Properties

Label 320.4.d.d.161.1
Level $320$
Weight $4$
Character 320.161
Analytic conductor $18.881$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,4,Mod(161,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 4, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.161"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 320.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,64] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(18.8806112018\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.36185170176.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 38x^{6} + 517x^{4} + 2976x^{2} + 6084 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 161.1
Root \(-3.81392i\) of defining polynomial
Character \(\chi\) \(=\) 320.161
Dual form 320.4.d.d.161.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.35989i q^{3} -5.00000i q^{5} -10.7522 q^{7} -42.8877 q^{9} -5.01534i q^{11} +50.0632i q^{13} -41.7994 q^{15} -136.304 q^{17} -41.8926i q^{19} +89.8871i q^{21} +121.937 q^{23} -25.0000 q^{25} +132.819i q^{27} +190.193i q^{29} -135.790 q^{31} -41.9277 q^{33} +53.7610i q^{35} -399.595i q^{37} +418.523 q^{39} +46.2759 q^{41} +385.530i q^{43} +214.438i q^{45} +436.584 q^{47} -227.390 q^{49} +1139.49i q^{51} -18.1818i q^{53} -25.0767 q^{55} -350.218 q^{57} +191.746i q^{59} +833.525i q^{61} +461.137 q^{63} +250.316 q^{65} -446.397i q^{67} -1019.38i q^{69} -1047.68 q^{71} -57.5478 q^{73} +208.997i q^{75} +53.9259i q^{77} -697.709 q^{79} -47.6132 q^{81} -1244.50i q^{83} +681.521i q^{85} +1589.99 q^{87} -1205.19 q^{89} -538.289i q^{91} +1135.19i q^{93} -209.463 q^{95} -755.602 q^{97} +215.097i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 64 q^{7} - 104 q^{9} - 96 q^{17} + 416 q^{23} - 200 q^{25} - 64 q^{31} + 944 q^{33} + 2176 q^{39} + 208 q^{41} + 1216 q^{47} - 760 q^{49} + 160 q^{55} - 16 q^{57} + 32 q^{63} + 800 q^{65} + 1344 q^{71}+ \cdots - 896 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 8.35989i − 1.60886i −0.594047 0.804430i \(-0.702471\pi\)
0.594047 0.804430i \(-0.297529\pi\)
\(4\) 0 0
\(5\) − 5.00000i − 0.447214i
\(6\) 0 0
\(7\) −10.7522 −0.580564 −0.290282 0.956941i \(-0.593749\pi\)
−0.290282 + 0.956941i \(0.593749\pi\)
\(8\) 0 0
\(9\) −42.8877 −1.58843
\(10\) 0 0
\(11\) − 5.01534i − 0.137471i −0.997635 0.0687356i \(-0.978104\pi\)
0.997635 0.0687356i \(-0.0218965\pi\)
\(12\) 0 0
\(13\) 50.0632i 1.06808i 0.845459 + 0.534040i \(0.179327\pi\)
−0.845459 + 0.534040i \(0.820673\pi\)
\(14\) 0 0
\(15\) −41.7994 −0.719504
\(16\) 0 0
\(17\) −136.304 −1.94462 −0.972312 0.233687i \(-0.924921\pi\)
−0.972312 + 0.233687i \(0.924921\pi\)
\(18\) 0 0
\(19\) − 41.8926i − 0.505833i −0.967488 0.252917i \(-0.918610\pi\)
0.967488 0.252917i \(-0.0813898\pi\)
\(20\) 0 0
\(21\) 89.8871i 0.934046i
\(22\) 0 0
\(23\) 121.937 1.10547 0.552733 0.833358i \(-0.313585\pi\)
0.552733 + 0.833358i \(0.313585\pi\)
\(24\) 0 0
\(25\) −25.0000 −0.200000
\(26\) 0 0
\(27\) 132.819i 0.946707i
\(28\) 0 0
\(29\) 190.193i 1.21786i 0.793224 + 0.608930i \(0.208401\pi\)
−0.793224 + 0.608930i \(0.791599\pi\)
\(30\) 0 0
\(31\) −135.790 −0.786729 −0.393364 0.919383i \(-0.628689\pi\)
−0.393364 + 0.919383i \(0.628689\pi\)
\(32\) 0 0
\(33\) −41.9277 −0.221172
\(34\) 0 0
\(35\) 53.7610i 0.259636i
\(36\) 0 0
\(37\) − 399.595i − 1.77549i −0.460337 0.887744i \(-0.652272\pi\)
0.460337 0.887744i \(-0.347728\pi\)
\(38\) 0 0
\(39\) 418.523 1.71839
\(40\) 0 0
\(41\) 46.2759 0.176270 0.0881352 0.996109i \(-0.471909\pi\)
0.0881352 + 0.996109i \(0.471909\pi\)
\(42\) 0 0
\(43\) 385.530i 1.36728i 0.729822 + 0.683638i \(0.239603\pi\)
−0.729822 + 0.683638i \(0.760397\pi\)
\(44\) 0 0
\(45\) 214.438i 0.710369i
\(46\) 0 0
\(47\) 436.584 1.35494 0.677472 0.735549i \(-0.263076\pi\)
0.677472 + 0.735549i \(0.263076\pi\)
\(48\) 0 0
\(49\) −227.390 −0.662946
\(50\) 0 0
\(51\) 1139.49i 3.12863i
\(52\) 0 0
\(53\) − 18.1818i − 0.0471218i −0.999722 0.0235609i \(-0.992500\pi\)
0.999722 0.0235609i \(-0.00750037\pi\)
\(54\) 0 0
\(55\) −25.0767 −0.0614790
\(56\) 0 0
\(57\) −350.218 −0.813815
\(58\) 0 0
\(59\) 191.746i 0.423105i 0.977367 + 0.211553i \(0.0678520\pi\)
−0.977367 + 0.211553i \(0.932148\pi\)
\(60\) 0 0
\(61\) 833.525i 1.74954i 0.484538 + 0.874770i \(0.338988\pi\)
−0.484538 + 0.874770i \(0.661012\pi\)
\(62\) 0 0
\(63\) 461.137 0.922187
\(64\) 0 0
\(65\) 250.316 0.477660
