i \(0.746797\pi\)
\(272\) 0 0
\(273\) 1023.73 + 1023.73i 0.226957 + 0.226957i
\(274\) 0 0
\(275\) 2397.75 5371.74i 0.525780 1.17792i
\(276\) 0 0
\(277\) 387.343 387.343i 0.0840187 0.0840187i −0.663848 0.747867i \(-0.731078\pi\)
0.747867 + 0.663848i \(0.231078\pi\)
\(278\) 0 0
\(279\) −340.873 −0.0731453
\(280\) 0 0
\(281\) 5284.49 1.12187 0.560936 0.827859i \(-0.310441\pi\)
0.560936 + 0.827859i \(0.310441\pi\)
\(282\) 0 0
\(283\) 341.577 341.577i 0.0717479 0.0717479i −0.670322 0.742070i \(-0.733844\pi\)
0.742070 + 0.670322i \(0.233844\pi\)
\(284\) 0 0
\(285\) 2661.91 1726.87i 0.553256 0.358916i
\(286\) 0 0
\(287\) −1713.41 1713.41i −0.352402 0.352402i
\(288\) 0 0
\(289\) 3509.58i 0.714346i
\(290\) 0 0
\(291\) 3712.13i 0.747798i
\(292\) 0 0
\(293\) 6655.74 + 6655.74i 1.32707 + 1.32707i 0.907912 + 0.419161i \(0.137676\pi\)
0.419161 + 0.907912i \(0.362324\pi\)
\(294\) 0 0
\(295\) −3992.59 850.626i −0.787992 0.167883i
\(296\) 0 0
\(297\) −4082.60 + 4082.60i −0.797631 + 0.797631i
\(298\) 0 0
\(299\) −726.069 −0.140434
\(300\) 0 0
\(301\) 7087.24 1.35715
\(302\) 0 0
\(303\) −24.0804 + 24.0804i −0.00456563 + 0.00456563i
\(304\) 0 0
\(305\) −2932.31 624.732i −0.550503 0.117285i
\(306\) 0 0
\(307\) 535.672 + 535.672i 0.0995844 + 0.0995844i 0.755144 0.655559i \(-0.227567\pi\)
−0.655559 + 0.755144i \(0.727567\pi\)
\(308\) 0 0
\(309\) 1110.65i 0.204475i
\(310\) 0 0
\(311\) 3579.61i 0.652672i 0.945254 + 0.326336i \(0.105814\pi\)
−0.945254 + 0.326336i \(0.894186\pi\)
\(312\) 0 0
\(313\) 6740.52 + 6740.52i 1.21724 + 1.21724i 0.968594 + 0.248648i \(0.0799861\pi\)
0.248648 + 0.968594i \(0.420014\pi\)
\(314\) 0 0
\(315\) 1047.90 679.809i 0.187436 0.121596i
\(316\) 0 0
\(317\) −4163.19 + 4163.19i −0.737628 + 0.737628i −0.972118 0.234490i \(-0.924658\pi\)
0.234490 + 0.972118i \(0.424658\pi\)
\(318\) 0 0
\(319\) 11643.1 2.04354
\(320\) 0 0
\(321\) 5833.86 1.01438
\(322\) 0 0
\(323\) −1319.33 + 1319.33i −0.227275 + 0.227275i
\(324\) 0 0
\(325\) 555.815 + 1452.05i 0.0948648 + 0.247832i
\(326\) 0 0
\(327\) 3613.24 + 3613.24i 0.611049 + 0.611049i
\(328\) 0 0
\(329\) 3626.15i 0.607648i
\(330\) 0 0
\(331\) 8821.65i 1.46490i 0.680821 + 0.732450i \(0.261623\pi\)
−0.680821 + 0.732450i \(0.738377\pi\)
\(332\) 0 0
\(333\) −400.457 400.457i −0.0659007 0.0659007i
\(334\) 0 0
\(335\) −969.099 1493.83i −0.158052 0.243631i
\(336\) 0 0
\(337\) 3165.30 3165.30i 0.511647 0.511647i −0.403384 0.915031i \(-0.632166\pi\)
0.915031 + 0.403384i \(0.132166\pi\)
\(338\) 0 0
\(339\) 4236.55 0.678754
\(340\) 0 0
\(341\) −2933.01 −0.465781
\(342\) 0 0
\(343\) −3881.71 + 3881.71i −0.611057 + 0.611057i
\(344\) 0 0
\(345\) −774.910 + 3637.20i −0.120927 + 0.567595i
\(346\) 0 0
\(347\) −856.765 856.765i −0.132546 0.132546i 0.637721 0.770267i \(-0.279877\pi\)
−0.770267 + 0.637721i \(0.779877\pi\)
\(348\) 0 0
\(349\) 3731.17i 0.572278i −0.958188 0.286139i \(-0.907628\pi\)
0.958188 0.286139i \(-0.0923720\pi\)
\(350\) 0 0
\(351\) 1526.01i 0.232058i
\(352\) 0 0
\(353\) −1774.39 1774.39i −0.267539 0.267539i 0.560569 0.828108i \(-0.310583\pi\)
−0.828108 + 0.560569i \(0.810583\pi\)
\(354\) 0 0
\(355\) −1304.34 + 6122.17i −0.195005 + 0.915298i
\(356\) 0 0
\(357\) −3083.31 + 3083.31i −0.457104 + 0.457104i
\(358\) 0 0
\(359\) −10477.6 −1.54036 −0.770178 0.637829i \(-0.779832\pi\)
−0.770178 + 0.637829i \(0.779832\pi\)
\(360\) 0 0
\(361\) −4378.42 −0.638347
\(362\) 0 0
\(363\) 3560.65 3560.65i 0.514837 0.514837i
\(364\) 0 0
\(365\) −1857.22 2862.83i −0.266333 0.410541i
\(366\) 0 0
