Properties

Label 320.2.l.a.241.3
Level $320$
Weight $2$
Character 320.241
Analytic conductor $2.555$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [320,2,Mod(81,320)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(320, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("320.81"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 320 = 2^{6} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 320.l (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.55521286468\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{12} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 241.3
Root \(-0.530822 + 1.31081i\) of defining polynomial
Character \(\chi\) \(=\) 320.241
Dual form 320.2.l.a.81.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37027 + 1.37027i) q^{3} +(-0.707107 - 0.707107i) q^{5} +2.73482i q^{7} -0.755274i q^{9} +(-4.12175 - 4.12175i) q^{11} +(-1.37919 + 1.37919i) q^{13} +1.93785 q^{15} -4.94921 q^{17} +(0.292715 - 0.292715i) q^{19} +(-3.74744 - 3.74744i) q^{21} +1.64818i q^{23} +1.00000i q^{25} +(-3.07588 - 3.07588i) q^{27} +(-5.67267 + 5.67267i) q^{29} -3.95550 q^{31} +11.2958 q^{33} +(1.93381 - 1.93381i) q^{35} +(2.48772 + 2.48772i) q^{37} -3.77973i q^{39} -8.40843i q^{41} +(3.22713 + 3.22713i) q^{43} +(-0.534060 + 0.534060i) q^{45} +5.19809 q^{47} -0.479225 q^{49} +(6.78176 - 6.78176i) q^{51} +(7.20537 + 7.20537i) q^{53} +5.82903i q^{55} +0.802198i q^{57} +(6.41142 + 6.41142i) q^{59} +(-3.82618 + 3.82618i) q^{61} +2.06554 q^{63} +1.95047 q^{65} +(-5.76044 + 5.76044i) q^{67} +(-2.25846 - 2.25846i) q^{69} +7.92245i q^{71} +4.36276i q^{73} +(-1.37027 - 1.37027i) q^{75} +(11.2722 - 11.2722i) q^{77} +5.56087 q^{79} +10.6954 q^{81} +(0.516191 - 0.516191i) q^{83} +(3.49962 + 3.49962i) q^{85} -15.5462i q^{87} -6.42236i q^{89} +(-3.77184 - 3.77184i) q^{91} +(5.42011 - 5.42011i) q^{93} -0.413962 q^{95} -9.44534 q^{97} +(-3.11305 + 3.11305i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 8 q^{11} + 8 q^{15} + 8 q^{19} - 24 q^{27} - 16 q^{29} - 16 q^{37} - 8 q^{43} + 40 q^{47} - 16 q^{49} + 32 q^{51} + 16 q^{53} + 8 q^{59} + 16 q^{61} - 40 q^{63} - 40 q^{67} + 16 q^{69} + 16 q^{77}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/320\mathbb{Z}\right)^\times\).

\(n\) \(191\) \(257\) \(261\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.37027 + 1.37027i −0.791125 + 0.791125i −0.981677 0.190552i \(-0.938972\pi\)
0.190552 + 0.981677i \(0.438972\pi\)
\(4\) 0 0
\(5\) −0.707107 0.707107i −0.316228 0.316228i