\(66\) 0 0
\(67\) − 446.397i − 0.813970i −0.913435 0.406985i \(-0.866580\pi\)
0.913435 0.406985i \(-0.133420\pi\)
\(68\) 0 0
\(69\) − 1019.38i − 1.77854i
\(70\) 0 0
\(71\) −1047.68 −1.75123 −0.875614 0.483012i \(-0.839543\pi\)
−0.875614 + 0.483012i \(0.839543\pi\)
\(72\) 0 0
\(73\) −57.5478 −0.0922665 −0.0461333 0.998935i \(-0.514690\pi\)
−0.0461333 + 0.998935i \(0.514690\pi\)
\(74\) 0 0
\(75\) 208.997i 0.321772i
\(76\) 0 0
\(77\) 53.9259i 0.0798108i
\(78\) 0 0
\(79\) −697.709 −0.993651 −0.496826 0.867850i \(-0.665501\pi\)
−0.496826 + 0.867850i \(0.665501\pi\)
\(80\) 0 0
\(81\) −47.6132 −0.0653130
\(82\) 0 0
\(83\) − 1244.50i − 1.64581i −0.568182 0.822903i \(-0.692353\pi\)
0.568182 0.822903i \(-0.307647\pi\)
\(84\) 0 0
\(85\) 681.521i 0.869662i
\(86\) 0 0
\(87\) 1589.99 1.95937
\(88\) 0 0
\(89\) −1205.19 −1.43539 −0.717695 0.696358i \(-0.754803\pi\)
−0.717695 + 0.696358i \(0.754803\pi\)
\(90\) 0 0
\(91\) − 538.289i − 0.620088i
\(92\) 0 0
\(93\) 1135.19i 1.26574i
\(94\) 0 0
\(95\) −209.463 −0.226215
\(96\) 0 0
\(97\) −755.602 −0.790925 −0.395463 0.918482i \(-0.629416\pi\)
−0.395463 + 0.918482i \(0.629416\pi\)
\(98\) 0 0
\(99\) 215.097i 0.218364i
\(100\) 0 0
\(101\) 447.030i 0.440407i 0.975454 + 0.220204i \(0.0706722\pi\)
−0.975454 + 0.220204i \(0.929328\pi\)
\(102\) 0 0
\(103\) 567.470 0.542859 0.271429 0.962458i \(-0.412504\pi\)
0.271429 + 0.962458i \(0.412504\pi\)
\(104\) 0 0
\(105\) 449.435 0.417718
\(106\) 0 0
\(107\) − 1150.37i − 1.03935i −0.854365 0.519674i \(-0.826053\pi\)
0.854365 0.519674i \(-0.173947\pi\)
\(108\) 0 0
\(109\) − 607.574i − 0.533899i −0.963710 0.266950i \(-0.913984\pi\)
0.963710 0.266950i \(-0.0860157\pi\)
\(110\) 0 0
\(111\) −3340.57 −2.85651
\(112\) 0 0
\(113\) −319.435 −0.265929 −0.132964 0.991121i \(-0.542450\pi\)
−0.132964 + 0.991121i \(0.542450\pi\)
\(114\) 0 0
\(115\) − 609.687i − 0.494380i
\(116\) 0 0
\(117\) − 2147.09i − 1.69657i
\(118\) 0 0
\(119\) 1465.57 1.12898
\(120\) 0 0
\(121\) 1305.85 0.981102
\(122\) 0 0
\(123\) − 386.862i − 0.283595i
\(124\) 0 0
\(125\) 125.000i 0.0894427i
\(126\) 0 0
\(127\) −2134.56 −1.49143 −0.745713 0.666267i \(-0.767891\pi\)
−0.745713 + 0.666267i \(0.767891\pi\)
\(128\) 0 0
\(129\) 3222.99 2.19976
\(130\) 0 0
\(131\) 906.871i 0.604837i 0.953175 + 0.302419i \(0.0977941\pi\)
−0.953175 + 0.302419i \(0.902206\pi\)
\(132\) 0 0
\(133\) 450.438i 0.293668i
\(134\) 0 0
\(135\) 664.097 0.423380
\(136\) 0 0
\(137\) 119.624 0.0745998 0.0372999 0.999304i \(-0.488124\pi\)
0.0372999 + 0.999304i \(0.488124\pi\)
\(138\) 0 0
\(139\) − 2046.09i − 1.24854i −0.781210 0.624269i \(-0.785397\pi\)
0.781210 0.624269i \(-0.214603\pi\)
\(140\) 0 0
\(141\) − 3649.79i − 2.17991i
\(142\) 0 0
\(143\) 251.084 0.146830
\(144\) 0 0
\(145\) 950.965 0.544644
\(146\) 0 0
\(147\) 1900.96i 1.06659i
\(148\) 0 0
\(149\) 1453.15i 0.798969i 0.916740 + 0.399485i \(0.130811\pi\)
−0.916740 + 0.399485i \(0.869189\pi\)
\(150\) 0 0
\(151\) 893.396 0.481480 0.240740 0.970590i \(-0.422610\pi\)
0.240740 + 0.970590i \(0.422610\pi\)
\(152\) 0 0
\(153\) 5845.77 3.08891
\(154\) 0 0
\(155\) 678.950i 0.351836i
\(156\) 0 0
\(157\) − 2770.38i − 1.40828i −0.710060 0.704141i \(-0.751332\pi\)
0.710060 0.704141i \(-0.248668\pi\)
\(158\) 0 0
\(159\) −151.997 −0.0758125
\(160\) 0 0
\(161\) −1311.10 −0.641794
\(162\) 0 0
\(163\) − 2808.16i − 1.34940i −0.738093 0.674699i \(-0.764273\pi\)
0.738093 0.674699i \(-0.235727\pi\)
\(164\) 0 0
\(165\) 209.639i 0.0989111i
\(166\) 0 0
\(167\) −2674.32 −1.23919 −0.619595 0.784921i \(-0.712703\pi\)
−0.619595 + 0.784921i \(0.712703\pi\)
\(168\) 0 0
\(169\) −309.323 −0.140793
\(170\) 0 0
\(171\) 1796.68i 0.803482i
\(172\) 0 0
\(173\) 1303.63i 0.572907i 0.958094 + 0.286453i \(0.0924763\pi\)
−0.958094 + 0.286453i \(0.907524\pi\)
\(174\) 0 0
\(175\) 268.805 0.116113
\(176\) 0 0
\(177\) 1602.98 0.680718
\(178\) 0 0
\(179\) 478.502i 0.199804i 0.994997 + 0.0999019i \(0.0318529\pi\)
−0.994997 + 0.0999019i \(0.968147\pi\)
\(180\) 0 0
\(181\) − 1752.48i − 0.719672i −0.933016 0.359836i \(-0.882833\pi\)
0.933016 0.359836i \(-0.117167\pi\)
\(182\) 0 0
\(183\) 6968.17 2.81477
\(184\) 0 0
\(185\) −1997.98 −0.794022
\(186\) 0 0
\(187\) 683.612i 0.267330i
\(188\) 0 0
\(189\) − 1428.10i − 0.549624i
\(190\) 0 0
\(191\) −37.8904 −0.0143542 −0.00717711 0.999974i \(-0.502285\pi\)