\(367\) −5250.87 5250.87i −0.746848 0.746848i 0.227038 0.973886i \(-0.427096\pi\)
−0.973886 + 0.227038i \(0.927096\pi\)
\(368\) 0 0
\(369\) 648.801i 0.0915317i
\(370\) 0 0
\(371\) 9434.06i 1.32019i
\(372\) 0 0
\(373\) −3349.09 3349.09i −0.464904 0.464904i 0.435355 0.900259i \(-0.356623\pi\)
−0.900259 + 0.435355i \(0.856623\pi\)
\(374\) 0 0
\(375\) 7867.18 1234.59i 1.08336 0.170011i
\(376\) 0 0
\(377\) −2176.00 + 2176.00i −0.297267 + 0.297267i
\(378\) 0 0
\(379\) −1701.61 −0.230622 −0.115311 0.993329i \(-0.536787\pi\)
−0.115311 + 0.993329i \(0.536787\pi\)
\(380\) 0 0
\(381\) 607.798 0.0817282
\(382\) 0 0
\(383\) 5674.07 5674.07i 0.757001 0.757001i −0.218775 0.975775i \(-0.570206\pi\)
0.975775 + 0.218775i \(0.0702060\pi\)
\(384\) 0 0
\(385\) 9016.54 5849.35i 1.19357 0.774312i
\(386\) 0 0
\(387\) 1341.83 + 1341.83i 0.176251 + 0.176251i
\(388\) 0 0
\(389\) 2301.42i 0.299965i 0.988689 + 0.149983i \(0.0479218\pi\)
−0.988689 + 0.149983i \(0.952078\pi\)
\(390\) 0 0
\(391\) 2186.80i 0.282842i
\(392\) 0 0
\(393\) −5538.05 5538.05i −0.710833 0.710833i
\(394\) 0 0
\(395\) −12819.7 2731.25i −1.63298 0.347909i
\(396\) 0 0
\(397\) 7499.18 7499.18i 0.948043 0.948043i −0.0506721 0.998715i \(-0.516136\pi\)
0.998715 + 0.0506721i \(0.0161363\pi\)
\(398\) 0 0
\(399\) 5797.16 0.727371
\(400\) 0 0
\(401\) −9495.99 −1.18256 −0.591280 0.806466i \(-0.701377\pi\)
−0.591280 + 0.806466i \(0.701377\pi\)
\(402\) 0 0
\(403\) 548.155 548.155i 0.0677557 0.0677557i
\(404\) 0 0
\(405\) −9259.24 1972.69i −1.13604 0.242034i
\(406\) 0 0
\(407\) −3445.70 3445.70i −0.419648 0.419648i
\(408\) 0 0
\(409\) 10456.4i 1.26415i −0.774909 0.632073i \(-0.782204\pi\)
0.774909 0.632073i \(-0.217796\pi\)
\(410\) 0 0
\(411\) 16136.0i 1.93657i
\(412\) 0 0
\(413\) −5273.83 5273.83i −0.628349 0.628349i
\(414\) 0 0
\(415\) −7860.10 + 5099.12i −0.929728 + 0.603147i
\(416\) 0 0
\(417\) −10375.3 + 10375.3i −1.21842 + 1.21842i
\(418\) 0 0
\(419\) 8542.91 0.996058 0.498029 0.867160i \(-0.334057\pi\)
0.498029 + 0.867160i \(0.334057\pi\)
\(420\) 0 0
\(421\) 3112.71 0.360342 0.180171 0.983635i \(-0.442335\pi\)
0.180171 + 0.983635i \(0.442335\pi\)
\(422\) 0 0
\(423\) 686.540 686.540i 0.0789142 0.0789142i
\(424\) 0 0
\(425\) −4373.34 + 1674.02i −0.499148 + 0.191063i
\(426\) 0 0
\(427\) −3873.30 3873.30i −0.438974 0.438974i
\(428\) 0 0
\(429\) 3335.48i 0.375381i
\(430\) 0 0
\(431\) 1474.93i 0.164837i −0.996598 0.0824187i \(-0.973736\pi\)
0.996598 0.0824187i \(-0.0262645\pi\)
\(432\) 0 0
\(433\) −6196.57 6196.57i −0.687733 0.687733i 0.273998 0.961730i \(-0.411654\pi\)
−0.961730 + 0.273998i \(0.911654\pi\)
\(434\) 0 0
\(435\) 8578.17 + 13222.9i 0.945499 + 1.45745i
\(436\) 0 0
\(437\) −2055.78 + 2055.78i −0.225037 + 0.225037i
\(438\) 0 0
\(439\) −4661.49 −0.506790 −0.253395 0.967363i \(-0.581547\pi\)
−0.253395 + 0.967363i \(0.581547\pi\)
\(440\) 0 0
\(441\) 406.144 0.0438553
\(442\) 0 0
\(443\) −5250.61 + 5250.61i −0.563124 + 0.563124i −0.930194 0.367069i \(-0.880361\pi\)
0.367069 + 0.930194i \(0.380361\pi\)
\(444\) 0 0
\(445\) 1286.16 6036.85i 0.137011 0.643088i
\(446\) 0 0
\(447\) 5330.32 + 5330.32i 0.564017 + 0.564017i
\(448\) 0 0
\(449\) 2992.06i 0.314485i 0.987560 + 0.157243i \(0.0502605\pi\)
−0.987560 + 0.157243i \(0.949740\pi\)
\(450\) 0 0
\(451\) 5582.54i 0.582864i
\(452\) 0 0
\(453\) 230.641 + 230.641i 0.0239215 + 0.0239215i
\(454\) 0 0
\(455\) −591.923 + 2778.31i −0.0609885 + 0.286262i
\(456\) 0 0
\(457\) 13147.8 13147.8i 1.34579 1.34579i 0.455619 0.890175i \(-0.349418\pi\)