\(6\) 0 0
\(7\) 2.73482i 1.03366i 0.856087 + 0.516832i \(0.172889\pi\)
−0.856087 + 0.516832i \(0.827111\pi\)
\(8\) 0 0
\(9\) 0.755274i 0.251758i
\(10\) 0 0
\(11\) −4.12175 4.12175i −1.24275 1.24275i −0.958854 0.283900i \(-0.908371\pi\)
−0.283900 0.958854i \(-0.591629\pi\)
\(12\) 0 0
\(13\) −1.37919 + 1.37919i −0.382519 + 0.382519i −0.872009 0.489490i \(-0.837183\pi\)
0.489490 + 0.872009i \(0.337183\pi\)
\(14\) 0 0
\(15\) 1.93785 0.500352
\(16\) 0 0
\(17\) −4.94921 −1.20036 −0.600180 0.799865i \(-0.704905\pi\)
−0.600180 + 0.799865i \(0.704905\pi\)
\(18\) 0 0
\(19\) 0.292715 0.292715i 0.0671535 0.0671535i −0.672732 0.739886i \(-0.734879\pi\)
0.739886 + 0.672732i \(0.234879\pi\)
\(20\) 0 0
\(21\) −3.74744 3.74744i −0.817757 0.817757i
\(22\) 0 0
\(23\) 1.64818i 0.343670i 0.985126 + 0.171835i \(0.0549696\pi\)
−0.985126 + 0.171835i \(0.945030\pi\)
\(24\) 0 0
\(25\) 1.00000i 0.200000i
\(26\) 0 0
\(27\) −3.07588 3.07588i −0.591953 0.591953i
\(28\) 0 0
\(29\) −5.67267 + 5.67267i −1.05339 + 1.05339i −0.0548963 + 0.998492i \(0.517483\pi\)
−0.998492 + 0.0548963i \(0.982517\pi\)
\(30\) 0 0
\(31\) −3.95550 −0.710430 −0.355215 0.934785i \(-0.615592\pi\)
−0.355215 + 0.934785i \(0.615592\pi\)
\(32\) 0 0
\(33\) 11.2958 1.96635
\(34\) 0 0
\(35\) 1.93381 1.93381i 0.326873 0.326873i
\(36\) 0 0
\(37\) 2.48772 + 2.48772i 0.408979 + 0.408979i 0.881382 0.472403i \(-0.156613\pi\)
−0.472403 + 0.881382i \(0.656613\pi\)
\(38\) 0 0
\(39\) 3.77973i 0.605241i
\(40\) 0 0
\(41\) 8.40843i 1.31318i −0.754250 0.656588i \(-0.771999\pi\)
0.754250 0.656588i \(-0.228001\pi\)
\(42\) 0 0
\(43\) 3.22713 + 3.22713i 0.492133 + 0.492133i 0.908978 0.416845i \(-0.136864\pi\)
−0.416845 + 0.908978i \(0.636864\pi\)
\(44\) 0 0
\(45\) −0.534060 + 0.534060i −0.0796129 + 0.0796129i
\(46\) 0 0
\(47\) 5.19809 0.758219 0.379109 0.925352i \(-0.376230\pi\)
0.379109 + 0.925352i \(0.376230\pi\)
\(48\) 0 0
\(49\) −0.479225 −0.0684607
\(50\) 0 0
\(51\) 6.78176 6.78176i 0.949636 0.949636i
\(52\) 0 0
\(53\) 7.20537 + 7.20537i 0.989733 + 0.989733i 0.999948 0.0102143i \(-0.00325138\pi\)
−0.0102143 + 0.999948i \(0.503251\pi\)
\(54\) 0 0
\(55\) 5.82903i 0.785987i
\(56\) 0 0
\(57\) 0.802198i 0.106254i
\(58\) 0 0
\(59\) 6.41142 + 6.41142i 0.834695 + 0.834695i 0.988155 0.153459i \(-0.0490414\pi\)
−0.153459 + 0.988155i \(0.549041\pi\)
\(60\) 0 0
\(61\) −3.82618 + 3.82618i −0.489892 + 0.489892i −0.908272 0.418380i \(-0.862598\pi\)
0.418380 + 0.908272i \(0.362598\pi\)
\(62\) 0 0