−0.00717711 + 0.999974i \(0.502285\pi\)
\(192\) 0 0
\(193\) −500.910 −0.186820 −0.0934101 0.995628i \(-0.529777\pi\)
−0.0934101 + 0.995628i \(0.529777\pi\)
\(194\) 0 0
\(195\) − 2092.61i − 0.768488i
\(196\) 0 0
\(197\) 2564.22i 0.927375i 0.885999 + 0.463687i \(0.153474\pi\)
−0.885999 + 0.463687i \(0.846526\pi\)
\(198\) 0 0
\(199\) −4069.97 −1.44981 −0.724905 0.688848i \(-0.758117\pi\)
−0.724905 + 0.688848i \(0.758117\pi\)
\(200\) 0 0
\(201\) −3731.82 −1.30957
\(202\) 0 0
\(203\) − 2044.99i − 0.707046i
\(204\) 0 0
\(205\) − 231.380i − 0.0788305i
\(206\) 0 0
\(207\) −5229.62 −1.75596
\(208\) 0 0
\(209\) −210.106 −0.0695375
\(210\) 0 0
\(211\) − 4167.30i − 1.35966i −0.733368 0.679832i \(-0.762053\pi\)
0.733368 0.679832i \(-0.237947\pi\)
\(212\) 0 0
\(213\) 8758.52i 2.81748i
\(214\) 0 0
\(215\) 1927.65 0.611464
\(216\) 0 0
\(217\) 1460.04 0.456746
\(218\) 0 0
\(219\) 481.093i 0.148444i
\(220\) 0 0
\(221\) − 6823.82i − 2.07701i
\(222\) 0 0
\(223\) −1141.43 −0.342761 −0.171381 0.985205i \(-0.554823\pi\)
−0.171381 + 0.985205i \(0.554823\pi\)
\(224\) 0 0
\(225\) 1072.19 0.317687
\(226\) 0 0
\(227\) − 410.051i − 0.119894i −0.998202 0.0599472i \(-0.980907\pi\)
0.998202 0.0599472i \(-0.0190932\pi\)
\(228\) 0 0
\(229\) 1332.92i 0.384636i 0.981333 + 0.192318i \(0.0616005\pi\)
−0.981333 + 0.192318i \(0.938400\pi\)
\(230\) 0 0
\(231\) 450.815 0.128404
\(232\) 0 0
\(233\) 1495.89 0.420597 0.210298 0.977637i \(-0.432556\pi\)
0.210298 + 0.977637i \(0.432556\pi\)
\(234\) 0 0
\(235\) − 2182.92i − 0.605949i
\(236\) 0 0
\(237\) 5832.77i 1.59865i
\(238\) 0 0
\(239\) −5059.50 −1.36934 −0.684669 0.728854i \(-0.740053\pi\)
−0.684669 + 0.728854i \(0.740053\pi\)
\(240\) 0 0
\(241\) −6645.52 −1.77625 −0.888124 0.459604i \(-0.847991\pi\)
−0.888124 + 0.459604i \(0.847991\pi\)
\(242\) 0 0
\(243\) 3984.16i 1.05179i
\(244\) 0 0
\(245\) 1136.95i 0.296478i
\(246\) 0 0
\(247\) 2097.28 0.540270
\(248\) 0 0
\(249\) −10403.9 −2.64787
\(250\) 0 0
\(251\) 1788.72i 0.449812i 0.974380 + 0.224906i \(0.0722075\pi\)
−0.974380 + 0.224906i \(0.927792\pi\)
\(252\) 0 0
\(253\) − 611.559i − 0.151970i
\(254\) 0 0
\(255\) 5697.43 1.39917
\(256\) 0 0
\(257\) −5281.41 −1.28189 −0.640944 0.767587i \(-0.721457\pi\)
−0.640944 + 0.767587i \(0.721457\pi\)
\(258\) 0 0
\(259\) 4296.52i 1.03078i
\(260\) 0 0
\(261\) − 8156.94i − 1.93449i
\(262\) 0 0
\(263\) 3527.45 0.827042 0.413521 0.910495i \(-0.364299\pi\)
0.413521 + 0.910495i \(0.364299\pi\)
\(264\) 0 0
\(265\) −90.9088 −0.0210735
\(266\) 0 0
\(267\) 10075.2i 2.30934i
\(268\) 0 0
\(269\) 5325.40i 1.20705i 0.797345 + 0.603523i \(0.206237\pi\)
−0.797345 + 0.603523i \(0.793763\pi\)
\(270\) 0 0
\(271\) −1940.33 −0.434932 −0.217466 0.976068i \(-0.569779\pi\)
−0.217466 + 0.976068i \(0.569779\pi\)
\(272\) 0 0
\(273\) −4500.03 −0.997635
\(274\) 0 0
\(275\) 125.384i 0.0274942i
\(276\) 0 0
\(277\) 5247.58i 1.13825i 0.822249 + 0.569127i \(0.192719\pi\)
−0.822249 + 0.569127i \(0.807281\pi\)
\(278\) 0 0
\(279\) 5823.72 1.24967
\(280\) 0 0
\(281\) −137.594 −0.0292106 −0.0146053 0.999893i \(-0.504649\pi\)
−0.0146053 + 0.999893i \(0.504649\pi\)
\(282\) 0 0
\(283\) − 4758.16i − 0.999445i −0.866185 0.499723i \(-0.833435\pi\)
0.866185 0.499723i \(-0.166565\pi\)
\(284\) 0 0
\(285\) 1751.09i 0.363949i
\(286\) 0 0
\(287\) −497.568 −0.102336
\(288\) 0 0
\(289\) 13665.8 2.78156
\(290\) 0 0
\(291\) 6316.75i 1.27249i
\(292\) 0 0
\(293\) − 276.941i − 0.0552186i −0.999619 0.0276093i \(-0.991211\pi\)
0.999619 0.0276093i \(-0.00878943\pi\)
\(294\) 0 0
\(295\) 958.730 0.189218
\(296\) 0 0
\(297\) 666.135 0.130145
\(298\) 0 0
\(299\) 6104.58i 1.18073i
\(300\) 0 0
\(301\) − 4145.30i − 0.793790i
\(302\) 0 0
\(303\) 3737.12 0.708554
\(304\) 0 0
\(305\) 4167.62 0.782418
\(306\) 0 0
\(307\) − 2453.33i − 0.456087i −0.973651 0.228044i \(-0.926767\pi\)
0.973651 0.228044i \(-0.0732329\pi\)
\(308\) 0 0
\(309\) − 4743.98i − 0.873385i
\(310\) 0 0
\(311\) 7555.82 1.37766 0.688829 0.724924i \(-0.258125\pi\)
0.688829 + 0.724924i \(0.258125\pi\)
\(312\) 0 0
\(313\) 9164.97 1.65506 0.827531 0.561419i \(-0.189745\pi\)
0.827531 + 0.561419i \(0.189745\pi\)
\(314\) 0 0
\(315\) − 2305.68i − 0.412414i
\(316\) 0 0
\(317\) − 3805.97i − 0.674335i −0.941445 0.337168i \(-0.890531\pi\)
0.941445 0.337168i \(-0.109469\pi\)
\(318\) 0 0
\(319\) 953.883 0.167421
\(320\) 0 0
\(321\) −9616.94 −1.67217
\(322\) 0 0