0.890175 0.455619i \(-0.150582\pi\)
\(458\) 0 0
\(459\) 4596.08 0.467378
\(460\) 0 0
\(461\) −3239.67 −0.327302 −0.163651 0.986518i \(-0.552327\pi\)
−0.163651 + 0.986518i \(0.552327\pi\)
\(462\) 0 0
\(463\) −1552.82 + 1552.82i −0.155865 + 0.155865i −0.780732 0.624867i \(-0.785153\pi\)
0.624867 + 0.780732i \(0.285153\pi\)
\(464\) 0 0
\(465\) −2160.92 3330.98i −0.215506 0.332195i
\(466\) 0 0
\(467\) −6322.16 6322.16i −0.626456 0.626456i 0.320719 0.947174i \(-0.396076\pi\)
−0.947174 + 0.320719i \(0.896076\pi\)
\(468\) 0 0
\(469\) 3253.29i 0.320305i
\(470\) 0 0
\(471\) 13072.6i 1.27888i
\(472\) 0 0
\(473\) 11545.6 + 11545.6i 1.12234 + 1.12234i
\(474\) 0 0
\(475\) 5685.04 + 2537.59i 0.549152 + 0.245121i
\(476\) 0 0
\(477\) 1786.15 1786.15i 0.171451 0.171451i
\(478\) 0 0
\(479\) 7141.64 0.681232 0.340616 0.940203i \(-0.389364\pi\)
0.340616 + 0.940203i \(0.389364\pi\)
\(480\) 0 0
\(481\) 1287.94 0.122090
\(482\) 0 0
\(483\) −4804.40 + 4804.40i −0.452604 + 0.452604i
\(484\) 0 0
\(485\) −6110.36 + 3964.00i −0.572076 + 0.371126i
\(486\) 0 0
\(487\) 3827.76 + 3827.76i 0.356165 + 0.356165i 0.862397 0.506232i \(-0.168962\pi\)
−0.506232 + 0.862397i \(0.668962\pi\)
\(488\) 0 0
\(489\) 13668.4i 1.26402i
\(490\) 0 0
\(491\) 14943.2i 1.37348i 0.726904 + 0.686739i \(0.240959\pi\)
−0.726904 + 0.686739i \(0.759041\pi\)
\(492\) 0 0
\(493\) −6553.74 6553.74i −0.598713 0.598713i
\(494\) 0 0
\(495\) 2814.56 + 599.646i 0.255566 + 0.0544486i
\(496\) 0 0
\(497\) −8086.80 + 8086.80i −0.729865 + 0.729865i
\(498\) 0 0
\(499\) −2324.51 −0.208535 −0.104268 0.994549i \(-0.533250\pi\)
−0.104268 + 0.994549i \(0.533250\pi\)
\(500\) 0 0
\(501\) −16240.1 −1.44821
\(502\) 0 0
\(503\) −4791.06 + 4791.06i −0.424697 + 0.424697i −0.886817 0.462120i \(-0.847089\pi\)
0.462120 + 0.886817i \(0.347089\pi\)
\(504\) 0 0
\(505\) −65.3519 13.9233i −0.00575865 0.00122689i
\(506\) 0 0
\(507\) 8228.84 + 8228.84i 0.720820 + 0.720820i
\(508\) 0 0
\(509\) 3391.52i 0.295337i −0.989037 0.147668i \(-0.952823\pi\)
0.989037 0.147668i \(-0.0471768\pi\)
\(510\) 0 0
\(511\) 6234.74i 0.539743i
\(512\) 0 0
\(513\) −4320.71 4320.71i −0.371860 0.371860i
\(514\) 0 0
\(515\) 1828.19 1186.01i 0.156426 0.101479i
\(516\) 0 0
\(517\) 5907.27 5907.27i 0.502517 0.502517i
\(518\) 0 0
\(519\) 2561.75 0.216664
\(520\) 0 0
\(521\) −10835.4 −0.911146 −0.455573 0.890198i \(-0.650566\pi\)
−0.455573 + 0.890198i \(0.650566\pi\)
\(522\) 0 0
\(523\) −1210.80 + 1210.80i −0.101233 + 0.101233i −0.755909 0.654676i \(-0.772805\pi\)
0.654676 + 0.755909i \(0.272805\pi\)
\(524\) 0 0
\(525\) 13286.1 + 5930.41i 1.10448 + 0.492998i
\(526\) 0 0
\(527\) 1650.95 + 1650.95i 0.136464 + 0.136464i
\(528\) 0 0
\(529\) 8759.55i 0.719943i
\(530\) 0 0
\(531\) 1996.99i 0.163205i
\(532\) 0 0
\(533\) 1043.33 + 1043.33i 0.0847874 + 0.0847874i
\(534\) 0 0
\(535\) 6229.69 + 9602.83i 0.503426 + 0.776012i
\(536\) 0 0
\(537\) 14175.0 14175.0i 1.13910 1.13910i
\(538\) 0 0
\(539\) 3494.62 0.279265
\(540\) 0 0
\(541\) 7014.81 0.557468 0.278734 0.960368i \(-0.410085\pi\)
0.278734 + 0.960368i \(0.410085\pi\)
\(542\) 0 0
\(543\) −19218.9 + 19218.9i −1.51890 + 1.51890i
\(544\) 0 0
\(545\) −2089.18 + 9805.98i −0.164203 + 0.770719i
\(546\) 0 0
\(547\) −10104.9 10104.9i −0.789860 0.789860i 0.191611 0.981471i \(-0.438629\pi\)
−0.981471 + 0.191611i \(0.938629\pi\)
\(548\) 0 0
\(549\) 1466.67i 0.114018i
\(550\) 0 0
\(551\) 12322.2i 0.952708i
\(552\) 0 0
\(553\) −16933.6 16933.6i −1.30215 1.30215i
\(554\) 0 0