\(63\) 2.06554 0.260233
\(64\) 0 0
\(65\) 1.95047 0.241926
\(66\) 0 0
\(67\) −5.76044 + 5.76044i −0.703750 + 0.703750i −0.965213 0.261463i \(-0.915795\pi\)
0.261463 + 0.965213i \(0.415795\pi\)
\(68\) 0 0
\(69\) −2.25846 2.25846i −0.271886 0.271886i
\(70\) 0 0
\(71\) 7.92245i 0.940222i 0.882607 + 0.470111i \(0.155786\pi\)
−0.882607 + 0.470111i \(0.844214\pi\)
\(72\) 0 0
\(73\) 4.36276i 0.510622i 0.966859 + 0.255311i \(0.0821779\pi\)
−0.966859 + 0.255311i \(0.917822\pi\)
\(74\) 0 0
\(75\) −1.37027 1.37027i −0.158225 0.158225i
\(76\) 0 0
\(77\) 11.2722 11.2722i 1.28459 1.28459i
\(78\) 0 0
\(79\) 5.56087 0.625647 0.312824 0.949811i \(-0.398725\pi\)
0.312824 + 0.949811i \(0.398725\pi\)
\(80\) 0 0
\(81\) 10.6954 1.18838
\(82\) 0 0
\(83\) 0.516191 0.516191i 0.0566594 0.0566594i −0.678209 0.734869i \(-0.737244\pi\)
0.734869 + 0.678209i \(0.237244\pi\)
\(84\) 0 0
\(85\) 3.49962 + 3.49962i 0.379587 + 0.379587i
\(86\) 0 0
\(87\) 15.5462i 1.66672i
\(88\) 0 0
\(89\) 6.42236i 0.680768i −0.940286 0.340384i \(-0.889443\pi\)
0.940286 0.340384i \(-0.110557\pi\)
\(90\) 0 0
\(91\) −3.77184 3.77184i −0.395396 0.395396i
\(92\) 0 0
\(93\) 5.42011 5.42011i 0.562039 0.562039i
\(94\) 0 0
\(95\) −0.413962 −0.0424716
\(96\) 0 0
\(97\) −9.44534 −0.959029 −0.479515 0.877534i \(-0.659187\pi\)
−0.479515 + 0.877534i \(0.659187\pi\)
\(98\) 0 0
\(99\) −3.11305 + 3.11305i −0.312873 + 0.312873i
\(100\) 0 0
\(101\) −11.0542 11.0542i −1.09993 1.09993i −0.994418 0.105515i \(-0.966351\pi\)
−0.105515 0.994418i \(-0.533649\pi\)
\(102\) 0 0
\(103\) 5.46824i 0.538801i 0.963028 + 0.269401i \(0.0868256\pi\)
−0.963028 + 0.269401i \(0.913174\pi\)
\(104\) 0 0
\(105\) 5.29967i 0.517195i
\(106\) 0 0
\(107\) −0.293704 0.293704i −0.0283934 0.0283934i 0.692768 0.721161i \(-0.256391\pi\)
−0.721161 + 0.692768i \(0.756391\pi\)
\(108\) 0 0
\(109\) 10.4135 10.4135i 0.997429 0.997429i −0.00256817 0.999997i \(-0.500817\pi\)
0.999997 + 0.00256817i \(0.000817475\pi\)
\(110\) 0 0
\(111\) −6.81770 −0.647107
\(112\) 0 0
\(113\) −17.4145 −1.63822 −0.819108 0.573639i \(-0.805531\pi\)
−0.819108 + 0.573639i \(0.805531\pi\)
\(114\) 0 0
\(115\) 1.16544 1.16544i 0.108678 0.108678i
\(116\) 0 0
\(117\) 1.04167 + 1.04167i 0.0963022 + 0.0963022i
\(118\) 0 0
\(119\) 13.5352i 1.24077i
\(120\) 0 0
\(121\) 22.9776i 2.08888i
\(122\) 0 0
\(123\) 11.5218 + 11.5218i 1.03889 + 1.03889i
\(124\) 0 0
\(125\) 0.707107 0.707107i 0.0632456 0.0632456i
\(126\) 0 0
\(127\) −10.9793 −0.974254 −0.487127 0.873331i \(-0.661955\pi\)