\(323\) 5710.14i 0.983655i
\(324\) 0 0
\(325\) − 1251.58i − 0.213616i
\(326\) 0 0
\(327\) −5079.25 −0.858969
\(328\) 0 0
\(329\) −4694.23 −0.786631
\(330\) 0 0
\(331\) 970.099i 0.161092i 0.996751 + 0.0805460i \(0.0256664\pi\)
−0.996751 + 0.0805460i \(0.974334\pi\)
\(332\) 0 0
\(333\) 17137.7i 2.82024i
\(334\) 0 0
\(335\) −2231.98 −0.364019
\(336\) 0 0
\(337\) 7538.49 1.21854 0.609270 0.792963i \(-0.291463\pi\)
0.609270 + 0.792963i \(0.291463\pi\)
\(338\) 0 0
\(339\) 2670.44i 0.427842i
\(340\) 0 0
\(341\) 681.033i 0.108153i
\(342\) 0 0
\(343\) 6132.95 0.965446
\(344\) 0 0
\(345\) −5096.92 −0.795388
\(346\) 0 0
\(347\) 10580.1i 1.63680i 0.574647 + 0.818402i \(0.305139\pi\)
−0.574647 + 0.818402i \(0.694861\pi\)
\(348\) 0 0
\(349\) − 2830.85i − 0.434189i −0.976151 0.217095i \(-0.930342\pi\)
0.976151 0.217095i \(-0.0696580\pi\)
\(350\) 0 0
\(351\) −6649.36 −1.01116
\(352\) 0 0
\(353\) −5165.74 −0.778880 −0.389440 0.921052i \(-0.627331\pi\)
−0.389440 + 0.921052i \(0.627331\pi\)
\(354\) 0 0
\(355\) 5238.42i 0.783173i
\(356\) 0 0
\(357\) − 12252.0i − 1.81637i
\(358\) 0 0
\(359\) −378.859 −0.0556976 −0.0278488 0.999612i \(-0.508866\pi\)
−0.0278488 + 0.999612i \(0.508866\pi\)
\(360\) 0 0
\(361\) 5104.01 0.744133
\(362\) 0 0
\(363\) − 10916.7i − 1.57846i
\(364\) 0 0
\(365\) 287.739i 0.0412629i
\(366\) 0 0
\(367\) −3124.61 −0.444423 −0.222211 0.974999i \(-0.571328\pi\)
−0.222211 + 0.974999i \(0.571328\pi\)
\(368\) 0 0
\(369\) −1984.67 −0.279994
\(370\) 0 0
\(371\) 195.494i 0.0273572i
\(372\) 0 0
\(373\) − 2391.67i − 0.332000i −0.986126 0.166000i \(-0.946915\pi\)
0.986126 0.166000i \(-0.0530852\pi\)
\(374\) 0 0
\(375\) 1044.99 0.143901
\(376\) 0 0
\(377\) −9521.67 −1.30077
\(378\) 0 0
\(379\) − 10338.4i − 1.40118i −0.713565 0.700589i \(-0.752921\pi\)
0.713565 0.700589i \(-0.247079\pi\)
\(380\) 0 0
\(381\) 17844.6i 2.39950i
\(382\) 0 0
\(383\) 9766.89 1.30304 0.651521 0.758631i \(-0.274131\pi\)
0.651521 + 0.758631i \(0.274131\pi\)
\(384\) 0 0
\(385\) 269.630 0.0356925
\(386\) 0 0
\(387\) − 16534.5i − 2.17183i
\(388\) 0 0
\(389\) 2515.15i 0.327823i 0.986475 + 0.163911i \(0.0524111\pi\)
−0.986475 + 0.163911i \(0.947589\pi\)
\(390\) 0 0
\(391\) −16620.6 −2.14972
\(392\) 0 0
\(393\) 7581.34 0.973099
\(394\) 0 0
\(395\) 3488.55i 0.444374i
\(396\) 0 0
\(397\) − 6659.30i − 0.841866i −0.907092 0.420933i \(-0.861703\pi\)
0.907092 0.420933i \(-0.138297\pi\)
\(398\) 0 0
\(399\) 3765.61 0.472472
\(400\) 0 0
\(401\) 3038.40 0.378380 0.189190 0.981941i \(-0.439414\pi\)
0.189190 + 0.981941i \(0.439414\pi\)
\(402\) 0 0
\(403\) − 6798.08i − 0.840289i
\(404\) 0 0
\(405\) 238.066i 0.0292088i
\(406\) 0 0
\(407\) −2004.11 −0.244078
\(408\) 0 0
\(409\) 661.959 0.0800288 0.0400144 0.999199i \(-0.487260\pi\)
0.0400144 + 0.999199i \(0.487260\pi\)
\(410\) 0 0
\(411\) − 1000.04i − 0.120021i
\(412\) 0 0
\(413\) − 2061.69i − 0.245640i
\(414\) 0 0
\(415\) −6222.51 −0.736026
\(416\) 0 0
\(417\) −17105.0 −2.00872
\(418\) 0 0
\(419\) − 6731.33i − 0.784838i −0.919787 0.392419i \(-0.871638\pi\)
0.919787 0.392419i \(-0.128362\pi\)
\(420\) 0 0
\(421\) − 11912.4i − 1.37904i −0.724267 0.689520i \(-0.757822\pi\)
0.724267 0.689520i \(-0.242178\pi\)
\(422\) 0 0
\(423\) −18724.1 −2.15224
\(424\) 0 0
\(425\) 3407.60 0.388925
\(426\) 0 0
\(427\) − 8962.22i − 1.01572i
\(428\) 0 0
\(429\) − 2099.03i − 0.236229i
\(430\) 0 0
\(431\) 2912.87 0.325541 0.162770 0.986664i \(-0.447957\pi\)
0.162770 + 0.986664i \(0.447957\pi\)
\(432\) 0 0
\(433\) −4426.43 −0.491272 −0.245636 0.969362i \(-0.578997\pi\)
−0.245636 + 0.969362i \(0.578997\pi\)
\(434\) 0 0
\(435\) − 7949.96i − 0.876256i
\(436\) 0 0
\(437\) − 5108.28i − 0.559181i
\(438\) 0 0
\(439\) −6158.90 −0.669586 −0.334793 0.942292i \(-0.608666\pi\)
−0.334793 + 0.942292i \(0.608666\pi\)
\(440\) 0 0
\(441\) 9752.25 1.05305
\(442\) 0 0
\(443\) − 2261.94i − 0.242591i −0.992616 0.121296i \(-0.961295\pi\)
0.992616 0.121296i \(-0.0387049\pi\)
\(444\) 0 0
\(445\) 6025.94i 0.641925i
\(446\) 0 0
\(447\) 12148.1 1.28543
\(448\) 0 0
\(449\) 13142.3 1.38134 0.690670 0.723170i \(-0.257316\pi\)
0.690670 + 0.723170i \(0.257316\pi\)
\(450\) 0 0
\(451\) − 232.090i − 0.0242321i
\(452\) 0 0
\(453\) − 7468.69i − 0.774635i
\(454\) 0 0
\(455\) −2691.44 −0.277312
\(456\) 0 0
\(457\) 13126.9 1.34365 0.671825 0.740710i \(-0.265511\pi\)
0.671825 + 0.740710i \(0.265511\pi\)