\(555\) 1374.58 6451.89i 0.105131 0.493455i
\(556\) 0 0
\(557\) −1950.22 + 1950.22i −0.148355 + 0.148355i −0.777383 0.629028i \(-0.783453\pi\)
0.629028 + 0.777383i \(0.283453\pi\)
\(558\) 0 0
\(559\) −4315.57 −0.326528
\(560\) 0 0
\(561\) −10045.9 −0.756039
\(562\) 0 0
\(563\) −4425.60 + 4425.60i −0.331291 + 0.331291i −0.853077 0.521786i \(-0.825266\pi\)
0.521786 + 0.853077i \(0.325266\pi\)
\(564\) 0 0
\(565\) 4523.99 + 6973.56i 0.336860 + 0.519257i
\(566\) 0 0
\(567\) −12230.6 12230.6i −0.905884 0.905884i
\(568\) 0 0
\(569\) 14666.9i 1.08061i 0.841469 + 0.540305i \(0.181691\pi\)
−0.841469 + 0.540305i \(0.818309\pi\)
\(570\) 0 0
\(571\) 664.054i 0.0486686i −0.999704 0.0243343i \(-0.992253\pi\)
0.999704 0.0243343i \(-0.00774662\pi\)
\(572\) 0 0
\(573\) −6964.21 6964.21i −0.507738 0.507738i
\(574\) 0 0
\(575\) −6814.50 + 2608.45i −0.494234 + 0.189182i
\(576\) 0 0
\(577\) 583.058 583.058i 0.0420676 0.0420676i −0.685760 0.727828i \(-0.740530\pi\)
0.727828 + 0.685760i \(0.240530\pi\)
\(578\) 0 0
\(579\) −11598.7 −0.832516
\(580\) 0 0
\(581\) −17117.9 −1.22232
\(582\) 0 0
\(583\) 15368.8 15368.8i 1.09178 1.09178i
\(584\) 0 0
\(585\) −638.088 + 413.950i −0.0450969 + 0.0292559i
\(586\) 0 0
\(587\) 6911.99 + 6911.99i 0.486011 + 0.486011i 0.907045 0.421034i \(-0.138333\pi\)
−0.421034 + 0.907045i \(0.638333\pi\)
\(588\) 0 0
\(589\) 3104.07i 0.217150i
\(590\) 0 0
\(591\) 5307.89i 0.369437i
\(592\) 0 0
\(593\) −11384.8 11384.8i −0.788396 0.788396i 0.192835 0.981231i \(-0.438232\pi\)
−0.981231 + 0.192835i \(0.938232\pi\)
\(594\) 0 0
\(595\) −8367.80 1782.77i −0.576549 0.122834i
\(596\) 0 0
\(597\) 2654.19 2654.19i 0.181957 0.181957i
\(598\) 0 0
\(599\) 25321.6 1.72723 0.863616 0.504151i \(-0.168194\pi\)
0.863616 + 0.504151i \(0.168194\pi\)
\(600\) 0 0
\(601\) 27777.8 1.88533 0.942663 0.333746i \(-0.108313\pi\)
0.942663 + 0.333746i \(0.108313\pi\)
\(602\) 0 0
\(603\) 615.947 615.947i 0.0415975 0.0415975i
\(604\) 0 0
\(605\) 9663.25 + 2058.77i 0.649367 + 0.138348i
\(606\) 0 0
\(607\) −19575.7 19575.7i −1.30898 1.30898i −0.922150 0.386833i \(-0.873569\pi\)
−0.386833 0.922150i \(-0.626431\pi\)
\(608\) 0 0
\(609\) 28797.2i 1.91613i
\(610\) 0 0
\(611\) 2208.04i 0.146199i
\(612\) 0 0
\(613\) 12841.3 + 12841.3i 0.846091 + 0.846091i 0.989643 0.143552i \(-0.0458525\pi\)
−0.143552 + 0.989643i \(0.545853\pi\)
\(614\) 0 0
\(615\) 6340.02 4112.99i 0.415698 0.269678i
\(616\) 0 0
\(617\) 15254.6 15254.6i 0.995346 0.995346i −0.00464336 0.999989i \(-0.501478\pi\)
0.999989 + 0.00464336i \(0.00147803\pi\)
\(618\) 0 0
\(619\) 13042.3 0.846874 0.423437 0.905926i \(-0.360824\pi\)
0.423437 + 0.905926i \(0.360824\pi\)
\(620\) 0 0
\(621\) 7161.58 0.462776
\(622\) 0 0
\(623\) 7974.11 7974.11i 0.512803 0.512803i
\(624\) 0 0
\(625\) 10433.2 + 11631.4i 0.667723 + 0.744410i
\(626\) 0 0
\(627\) 9444.01 + 9444.01i 0.601527 + 0.601527i
\(628\) 0 0
\(629\) 3879.07i 0.245896i
\(630\) 0 0
\(631\) 6843.39i 0.431745i 0.976422 + 0.215872i \(0.0692595\pi\)
−0.976422 + 0.215872i \(0.930740\pi\)
\(632\) 0 0
\(633\) 23456.3 + 23456.3i 1.47283 + 1.47283i
\(634\) 0 0
\(635\) 649.038 + 1000.47i 0.0405611 + 0.0625233i
\(636\) 0 0
\(637\) −653.116 + 653.116i −0.0406239 + 0.0406239i
\(638\) 0 0
\(639\) −3062.15 −0.189573
\(640\) 0 0
\(641\) −2449.97 −0.150964 −0.0754820 0.997147i \(-0.524050\pi\)
−0.0754820 + 0.997147i \(0.524050\pi\)
\(642\) 0 0
\(643\) 22279.7 22279.7i 1.36645 1.36645i 0.500999 0.865448i \(-0.332966\pi\)
0.865448 0.500999i \(-0.167034\pi\)
\(644\) 0 0