−0.487127 + 0.873331i \(0.661955\pi\)
\(128\) 0 0
\(129\) −8.84407 −0.778677
\(130\) 0 0
\(131\) −5.77044 + 5.77044i −0.504166 + 0.504166i −0.912730 0.408564i \(-0.866030\pi\)
0.408564 + 0.912730i \(0.366030\pi\)
\(132\) 0 0
\(133\) 0.800523 + 0.800523i 0.0694142 + 0.0694142i
\(134\) 0 0
\(135\) 4.34995i 0.374384i
\(136\) 0 0
\(137\) 7.18832i 0.614139i −0.951687 0.307070i \(-0.900652\pi\)
0.951687 0.307070i \(-0.0993484\pi\)
\(138\) 0 0
\(139\) −4.91327 4.91327i −0.416738 0.416738i 0.467340 0.884078i \(-0.345212\pi\)
−0.884078 + 0.467340i \(0.845212\pi\)
\(140\) 0 0
\(141\) −7.12278 + 7.12278i −0.599846 + 0.599846i
\(142\) 0 0
\(143\) 11.3694 0.950754
\(144\) 0 0
\(145\) 8.02237 0.666221
\(146\) 0 0
\(147\) 0.656667 0.656667i 0.0541609 0.0541609i
\(148\) 0 0
\(149\) 9.76620 + 9.76620i 0.800078 + 0.800078i 0.983107 0.183029i \(-0.0585903\pi\)
−0.183029 + 0.983107i \(0.558590\pi\)
\(150\) 0 0
\(151\) 1.90755i 0.155234i −0.996983 0.0776169i \(-0.975269\pi\)
0.996983 0.0776169i \(-0.0247311\pi\)
\(152\) 0 0
\(153\) 3.73801i 0.302201i
\(154\) 0 0
\(155\) 2.79696 + 2.79696i 0.224658 + 0.224658i
\(156\) 0 0
\(157\) −4.41296 + 4.41296i −0.352192 + 0.352192i −0.860925 0.508732i \(-0.830114\pi\)
0.508732 + 0.860925i \(0.330114\pi\)
\(158\) 0 0
\(159\) −19.7466 −1.56601
\(160\) 0 0
\(161\) −4.50748 −0.355240
\(162\) 0 0
\(163\) 3.58912 3.58912i 0.281122 0.281122i −0.552435 0.833556i \(-0.686301\pi\)
0.833556 + 0.552435i \(0.186301\pi\)
\(164\) 0 0
\(165\) −7.98734 7.98734i −0.621814 0.621814i
\(166\) 0 0
\(167\) 17.5993i 1.36188i −0.732341 0.680938i \(-0.761572\pi\)
0.732341 0.680938i \(-0.238428\pi\)
\(168\) 0 0
\(169\) 9.19566i 0.707359i
\(170\) 0 0
\(171\) −0.221080 0.221080i −0.0169064 0.0169064i
\(172\) 0 0
\(173\) −7.32377 + 7.32377i −0.556816 + 0.556816i −0.928400 0.371584i \(-0.878815\pi\)
0.371584 + 0.928400i \(0.378815\pi\)
\(174\) 0 0
\(175\) −2.73482 −0.206733
\(176\) 0 0
\(177\) −17.5707 −1.32070
\(178\) 0 0
\(179\) −6.42849 + 6.42849i −0.480488 + 0.480488i −0.905287 0.424800i \(-0.860345\pi\)
0.424800 + 0.905287i \(0.360345\pi\)
\(180\) 0 0
\(181\) −3.67884 3.67884i −0.273446 0.273446i 0.557040 0.830486i \(-0.311937\pi\)
−0.830486 + 0.557040i \(0.811937\pi\)
\(182\) 0 0
\(183\) 10.4858i 0.775131i
\(184\) 0 0
\(185\) 3.51817i 0.258661i
\(186\) 0 0
\(187\) 20.3994 + 20.3994i 1.49175 + 1.49175i
\(188\) 0 0
\(189\) 8.41196 8.41196i 0.611880 0.611880i
\(190\) 0 0
\(191\) 5.39093 0.390074 0.195037 0.980796i \(-0.437517\pi\)