\(458\) 0 0
\(459\) − 18103.8i − 1.84099i
\(460\) 0 0
\(461\) 8978.82i 0.907126i 0.891224 + 0.453563i \(0.149847\pi\)
−0.891224 + 0.453563i \(0.850153\pi\)
\(462\) 0 0
\(463\) 1729.19 0.173569 0.0867844 0.996227i \(-0.472341\pi\)
0.0867844 + 0.996227i \(0.472341\pi\)
\(464\) 0 0
\(465\) 5675.94 0.566055
\(466\) 0 0
\(467\) − 1151.88i − 0.114138i −0.998370 0.0570691i \(-0.981824\pi\)
0.998370 0.0570691i \(-0.0181755\pi\)
\(468\) 0 0
\(469\) 4799.74i 0.472562i
\(470\) 0 0
\(471\) −23160.1 −2.26573
\(472\) 0 0
\(473\) 1933.57 0.187961
\(474\) 0 0
\(475\) 1047.32i 0.101167i
\(476\) 0 0
\(477\) 779.774i 0.0748499i
\(478\) 0 0
\(479\) 7174.74 0.684389 0.342194 0.939629i \(-0.388830\pi\)
0.342194 + 0.939629i \(0.388830\pi\)
\(480\) 0 0
\(481\) 20005.0 1.89636
\(482\) 0 0
\(483\) 10960.6i 1.03256i
\(484\) 0 0
\(485\) 3778.01i 0.353713i
\(486\) 0 0
\(487\) 15644.8 1.45572 0.727858 0.685728i \(-0.240516\pi\)
0.727858 + 0.685728i \(0.240516\pi\)
\(488\) 0 0
\(489\) −23475.9 −2.17099
\(490\) 0 0
\(491\) 10780.4i 0.990861i 0.868647 + 0.495431i \(0.164990\pi\)
−0.868647 + 0.495431i \(0.835010\pi\)
\(492\) 0 0
\(493\) − 25924.1i − 2.36828i
\(494\) 0 0
\(495\) 1075.48 0.0976553
\(496\) 0 0
\(497\) 11264.9 1.01670
\(498\) 0 0
\(499\) 17443.2i 1.56486i 0.622738 + 0.782430i \(0.286020\pi\)
−0.622738 + 0.782430i \(0.713980\pi\)
\(500\) 0 0
\(501\) 22357.0i 1.99369i
\(502\) 0 0
\(503\) −227.632 −0.0201782 −0.0100891 0.999949i \(-0.503212\pi\)
−0.0100891 + 0.999949i \(0.503212\pi\)
\(504\) 0 0
\(505\) 2235.15 0.196956
\(506\) 0 0
\(507\) 2585.90i 0.226517i
\(508\) 0 0
\(509\) − 11385.4i − 0.991449i −0.868480 0.495725i \(-0.834903\pi\)
0.868480 0.495725i \(-0.165097\pi\)
\(510\) 0 0
\(511\) 618.765 0.0535666
\(512\) 0 0
\(513\) 5564.15 0.478876
\(514\) 0 0
\(515\) − 2837.35i − 0.242774i
\(516\) 0 0
\(517\) − 2189.62i − 0.186266i
\(518\) 0 0
\(519\) 10898.2 0.921727
\(520\) 0 0
\(521\) 4729.20 0.397678 0.198839 0.980032i \(-0.436283\pi\)
0.198839 + 0.980032i \(0.436283\pi\)
\(522\) 0 0
\(523\) 7431.63i 0.621343i 0.950517 + 0.310671i \(0.100554\pi\)
−0.950517 + 0.310671i \(0.899446\pi\)
\(524\) 0 0
\(525\) − 2247.18i − 0.186809i
\(526\) 0 0
\(527\) 18508.7 1.52989
\(528\) 0 0
\(529\) 2701.75 0.222056
\(530\) 0 0
\(531\) − 8223.55i − 0.672075i
\(532\) 0 0
\(533\) 2316.72i 0.188271i
\(534\) 0 0
\(535\) −5751.84 −0.464810
\(536\) 0 0
\(537\) 4000.22 0.321457
\(538\) 0 0
\(539\) 1140.44i 0.0911359i
\(540\) 0 0
\(541\) − 9217.87i − 0.732546i −0.930508 0.366273i \(-0.880634\pi\)
0.930508 0.366273i \(-0.119366\pi\)
\(542\) 0 0
\(543\) −14650.5 −1.15785
\(544\) 0 0
\(545\) −3037.87 −0.238767
\(546\) 0 0
\(547\) − 15650.6i − 1.22335i −0.791109 0.611676i \(-0.790496\pi\)
0.791109 0.611676i \(-0.209504\pi\)
\(548\) 0 0
\(549\) − 35748.0i − 2.77903i
\(550\) 0 0
\(551\) 7967.69 0.616034
\(552\) 0 0
\(553\) 7501.90 0.576878
\(554\) 0 0
\(555\) 16702.9i 1.27747i
\(556\) 0 0
\(557\) − 7433.98i − 0.565508i −0.959193 0.282754i \(-0.908752\pi\)
0.959193 0.282754i \(-0.0912479\pi\)
\(558\) 0 0
\(559\) −19300.9 −1.46036
\(560\) 0 0
\(561\) 5714.92 0.430096
\(562\) 0 0
\(563\) 1421.27i 0.106394i 0.998584 + 0.0531968i \(0.0169411\pi\)
−0.998584 + 0.0531968i \(0.983059\pi\)
\(564\) 0 0
\(565\) 1597.18i 0.118927i
\(566\) 0 0
\(567\) 511.946 0.0379183
\(568\) 0 0
\(569\) 15981.1 1.17744 0.588718 0.808338i \(-0.299633\pi\)
0.588718 + 0.808338i \(0.299633\pi\)
\(570\) 0 0
\(571\) − 9091.60i − 0.666325i −0.942869 0.333162i \(-0.891884\pi\)
0.942869 0.333162i \(-0.108116\pi\)
\(572\) 0 0
\(573\) 316.760i 0.0230939i
\(574\) 0 0
\(575\) −3048.44 −0.221093
\(576\) 0 0
\(577\) −1353.02 −0.0976205 −0.0488102 0.998808i \(-0.515543\pi\)
−0.0488102 + 0.998808i \(0.515543\pi\)
\(578\) 0 0
\(579\) 4187.55i 0.300568i
\(580\) 0 0
\(581\) 13381.1i 0.955495i
\(582\) 0 0
\(583\) −91.1878 −0.00647790
\(584\) 0 0
\(585\) −10735.5 −0.758730
\(586\) 0 0
\(587\) − 3417.61i − 0.240306i −0.992755 0.120153i \(-0.961661\pi\)
0.992755 0.120153i \(-0.0383385\pi\)
\(588\) 0 0
\(589\) 5688.60i 0.397953i
\(590\) 0 0
\(591\) 21436.6 1.49202
\(592\) 0 0
\(593\) −25023.3 −1.73286 −0.866429 0.499300i \(-0.833591\pi\)
−0.866429 + 0.499300i \(0.833591\pi\)
\(594\) 0 0
\(595\) − 7327.84i − 0.504894i
\(596\) 0 0
\(597\) 34024.5i 2.33254i
\(598\) 0 0
\(599\) −25035.5 −1.70772 −0.853859 0.520505i \(-0.825744\pi\)