\(645\) −4605.87 + 21618.6i −0.281172 + 1.31974i
\(646\) 0 0
\(647\) 5040.77 + 5040.77i 0.306295 + 0.306295i 0.843471 0.537175i \(-0.180509\pi\)
−0.537175 + 0.843471i \(0.680509\pi\)
\(648\) 0 0
\(649\) 17182.9i 1.03927i
\(650\) 0 0
\(651\) 7254.29i 0.436740i
\(652\) 0 0
\(653\) 4532.72 + 4532.72i 0.271637 + 0.271637i 0.829759 0.558122i \(-0.188478\pi\)
−0.558122 + 0.829759i \(0.688478\pi\)
\(654\) 0 0
\(655\) 3202.10 15029.7i 0.191017 0.896579i
\(656\) 0 0
\(657\) 1180.43 1180.43i 0.0700956 0.0700956i
\(658\) 0 0
\(659\) −12951.7 −0.765595 −0.382797 0.923832i \(-0.625039\pi\)
−0.382797 + 0.923832i \(0.625039\pi\)
\(660\) 0 0
\(661\) −6827.08 −0.401729 −0.200864 0.979619i \(-0.564375\pi\)
−0.200864 + 0.979619i \(0.564375\pi\)
\(662\) 0 0
\(663\) 1877.49 1877.49i 0.109979 0.109979i
\(664\) 0 0
\(665\) 6190.50 + 9542.42i 0.360988 + 0.556450i
\(666\) 0 0
\(667\) −10212.0 10212.0i −0.592819 0.592819i
\(668\) 0 0
\(669\) 18660.0i 1.07838i
\(670\) 0 0
\(671\) 12619.8i 0.726052i
\(672\) 0 0
\(673\) 9731.89 + 9731.89i 0.557410 + 0.557410i 0.928569 0.371159i \(-0.121040\pi\)
−0.371159 + 0.928569i \(0.621040\pi\)
\(674\) 0 0
\(675\) −5482.27 14322.3i −0.312611 0.816690i
\(676\) 0 0
\(677\) 7885.88 7885.88i 0.447679 0.447679i −0.446903 0.894582i \(-0.647473\pi\)
0.894582 + 0.446903i \(0.147473\pi\)
\(678\) 0 0
\(679\) −13307.3 −0.752115
\(680\) 0 0
\(681\) −23935.1 −1.34684
\(682\) 0 0
\(683\) 15861.8 15861.8i 0.888629 0.888629i −0.105763 0.994391i \(-0.533728\pi\)
0.994391 + 0.105763i \(0.0337284\pi\)
\(684\) 0 0
\(685\) 26560.6 17230.8i 1.48150 0.961102i
\(686\) 0 0
\(687\) 20070.6 + 20070.6i 1.11462 + 1.11462i
\(688\) 0 0
\(689\) 5744.60i 0.317637i
\(690\) 0 0
\(691\) 30100.7i 1.65714i 0.559883 + 0.828572i \(0.310846\pi\)
−0.559883 + 0.828572i \(0.689154\pi\)
\(692\) 0 0
\(693\) 3717.77 + 3717.77i 0.203790 + 0.203790i
\(694\) 0 0
\(695\) −28157.5 5998.98i −1.53680 0.327416i
\(696\) 0 0
\(697\) −3142.34 + 3142.34i −0.170767 + 0.170767i
\(698\) 0 0
\(699\) −13288.8 −0.719066
\(700\) 0 0
\(701\) 20267.4 1.09199 0.545997 0.837787i \(-0.316151\pi\)
0.545997 + 0.837787i \(0.316151\pi\)
\(702\) 0 0
\(703\) 3646.66 3646.66i 0.195642 0.195642i
\(704\) 0 0
\(705\) 11061.0 + 2356.57i 0.590898 + 0.125892i
\(706\) 0 0
\(707\) −86.3236 86.3236i −0.00459199 0.00459199i
\(708\) 0 0
\(709\) 18499.1i 0.979900i 0.871750 + 0.489950i \(0.162985\pi\)
−0.871750 + 0.489950i \(0.837015\pi\)
\(710\) 0 0
\(711\) 6412.08i 0.338216i
\(712\) 0 0
\(713\) 2572.50 + 2572.50i 0.135120 + 0.135120i
\(714\) 0 0
\(715\) −5490.36 + 3561.79i −0.287172 + 0.186298i
\(716\) 0 0
\(717\) 14404.4 14404.4i 0.750269 0.750269i
\(718\) 0 0
\(719\) −25990.9 −1.34812 −0.674060 0.738676i \(-0.735451\pi\)
−0.674060 + 0.738676i \(0.735451\pi\)
\(720\) 0 0
\(721\) 3981.47 0.205656
\(722\) 0 0
\(723\) −20691.0 + 20691.0i −1.06432 + 1.06432i
\(724\) 0 0
\(725\) −12605.4 + 28240.2i −0.645727 + 1.44664i
\(726\) 0 0
\(727\) 23543.5 + 23543.5i 1.20107 + 1.20107i 0.973841 + 0.227232i \(0.0729675\pi\)
0.227232 + 0.973841i \(0.427033\pi\)
\(728\) 0 0
\(729\) 14244.1i 0.723674i
\(730\) 0 0
\(731\) 12997.8i 0.657646i
\(732\) 0 0
\(733\) −16546.7 16546.7i −0.833789 0.833789i 0.154244 0.988033i \(-0.450706\pi\)
−0.988033 + 0.154244i \(0.950706\pi\)
\(734\) 0 0
\(735\) 2574.70 + 3968.80i 0.129210 + 0.199172i
\(736\) 0 0
\(737\) 5299.85 5299.85i 0.264888 0.264888i
\(738\) 0 0
\(739\) 8124.95 0.404440 0.202220 0.979340i \(-0.435184\pi\)
0.202220 + 0.979340i \(0.435184\pi\)
\(740\) 0 0
\(741\) −3530.01 −0.175004