0.195037 + 0.980796i \(0.437517\pi\)
\(192\) 0 0
\(193\) −3.53818 −0.254684 −0.127342 0.991859i \(-0.540645\pi\)
−0.127342 + 0.991859i \(0.540645\pi\)
\(194\) 0 0
\(195\) −2.67267 + 2.67267i −0.191394 + 0.191394i
\(196\) 0 0
\(197\) 10.6900 + 10.6900i 0.761627 + 0.761627i 0.976616 0.214989i \(-0.0689716\pi\)
−0.214989 + 0.976616i \(0.568972\pi\)
\(198\) 0 0
\(199\) 15.6543i 1.10971i 0.831948 + 0.554853i \(0.187226\pi\)
−0.831948 + 0.554853i \(0.812774\pi\)
\(200\) 0 0
\(201\) 15.7867i 1.11351i
\(202\) 0 0
\(203\) −15.5137 15.5137i −1.08885 1.08885i
\(204\) 0 0
\(205\) −5.94566 + 5.94566i −0.415263 + 0.415263i
\(206\) 0 0
\(207\) 1.24483 0.0865218
\(208\) 0 0
\(209\) −2.41300 −0.166911
\(210\) 0 0
\(211\) 19.9359 19.9359i 1.37244 1.37244i 0.515634 0.856809i \(-0.327556\pi\)
0.856809 0.515634i \(-0.172444\pi\)
\(212\) 0 0
\(213\) −10.8559 10.8559i −0.743833 0.743833i
\(214\) 0 0
\(215\) 4.56385i 0.311252i
\(216\) 0 0
\(217\) 10.8176i 0.734345i
\(218\) 0 0
\(219\) −5.97815 5.97815i −0.403966 0.403966i
\(220\) 0 0
\(221\) 6.82591 6.82591i 0.459161 0.459161i
\(222\) 0 0
\(223\) −21.2173 −1.42081 −0.710406 0.703792i \(-0.751489\pi\)
−0.710406 + 0.703792i \(0.751489\pi\)
\(224\) 0 0
\(225\) 0.755274 0.0503516
\(226\) 0 0
\(227\) −12.0356 + 12.0356i −0.798832 + 0.798832i −0.982911 0.184079i \(-0.941070\pi\)
0.184079 + 0.982911i \(0.441070\pi\)
\(228\) 0 0
\(229\) 6.70809 + 6.70809i 0.443283 + 0.443283i 0.893114 0.449831i \(-0.148516\pi\)
−0.449831 + 0.893114i \(0.648516\pi\)
\(230\) 0 0
\(231\) 30.8920i 2.03254i
\(232\) 0 0
\(233\) 5.40431i 0.354048i −0.984207 0.177024i \(-0.943353\pi\)
0.984207 0.177024i \(-0.0566470\pi\)
\(234\) 0 0
\(235\) −3.67560 3.67560i −0.239770 0.239770i
\(236\) 0 0
\(237\) −7.61989 + 7.61989i −0.494965 + 0.494965i
\(238\) 0 0
\(239\) 1.86569 0.120681 0.0603406 0.998178i \(-0.480781\pi\)
0.0603406 + 0.998178i \(0.480781\pi\)
\(240\) 0 0
\(241\) 16.3740 1.05474 0.527369 0.849636i \(-0.323178\pi\)
0.527369 + 0.849636i \(0.323178\pi\)
\(242\) 0 0
\(243\) −5.42792 + 5.42792i −0.348201 + 0.348201i
\(244\) 0 0
\(245\) 0.338863 + 0.338863i 0.0216492 + 0.0216492i
\(246\) 0 0
\(247\) 0.807421i 0.0513750i
\(248\) 0 0
\(249\) 1.41464i 0.0896493i
\(250\) 0 0
\(251\) −3.01154 3.01154i −0.190087 0.190087i 0.605647 0.795734i \(-0.292914\pi\)
−0.795734 + 0.605647i \(0.792914\pi\)
\(252\) 0 0
\(253\) 6.79340 6.79340i 0.427098 0.427098i
\(254\) 0 0
\(255\) −9.59085 −0.600602
\(256\) 0 0