−0.853859 + 0.520505i \(0.825744\pi\)
\(600\) 0 0
\(601\) −4856.86 −0.329643 −0.164821 0.986323i \(-0.552705\pi\)
−0.164821 + 0.986323i \(0.552705\pi\)
\(602\) 0 0
\(603\) 19144.9i 1.29294i
\(604\) 0 0
\(605\) − 6529.23i − 0.438762i
\(606\) 0 0
\(607\) −1308.96 −0.0875271 −0.0437636 0.999042i \(-0.513935\pi\)
−0.0437636 + 0.999042i \(0.513935\pi\)
\(608\) 0 0
\(609\) −17095.9 −1.13754
\(610\) 0 0
\(611\) 21856.8i 1.44719i
\(612\) 0 0
\(613\) − 1202.11i − 0.0792050i −0.999216 0.0396025i \(-0.987391\pi\)
0.999216 0.0396025i \(-0.0126092\pi\)
\(614\) 0 0
\(615\) −1934.31 −0.126827
\(616\) 0 0
\(617\) −16198.1 −1.05690 −0.528451 0.848964i \(-0.677227\pi\)
−0.528451 + 0.848964i \(0.677227\pi\)
\(618\) 0 0
\(619\) − 14666.6i − 0.952341i −0.879353 0.476171i \(-0.842024\pi\)
0.879353 0.476171i \(-0.157976\pi\)
\(620\) 0 0
\(621\) 16195.7i 1.04655i
\(622\) 0 0
\(623\) 12958.4 0.833335
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) 1756.46i 0.111876i
\(628\) 0 0
\(629\) 54466.5i 3.45266i
\(630\) 0 0
\(631\) 24235.9 1.52903 0.764513 0.644609i \(-0.222980\pi\)
0.764513 + 0.644609i \(0.222980\pi\)
\(632\) 0 0
\(633\) −34838.2 −2.18751
\(634\) 0 0
\(635\) 10672.8i 0.666986i
\(636\) 0 0
\(637\) − 11383.9i − 0.708079i
\(638\) 0 0
\(639\) 44932.7 2.78171
\(640\) 0 0
\(641\) −28099.8 −1.73148 −0.865739 0.500496i \(-0.833151\pi\)
−0.865739 + 0.500496i \(0.833151\pi\)
\(642\) 0 0
\(643\) − 23582.0i − 1.44632i −0.690679 0.723161i \(-0.742688\pi\)
0.690679 0.723161i \(-0.257312\pi\)
\(644\) 0 0
\(645\) − 16115.0i − 0.983761i
\(646\) 0 0
\(647\) −28370.0 −1.72386 −0.861931 0.507026i \(-0.830745\pi\)
−0.861931 + 0.507026i \(0.830745\pi\)
\(648\) 0 0
\(649\) 961.673 0.0581648
\(650\) 0 0
\(651\) − 12205.8i − 0.734841i
\(652\) 0 0
\(653\) − 7401.42i − 0.443553i −0.975098 0.221776i \(-0.928814\pi\)
0.975098 0.221776i \(-0.0711855\pi\)
\(654\) 0 0
\(655\) 4534.36 0.270491
\(656\) 0 0
\(657\) 2468.09 0.146559
\(658\) 0 0
\(659\) 24004.4i 1.41893i 0.704739 + 0.709467i \(0.251064\pi\)
−0.704739 + 0.709467i \(0.748936\pi\)
\(660\) 0 0
\(661\) 23605.5i 1.38903i 0.719479 + 0.694514i \(0.244381\pi\)
−0.719479 + 0.694514i \(0.755619\pi\)
\(662\) 0 0
\(663\) −57046.3 −3.34162
\(664\) 0 0
\(665\) 2252.19 0.131332
\(666\) 0 0
\(667\) 23191.7i 1.34630i
\(668\) 0 0
\(669\) 9542.22i 0.551455i
\(670\) 0 0
\(671\) 4180.41 0.240511
\(672\) 0 0
\(673\) 5322.84 0.304874 0.152437 0.988313i \(-0.451288\pi\)
0.152437 + 0.988313i \(0.451288\pi\)
\(674\) 0 0
\(675\) − 3320.48i − 0.189341i
\(676\) 0 0
\(677\) − 2413.64i − 0.137022i −0.997650 0.0685109i \(-0.978175\pi\)
0.997650 0.0685109i \(-0.0218248\pi\)
\(678\) 0 0
\(679\) 8124.38 0.459183
\(680\) 0 0
\(681\) −3427.98 −0.192894
\(682\) 0 0
\(683\) 3124.52i 0.175046i 0.996162 + 0.0875230i \(0.0278951\pi\)
−0.996162 + 0.0875230i \(0.972105\pi\)
\(684\) 0 0
\(685\) − 598.121i − 0.0333621i
\(686\) 0 0
\(687\) 11143.0 0.618826
\(688\) 0 0
\(689\) 910.237 0.0503299
\(690\) 0 0
\(691\) − 24273.9i − 1.33636i −0.744000 0.668179i \(-0.767074\pi\)
0.744000 0.668179i \(-0.232926\pi\)
\(692\) 0 0
\(693\) − 2312.76i − 0.126774i
\(694\) 0 0
\(695\) −10230.4 −0.558363
\(696\) 0 0
\(697\) −6307.60 −0.342780
\(698\) 0 0
\(699\) − 12505.5i − 0.676682i
\(700\) 0 0
\(701\) − 25663.7i − 1.38275i −0.722498 0.691373i \(-0.757006\pi\)
0.722498 0.691373i \(-0.242994\pi\)
\(702\) 0 0
\(703\) −16740.1 −0.898101
\(704\) 0 0
\(705\) −18249.0 −0.974888
\(706\) 0 0
\(707\) − 4806.55i − 0.255685i
\(708\) 0 0
\(709\) 8367.54i 0.443230i 0.975134 + 0.221615i \(0.0711327\pi\)
−0.975134 + 0.221615i \(0.928867\pi\)
\(710\) 0 0
\(711\) 29923.2 1.57835
\(712\) 0 0
\(713\) −16557.9 −0.869702
\(714\) 0 0
\(715\) − 1255.42i − 0.0656644i
\(716\) 0 0
\(717\) 42296.8i 2.20307i
\(718\) 0 0
\(719\) 27244.1 1.41312 0.706561 0.707653i \(-0.250246\pi\)
0.706561 + 0.707653i \(0.250246\pi\)
\(720\) 0 0
\(721\) −6101.55 −0.315164
\(722\) 0 0
\(723\) 55555.8i 2.85774i
\(724\) 0 0
\(725\) − 4754.83i − 0.243572i
\(726\) 0 0
\(727\) −25294.2 −1.29038 −0.645191 0.764021i \(-0.723222\pi\)
−0.645191 + 0.764021i \(0.723222\pi\)
\(728\) 0 0
\(729\) 32021.6 1.62687
\(730\) 0 0
\(731\) − 52549.4i − 2.65884i
\(732\) 0 0
\(733\) − 22904.8i − 1.15417i −0.816683 0.577086i \(-0.804190\pi\)
0.816683 0.577086i \(-0.195810\pi\)
\(734\) 0 0
\(735\) 9504.79 0.476992