\(742\) 0 0
\(743\) −5222.62 + 5222.62i −0.257873 + 0.257873i −0.824188 0.566316i \(-0.808368\pi\)
0.566316 + 0.824188i \(0.308368\pi\)
\(744\) 0 0
\(745\) −3081.99 + 14465.9i −0.151564 + 0.711398i
\(746\) 0 0
\(747\) −3240.94 3240.94i −0.158741 0.158741i
\(748\) 0 0
\(749\) 20913.3i 1.02023i
\(750\) 0 0
\(751\) 27086.9i 1.31613i 0.752961 + 0.658066i \(0.228625\pi\)
−0.752961 + 0.658066i \(0.771375\pi\)
\(752\) 0 0
\(753\) −26786.5 26786.5i −1.29636 1.29636i
\(754\) 0 0
\(755\) −133.356 + 625.936i −0.00642826 + 0.0301724i
\(756\) 0 0
\(757\) 11094.6 11094.6i 0.532684 0.532684i −0.388686 0.921370i \(-0.627071\pi\)
0.921370 + 0.388686i \(0.127071\pi\)
\(758\) 0 0
\(759\) −15653.4 −0.748595
\(760\) 0 0
\(761\) −8006.53 −0.381388 −0.190694 0.981649i \(-0.561074\pi\)
−0.190694 + 0.981649i \(0.561074\pi\)
\(762\) 0 0
\(763\) −12952.8 + 12952.8i −0.614576 + 0.614576i
\(764\) 0 0
\(765\) −1246.75 1921.81i −0.0589231 0.0908277i
\(766\) 0 0
\(767\) 3211.35 + 3211.35i 0.151180 + 0.151180i
\(768\) 0 0
\(769\) 5515.54i 0.258642i 0.991603 + 0.129321i \(0.0412797\pi\)
−0.991603 + 0.129321i \(0.958720\pi\)
\(770\) 0 0
\(771\) 3612.28i 0.168733i
\(772\) 0 0
\(773\) −7904.07 7904.07i −0.367774 0.367774i 0.498891 0.866665i \(-0.333741\pi\)
−0.866665 + 0.498891i \(0.833741\pi\)
\(774\) 0 0
\(775\) 3175.42 7113.98i 0.147180 0.329731i
\(776\) 0 0
\(777\) 8522.33 8522.33i 0.393484 0.393484i
\(778\) 0 0
\(779\) 5908.13 0.271734
\(780\) 0 0
\(781\) −26348.0 −1.20718
\(782\) 0 0
\(783\) 21463.0 21463.0i 0.979596 0.979596i
\(784\) 0 0
\(785\) 21518.2 13959.6i 0.978366 0.634700i
\(786\) 0 0
\(787\) 27606.7 + 27606.7i 1.25041 + 1.25041i 0.955537 + 0.294870i \(0.0952765\pi\)
0.294870 + 0.955537i \(0.404724\pi\)
\(788\) 0 0
\(789\) 1172.74i 0.0529158i
\(790\) 0 0
\(791\) 15187.2i 0.682673i
\(792\) 0 0
\(793\) 2358.53 + 2358.53i 0.105617 + 0.105617i
\(794\) 0 0
\(795\) 28777.2 + 6131.03i 1.28380 + 0.273516i
\(796\) 0 0
\(797\) 19000.5 19000.5i 0.844456 0.844456i −0.144979 0.989435i \(-0.546311\pi\)
0.989435 + 0.144979i \(0.0463113\pi\)
\(798\) 0 0
\(799\) −6650.24 −0.294454
\(800\) 0 0
\(801\) 3019.48 0.133194
\(802\) 0 0
\(803\) 10156.9 10156.9i 0.446361 0.446361i
\(804\) 0 0
\(805\) −13038.7 2777.90i −0.570872 0.121625i
\(806\) 0 0
\(807\) −11140.4 11140.4i −0.485949 0.485949i
\(808\) 0 0
\(809\) 33025.1i 1.43523i −0.696440 0.717615i \(-0.745234\pi\)
0.696440 0.717615i \(-0.254766\pi\)
\(810\) 0 0
\(811\) 19125.0i 0.828075i 0.910260 + 0.414037i \(0.135882\pi\)
−0.910260 + 0.414037i \(0.864118\pi\)
\(812\) 0 0
\(813\) −25675.4 25675.4i −1.10760 1.10760i
\(814\) 0 0
\(815\) 22498.9 14595.8i 0.966997 0.627325i
\(816\) 0 0
\(817\) −12219.0 + 12219.0i −0.523243 + 0.523243i
\(818\) 0 0
\(819\) −1389.64 −0.0592894
\(820\) 0 0
\(821\) −8022.85 −0.341047 −0.170523 0.985354i \(-0.554546\pi\)
−0.170523 + 0.985354i \(0.554546\pi\)
\(822\) 0 0
\(823\) −941.682 + 941.682i −0.0398845 + 0.0398845i −0.726768 0.686883i \(-0.758978\pi\)
0.686883 + 0.726768i \(0.258978\pi\)
\(824\) 0 0
\(825\) 11982.9 + 31305.0i 0.505686 + 1.32109i
\(826\) 0 0
\(827\) 413.194 + 413.194i 0.0173739 + 0.0173739i 0.715740 0.698366i \(-0.246089\pi\)
−0.698366 + 0.715740i \(0.746089\pi\)
\(828\) 0 0
\(829\) 13830.1i 0.579418i 0.957115 + 0.289709i \(0.0935585\pi\)
−0.957115 + 0.289709i \(0.906441\pi\)
\(830\) 0 0
\(831\) 3121.39i 0.130301i
\(832\) 0 0
\(833\) −1967.07 1967.07i −0.0818188 0.0818188i
\(834\) 0 0
\(835\) −17342.0 26732.0i −0.718736 1.10790i
\(836\) 0 0
\(837\) −5406.72 + 5406.72i −0.223278 + 0.223278i
\(838\) 0 0
\(839\) 29230.2 1.20279 0.601393 0.798954i \(-0.294613\pi\)
0.601393 + 0.798954i \(0.294613\pi\)
\(840\) 0 0
\(841\) −36820.9 −1.50973
\(842\) 0 0
\(843\) −21292.4 + 21292.4i −0.869929 + 0.869929i
\(844\) 0 0
\(845\) −4757.91 + 22332.2i −0.193701 + 0.909175i
\(846\) 0 0
\(847\) 12764.2 + 12764.2i 0.517809 + 0.517809i
\(848\) 0 0
\(849\) 2752.59i 0.111270i
\(850\) 0 0
\(851\) 6044.34i 0.243475i
\(852\) 0 0
\(853\) 20858.3 + 20858.3i 0.837251 + 0.837251i 0.988496 0.151245i \(-0.0483283\pi\)
−0.151245 + 0.988496i \(0.548328\pi\)
\(854\) 0 0
\(855\) −634.619 + 2978.72i −0.0253842 + 0.119146i
\(856\) 0 0
\(857\) 24905.5 24905.5i 0.992714 0.992714i −0.00725972 0.999974i \(-0.502311\pi\)
0.999974 + 0.00725972i \(0.00231086\pi\)
\(858\) 0 0
\(859\) −26939.2 −1.07003 −0.535013 0.844844i \(-0.679693\pi\)
−0.535013 + 0.844844i \(0.679693\pi\)
\(860\) 0 0
\(861\) 13807.4 0.546523
\(862\) 0 0
\(863\) −17233.1 + 17233.1i −0.679747 + 0.679747i −0.959943 0.280196i \(-0.909601\pi\)
0.280196 + 0.959943i \(0.409601\pi\)
\(864\) 0 0
\(865\) 2735.57 + 4216.77i 0.107528 + 0.165751i
\(866\) 0 0
\(867\) −14140.9 14140.9i −0.553922 0.553922i
\(868\) 0 0
\(869\) 55172.1i 2.15372i
\(870\) 0 0
\(871\) 1981.00i 0.0770649i
\(872\) 0 0
\(873\) −2519.47 2519.47i −0.0976760 0.0976760i
\(874\) 0 0
\(875\) 4425.77 + 28202.3i 0.170992 + 1.08961i
\(876\) 0 0
\(877\) −8676.94 + 8676.94i −0.334093 + 0.334093i −0.854138 0.520046i \(-0.825915\pi\)
0.520046 + 0.854138i \(0.325915\pi\)
\(878\) 0 0
\(879\) −53635.0 −2.05809
\(880\) 0 0
\(881\) −9480.93 −0.362566 −0.181283 0.983431i \(-0.558025\pi\)
−0.181283 + 0.983431i \(0.558025\pi\)
\(882\) 0 0
\(883\) 27861.7 27861.7i 1.06186 1.06186i 0.0639013 0.997956i \(-0.479646\pi\)
0.997956 0.0639013i \(-0.0203543\pi\)
\(884\) 0 0
\(885\) 19514.4 12659.7i 0.741209 0.480848i
\(886\) 0 0
\(887\) −27498.7 27498.7i −1.04094 1.04094i −0.999125 0.0418178i \(-0.986685\pi\)
−0.0418178 0.999125i \(-0.513315\pi\)
\(888\) 0 0
\(889\) 2178.84i 0.0822001i
\(890\) 0 0
\(891\) 39849.0i 1.49831i
\(892\) 0 0
\(893\) 6251.80 + 6251.80i 0.234276 + 0.234276i
\(894\) 0 0
\(895\) 38469.5 + 8195.97i 1.43675 + 0.306102i
\(896\) 0 0
\(897\) 2925.50 2925.50i 0.108896 0.108896i
\(898\) 0 0
\(899\) 15419.4 0.572040
\(900\) 0 0
\(901\) −17301.8 −0.639739
\(902\) 0 0
\(903\) −28556.1 + 28556.1i −1.05237 + 1.05237i
\(904\) 0 0
\(905\) −52158.0 11112.3i −1.91579 0.408162i
\(906\) 0 0
\(907\) 1450.80 + 1450.80i 0.0531127 + 0.0531127i 0.733164 0.680052i \(-0.238043\pi\)
−0.680052 + 0.733164i \(0.738043\pi\)
\(908\) 0 0
\(909\) 32.6873i 0.00119271i
\(910\) 0 0
\(911\) 20370.8i 0.740850i −0.928862 0.370425i \(-0.879212\pi\)
0.928862 0.370425i \(-0.120788\pi\)
\(912\) 0 0
\(913\) −27886.3 27886.3i −1.01085 1.01085i
\(914\) 0 0
\(915\) 14332.1 9297.75i 0.517820 0.335928i
\(916\) 0 0
\(917\) 19852.8 19852.8i 0.714937 0.714937i
\(918\) 0 0
\(919\) 21825.1 0.783399 0.391699 0.920093i \(-0.371887\pi\)
0.391699 + 0.920093i \(0.371887\pi\)
\(920\) 0 0
\(921\) −4316.69 −0.154440
\(922\) 0 0
\(923\) 4924.22 4924.22i 0.175604 0.175604i
\(924\) 0 0
\(925\) 12088.0 4627.02i 0.429676 0.164471i
\(926\) 0 0
\(927\) 753.812 + 753.812i 0.0267081 + 0.0267081i
\(928\) 0 0
\(929\) 9339.19i 0.329827i 0.986308 + 0.164913i \(0.0527345\pi\)
−0.986308 + 0.164913i \(0.947266\pi\)
\(930\) 0 0
\(931\) 3698.44i 0.130195i
\(932\) 0 0
\(933\) −14423.1 14423.1i −0.506099 0.506099i
\(934\) 0 0
\(935\) −10727.5 16536.0i −0.375216 0.578381i