\(736\) 0 0
\(737\) −2238.83 −0.111897
\(738\) 0 0
\(739\) 18129.2i 0.902427i 0.892416 + 0.451214i \(0.149009\pi\)
−0.892416 + 0.451214i \(0.850991\pi\)
\(740\) 0 0
\(741\) − 17533.0i − 0.869219i
\(742\) 0 0
\(743\) 31079.4 1.53458 0.767289 0.641302i \(-0.221605\pi\)
0.767289 + 0.641302i \(0.221605\pi\)
\(744\) 0 0
\(745\) 7265.74 0.357310
\(746\) 0 0
\(747\) 53373.8i 2.61425i
\(748\) 0 0
\(749\) 12369.0i 0.603408i
\(750\) 0 0
\(751\) 37097.6 1.80254 0.901271 0.433255i \(-0.142635\pi\)
0.901271 + 0.433255i \(0.142635\pi\)
\(752\) 0 0
\(753\) 14953.5 0.723685
\(754\) 0 0
\(755\) − 4466.98i − 0.215325i
\(756\) 0 0
\(757\) 14835.9i 0.712309i 0.934427 + 0.356155i \(0.115912\pi\)
−0.934427 + 0.356155i \(0.884088\pi\)
\(758\) 0 0
\(759\) −5112.56 −0.244498
\(760\) 0 0
\(761\) 523.995 0.0249603 0.0124802 0.999922i \(-0.496027\pi\)
0.0124802 + 0.999922i \(0.496027\pi\)
\(762\) 0 0
\(763\) 6532.75i 0.309962i
\(764\) 0 0
\(765\) − 29228.8i − 1.38140i
\(766\) 0 0
\(767\) −9599.42 −0.451910
\(768\) 0 0
\(769\) −9483.99 −0.444735 −0.222368 0.974963i \(-0.571378\pi\)
−0.222368 + 0.974963i \(0.571378\pi\)
\(770\) 0 0
\(771\) 44152.0i 2.06238i
\(772\) 0 0
\(773\) − 26421.5i − 1.22939i −0.788767 0.614693i \(-0.789280\pi\)
0.788767 0.614693i \(-0.210720\pi\)
\(774\) 0 0
\(775\) 3394.75 0.157346
\(776\) 0 0
\(777\) 35918.5 1.65839
\(778\) 0 0
\(779\) − 1938.62i − 0.0891634i
\(780\) 0 0
\(781\) 5254.49i 0.240743i
\(782\) 0 0
\(783\) −25261.3 −1.15296
\(784\) 0 0
\(785\) −13851.9 −0.629803
\(786\) 0 0
\(787\) − 8485.12i − 0.384322i −0.981363 0.192161i \(-0.938450\pi\)
0.981363 0.192161i \(-0.0615496\pi\)
\(788\) 0 0
\(789\) − 29489.1i − 1.33060i
\(790\) 0 0
\(791\) 3434.63 0.154389
\(792\) 0 0
\(793\) −41728.9 −1.86865
\(794\) 0 0
\(795\) 759.987i 0.0339044i
\(796\) 0 0
\(797\) 27287.5i 1.21276i 0.795174 + 0.606381i \(0.207380\pi\)
−0.795174 + 0.606381i \(0.792620\pi\)
\(798\) 0 0
\(799\) −59508.2 −2.63485
\(800\) 0 0
\(801\) 51687.7 2.28002
\(802\) 0 0
\(803\) 288.622i 0.0126840i
\(804\) 0 0
\(805\) 6555.48i 0.287019i
\(806\) 0 0
\(807\) 44519.8 1.94197
\(808\) 0 0
\(809\) 9999.47 0.434564 0.217282 0.976109i \(-0.430281\pi\)
0.217282 + 0.976109i \(0.430281\pi\)
\(810\) 0 0
\(811\) − 9408.95i − 0.407390i −0.979034 0.203695i \(-0.934705\pi\)
0.979034 0.203695i \(-0.0652950\pi\)
\(812\) 0 0
\(813\) 16220.9i 0.699745i
\(814\) 0 0
\(815\) −14040.8 −0.603469
\(816\) 0 0
\(817\) 16150.9 0.691613
\(818\) 0 0
\(819\) 23086.0i 0.984969i
\(820\) 0 0
\(821\) − 21215.6i − 0.901861i −0.892559 0.450931i \(-0.851092\pi\)
0.892559 0.450931i \(-0.148908\pi\)
\(822\) 0 0
\(823\) 4645.90 0.196775 0.0983875 0.995148i \(-0.468632\pi\)
0.0983875 + 0.995148i \(0.468632\pi\)
\(824\) 0 0
\(825\) 1048.19 0.0442344
\(826\) 0 0
\(827\) 27578.3i 1.15960i 0.814758 + 0.579802i \(0.196870\pi\)
−0.814758 + 0.579802i \(0.803130\pi\)
\(828\) 0 0
\(829\) − 213.593i − 0.00894859i −0.999990 0.00447430i \(-0.998576\pi\)
0.999990 0.00447430i \(-0.00142422\pi\)
\(830\) 0 0
\(831\) 43869.2 1.83129
\(832\) 0 0
\(833\) 30994.2 1.28918
\(834\) 0 0
\(835\) 13371.6i 0.554183i
\(836\) 0 0
\(837\) − 18035.5i − 0.744802i
\(838\) 0 0
\(839\) −25030.5 −1.02997 −0.514987 0.857198i \(-0.672203\pi\)
−0.514987 + 0.857198i \(0.672203\pi\)
\(840\) 0 0
\(841\) −11784.4 −0.483184
\(842\) 0 0
\(843\) 1150.27i 0.0469959i
\(844\) 0 0
\(845\) 1546.61i 0.0629647i
\(846\) 0 0
\(847\) −14040.7 −0.569592
\(848\) 0 0
\(849\) −39777.6 −1.60797
\(850\) 0 0
\(851\) − 48725.6i − 1.96274i
\(852\) 0 0
\(853\) − 9629.81i − 0.386540i −0.981146 0.193270i \(-0.938091\pi\)
0.981146 0.193270i \(-0.0619093\pi\)
\(854\) 0 0
\(855\) 8983.39 0.359328
\(856\) 0 0
\(857\) 18302.5 0.729524 0.364762 0.931101i \(-0.381150\pi\)
0.364762 + 0.931101i \(0.381150\pi\)
\(858\) 0 0
\(859\) 5445.35i 0.216290i 0.994135 + 0.108145i \(0.0344911\pi\)
−0.994135 + 0.108145i \(0.965509\pi\)
\(860\) 0 0
\(861\) 4159.61i 0.164645i
\(862\) 0 0
\(863\) −32428.2 −1.27911 −0.639554 0.768746i \(-0.720881\pi\)
−0.639554 + 0.768746i \(0.720881\pi\)
\(864\) 0 0
\(865\) 6518.13 0.256212
\(866\) 0 0
\(867\) − 114245.i − 4.47515i
\(868\) 0 0
\(869\) 3499.25i 0.136598i
\(870\) 0 0
\(871\) 22348.0 0.869385
\(872\) 0 0
\(873\) 32406.0 1.25633
\(874\) 0 0
\(875\) − 1344.02i − 0.0519272i
\(876\) 0 0
\(877\) 42987.0i 1.65515i 0.561354 + 0.827575i \(0.310280\pi\)