\(936\) 0 0
\(937\) 431.639 431.639i 0.0150491 0.0150491i −0.699542 0.714591i \(-0.746613\pi\)
0.714591 + 0.699542i \(0.246613\pi\)
\(938\) 0 0
\(939\) −54318.2 −1.88776
\(940\) 0 0
\(941\) −21225.1 −0.735300 −0.367650 0.929964i \(-0.619838\pi\)
−0.367650 + 0.929964i \(0.619838\pi\)
\(942\) 0 0
\(943\) −4896.37 + 4896.37i −0.169086 + 0.169086i
\(944\) 0 0
\(945\) 5838.42 27403.9i 0.200978 0.943330i
\(946\) 0 0
\(947\) −11052.1 11052.1i −0.379244 0.379244i 0.491585 0.870830i \(-0.336418\pi\)
−0.870830 + 0.491585i \(0.836418\pi\)
\(948\) 0 0
\(949\) 3796.47i 0.129861i
\(950\) 0 0
\(951\) 33548.9i 1.14395i
\(952\) 0 0
\(953\) 22553.2 + 22553.2i 0.766600 + 0.766600i 0.977506 0.210906i \(-0.0676414\pi\)
−0.210906 + 0.977506i \(0.567641\pi\)
\(954\) 0 0
\(955\) 4026.70 18900.2i 0.136441 0.640413i
\(956\) 0 0
\(957\) −46912.7 + 46912.7i −1.58461 + 1.58461i
\(958\) 0 0
\(959\) 57844.3 1.94775
\(960\) 0 0
\(961\) 25906.7 0.869616
\(962\) 0 0
\(963\) −3959.51 + 3959.51i −0.132496 + 0.132496i
\(964\) 0 0
\(965\) −12385.7 19092.1i −0.413171 0.636887i
\(966\) 0 0
\(967\) −18695.9 18695.9i −0.621739 0.621739i 0.324237 0.945976i \(-0.394892\pi\)
−0.945976 + 0.324237i \(0.894892\pi\)
\(968\) 0 0
\(969\) 10631.8i 0.352469i
\(970\) 0 0
\(971\) 11285.7i 0.372993i −0.982456 0.186496i \(-0.940287\pi\)
0.982456 0.186496i \(-0.0597133\pi\)
\(972\) 0 0
\(973\) −37193.3 37193.3i −1.22545 1.22545i
\(974\) 0 0
\(975\) −8090.16 3611.15i −0.265736 0.118615i
\(976\) 0 0
\(977\) 9765.98 9765.98i 0.319797 0.319797i −0.528892 0.848689i \(-0.677392\pi\)
0.848689 + 0.528892i \(0.177392\pi\)
\(978\) 0 0
\(979\) 25980.8 0.848162
\(980\) 0 0
\(981\) −4904.70 −0.159628
\(982\) 0 0
\(983\) 33483.4 33483.4i 1.08642 1.08642i 0.0905295 0.995894i \(-0.471144\pi\)
0.995894 0.0905295i \(-0.0288559\pi\)
\(984\) 0 0
\(985\) −8737.05 + 5668.03i −0.282625 + 0.183349i
\(986\) 0 0
\(987\) 14610.6 + 14610.6i 0.471186 + 0.471186i
\(988\) 0 0
\(989\) 20253.0i 0.651171i
\(990\) 0 0
\(991\) 35651.6i 1.14280i −0.820673 0.571398i \(-0.806401\pi\)
0.820673 0.571398i \(-0.193599\pi\)
\(992\) 0 0
\(993\) −35544.4 35544.4i −1.13592 1.13592i
\(994\) 0 0
\(995\) 7203.19 + 1534.65i 0.229504 + 0.0488961i
\(996\) 0 0
\(997\) 19421.9 19421.9i 0.616949 0.616949i −0.327799 0.944748i \(-0.606307\pi\)
0.944748 + 0.327799i \(0.106307\pi\)
\(998\) 0 0
\(999\) −12703.6 −0.402327
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.4.n.k.63.2 12
4.3 odd 2 inner 320.4.n.k.63.5 12
5.2 odd 4 inner 320.4.n.k.127.5 12
8.3 odd 2 20.4.e.b.3.4 yes 12
8.5 even 2 20.4.e.b.3.1 12
20.7 even 4 inner 320.4.n.k.127.2 12
24.5 odd 2 180.4.k.e.163.6 12
24.11 even 2 180.4.k.e.163.3 12
40.3 even 4 100.4.e.e.7.6 12
40.13 odd 4 100.4.e.e.7.3 12
40.19 odd 2 100.4.e.e.43.3 12
40.27 even 4 20.4.e.b.7.1 yes 12
40.29 even 2 100.4.e.e.43.6 12
40.37 odd 4 20.4.e.b.7.4 yes 12
120.77 even 4 180.4.k.e.127.3 12
120.107 odd 4 180.4.k.e.127.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
20.4.e.b.3.1 12 8.5 even 2
20.4.e.b.3.4 yes 12 8.3 odd 2
20.4.e.b.7.1 yes 12 40.27 even 4
20.4.e.b.7.4 yes 12 40.37 odd 4
100.4.e.e.7.3 12 40.13 odd 4
100.4.e.e.7.6 12 40.3 even 4
100.4.e.e.43.3 12 40.19 odd 2
100.4.e.e.43.6 12 40.29 even 2
180.4.k.e.127.3 12 120.77 even 4
180.4.k.e.127.6 12 120.107 odd 4
180.4.k.e.163.3 12 24.11 even 2
180.4.k.e.163.6 12 24.5 odd 2
320.4.n.k.63.2 12 1.1 even 1 trivial
320.4.n.k.63.5 12 4.3 odd 2 inner
320.4.n.k.127.2 12 20.7 even 4 inner
320.4.n.k.127.5 12 5.2 odd 4 inner