−0.561354 + 0.827575i \(0.689720\pi\)
\(878\) 0 0
\(879\) −2315.19 −0.0888391
\(880\) 0 0
\(881\) 781.459 0.0298843 0.0149421 0.999888i \(-0.495244\pi\)
0.0149421 + 0.999888i \(0.495244\pi\)
\(882\) 0 0
\(883\) 5419.96i 0.206564i 0.994652 + 0.103282i \(0.0329344\pi\)
−0.994652 + 0.103282i \(0.967066\pi\)
\(884\) 0 0
\(885\) − 8014.88i − 0.304426i
\(886\) 0 0
\(887\) 2876.60 0.108892 0.0544458 0.998517i \(-0.482661\pi\)
0.0544458 + 0.998517i \(0.482661\pi\)
\(888\) 0 0
\(889\) 22951.2 0.865868
\(890\) 0 0
\(891\) 238.796i 0.00897865i
\(892\) 0 0
\(893\) − 18289.7i − 0.685375i
\(894\) 0 0
\(895\) 2392.51 0.0893550
\(896\) 0 0
\(897\) 51033.6 1.89962
\(898\) 0 0
\(899\) − 25826.3i − 0.958126i
\(900\) 0 0
\(901\) 2478.25i 0.0916342i
\(902\) 0 0
\(903\) −34654.2 −1.27710
\(904\) 0 0
\(905\) −8762.39 −0.321847
\(906\) 0 0
\(907\) − 23255.3i − 0.851354i −0.904875 0.425677i \(-0.860036\pi\)
0.904875 0.425677i \(-0.139964\pi\)
\(908\) 0 0
\(909\) − 19172.1i − 0.699558i
\(910\) 0 0
\(911\) −22041.2 −0.801600 −0.400800 0.916166i \(-0.631268\pi\)
−0.400800 + 0.916166i \(0.631268\pi\)
\(912\) 0 0
\(913\) −6241.61 −0.226251
\(914\) 0 0
\(915\) − 34840.9i − 1.25880i
\(916\) 0 0
\(917\) − 9750.85i − 0.351147i
\(918\) 0 0
\(919\) −6046.43 −0.217033 −0.108517 0.994095i \(-0.534610\pi\)
−0.108517 + 0.994095i \(0.534610\pi\)
\(920\) 0 0
\(921\) −20509.5 −0.733781
\(922\) 0 0
\(923\) − 52450.4i − 1.87045i
\(924\) 0 0
\(925\) 9989.88i 0.355098i
\(926\) 0 0
\(927\) −24337.5 −0.862295
\(928\) 0 0
\(929\) −22153.3 −0.782374 −0.391187 0.920311i \(-0.627935\pi\)
−0.391187 + 0.920311i \(0.627935\pi\)
\(930\) 0 0
\(931\) 9525.98i 0.335340i
\(932\) 0 0
\(933\) − 63165.8i − 2.21646i
\(934\) 0 0
\(935\) 3418.06 0.119554
\(936\) 0 0
\(937\) −44131.6 −1.53865 −0.769326 0.638856i \(-0.779408\pi\)
−0.769326 + 0.638856i \(0.779408\pi\)
\(938\) 0 0
\(939\) − 76618.1i − 2.66277i
\(940\) 0 0
\(941\) 33006.1i 1.14343i 0.820452 + 0.571715i \(0.193722\pi\)
−0.820452 + 0.571715i \(0.806278\pi\)
\(942\) 0 0
\(943\) 5642.77 0.194861
\(944\) 0 0
\(945\) −7140.50 −0.245799
\(946\) 0 0
\(947\) 20759.6i 0.712351i 0.934419 + 0.356176i \(0.115919\pi\)
−0.934419 + 0.356176i \(0.884081\pi\)
\(948\) 0 0
\(949\) − 2881.03i − 0.0985480i
\(950\) 0 0
\(951\) −31817.4 −1.08491
\(952\) 0 0
\(953\) −22426.4 −0.762289 −0.381145 0.924515i \(-0.624470\pi\)
−0.381145 + 0.924515i \(0.624470\pi\)
\(954\) 0 0
\(955\) 189.452i 0.00641940i
\(956\) 0 0
\(957\) − 7974.36i − 0.269357i
\(958\) 0 0
\(959\) −1286.22 −0.0433100
\(960\) 0 0
\(961\) −11352.1 −0.381058
\(962\) 0 0
\(963\) 49336.6i 1.65093i
\(964\) 0 0
\(965\) 2504.55i 0.0835485i
\(966\) 0 0
\(967\) 30927.5 1.02850 0.514251 0.857640i \(-0.328070\pi\)
0.514251 + 0.857640i \(0.328070\pi\)
\(968\) 0 0
\(969\) 47736.1 1.58256
\(970\) 0 0
\(971\) 23937.9i 0.791149i 0.918434 + 0.395574i \(0.129454\pi\)
−0.918434 + 0.395574i \(0.870546\pi\)
\(972\) 0 0
\(973\) 21999.9i 0.724856i
\(974\) 0 0
\(975\) −10463.1 −0.343678
\(976\) 0 0
\(977\) −23689.0 −0.775720 −0.387860 0.921718i \(-0.626786\pi\)
−0.387860 + 0.921718i \(0.626786\pi\)
\(978\) 0 0
\(979\) 6044.43i 0.197325i
\(980\) 0 0
\(981\) 26057.4i 0.848063i
\(982\) 0 0
\(983\) −22716.1 −0.737063 −0.368531 0.929615i \(-0.620139\pi\)
−0.368531 + 0.929615i \(0.620139\pi\)
\(984\) 0 0
\(985\) 12821.1 0.414735
\(986\) 0 0
\(987\) 39243.3i 1.26558i
\(988\) 0 0
\(989\) 47010.6i 1.51148i
\(990\) 0 0
\(991\) −55337.3 −1.77381 −0.886905 0.461951i \(-0.847149\pi\)
−0.886905 + 0.461951i \(0.847149\pi\)
\(992\) 0 0
\(993\) 8109.92 0.259175
\(994\) 0 0
\(995\) 20349.8i 0.648375i
\(996\) 0 0
\(997\) − 10707.9i − 0.340143i −0.985432 0.170072i \(-0.945600\pi\)
0.985432 0.170072i \(-0.0543999\pi\)
\(998\) 0 0
\(999\) 53074.0 1.68087
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.4.d.d.161.1 yes 8
4.3 odd 2 320.4.d.c.161.8 yes 8
8.3 odd 2 320.4.d.c.161.1 8
8.5 even 2 inner 320.4.d.d.161.8 yes 8
16.3 odd 4 1280.4.a.u.1.1 4
16.5 even 4 1280.4.a.v.1.1 4
16.11 odd 4 1280.4.a.z.1.4 4
16.13 even 4 1280.4.a.q.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
320.4.d.c.161.1 8 8.3 odd 2
320.4.d.c.161.8 yes 8 4.3 odd 2
320.4.d.d.161.1 yes 8 1.1 even 1 trivial
320.4.d.d.161.8 yes 8 8.5 even 2 inner
1280.4.a.q.1.4 4 16.13 even 4
1280.4.a.u.1.1 4 16.3 odd 4
1280.4.a.v.1.1 4 16.5 even 4
1280.4.a.z.1.4 4 16.11 odd 4