\(257\) 22.7407 1.41853 0.709263 0.704944i \(-0.249028\pi\)
0.709263 + 0.704944i \(0.249028\pi\)
\(258\) 0 0
\(259\) −6.80346 + 6.80346i −0.422747 + 0.422747i
\(260\) 0 0
\(261\) 4.28442 + 4.28442i 0.265199 + 0.265199i
\(262\) 0 0
\(263\) 12.0300i 0.741805i −0.928672 0.370902i \(-0.879048\pi\)
0.928672 0.370902i \(-0.120952\pi\)
\(264\) 0 0
\(265\) 10.1899i 0.625962i
\(266\) 0 0
\(267\) 8.80035 + 8.80035i 0.538573 + 0.538573i
\(268\) 0 0
\(269\) 4.90068 4.90068i 0.298800 0.298800i −0.541744 0.840544i \(-0.682236\pi\)
0.840544 + 0.541744i \(0.182236\pi\)
\(270\) 0 0
\(271\) 4.14616 0.251862 0.125931 0.992039i \(-0.459808\pi\)
0.125931 + 0.992039i \(0.459808\pi\)
\(272\) 0 0
\(273\) 10.3369 0.625615
\(274\) 0 0
\(275\) 4.12175 4.12175i 0.248551 0.248551i
\(276\) 0 0
\(277\) −10.4815 10.4815i −0.629775 0.629775i 0.318236 0.948011i \(-0.396909\pi\)
−0.948011 + 0.318236i \(0.896909\pi\)
\(278\) 0 0
\(279\) 2.98749i 0.178856i
\(280\) 0 0
\(281\) 3.51927i 0.209942i −0.994475 0.104971i \(-0.966525\pi\)
0.994475 0.104971i \(-0.0334750\pi\)
\(282\) 0 0
\(283\) 2.88462 + 2.88462i 0.171473 + 0.171473i 0.787626 0.616153i \(-0.211310\pi\)
−0.616153 + 0.787626i \(0.711310\pi\)
\(284\) 0 0
\(285\) 0.567240 0.567240i 0.0336004 0.0336004i
\(286\) 0 0
\(287\) 22.9955 1.35738
\(288\) 0 0
\(289\) 7.49472 0.440866
\(290\) 0 0
\(291\) 12.9427 12.9427i 0.758712 0.758712i
\(292\) 0 0
\(293\) 3.92351 + 3.92351i 0.229214 + 0.229214i 0.812364 0.583150i \(-0.198180\pi\)
−0.583150 + 0.812364i \(0.698180\pi\)
\(294\) 0 0
\(295\) 9.06711i 0.527908i
\(296\) 0 0
\(297\) 25.3560i 1.47130i
\(298\) 0 0
\(299\) −2.27316 2.27316i −0.131460 0.131460i
\(300\) 0 0
\(301\) −8.82561 + 8.82561i −0.508700 + 0.508700i
\(302\) 0 0
\(303\) 30.2944 1.74037
\(304\) 0 0
\(305\) 5.41103 0.309835
\(306\) 0 0
\(307\) 0.196482 0.196482i 0.0112138 0.0112138i −0.701478 0.712691i \(-0.747476\pi\)
0.712691 + 0.701478i \(0.247476\pi\)
\(308\) 0 0
\(309\) −7.49296 7.49296i −0.426259 0.426259i
\(310\) 0 0
\(311\) 2.52927i 0.143422i −0.997425 0.0717110i \(-0.977154\pi\)
0.997425 0.0717110i \(-0.0228459\pi\)
\(312\) 0 0
\(313\) 3.84874i 0.217543i −0.994067 0.108772i \(-0.965308\pi\)
0.994067 0.108772i \(-0.0346917\pi\)
\(314\) 0 0
\(315\) −1.46056 1.46056i −0.0822930 0.0822930i
\(316\) 0 0
\(317\) −6.78901 + 6.78901i −0.381309 + 0.381309i −0.871574 0.490265i \(-0.836900\pi\)
0.490265 + 0.871574i \(0.336900\pi\)
\(318\) 0 0
\(319\) 46.7627 2.61821
\(320\) 0 0
\(321\) 0.804906 0.0449255
\(322\) 0 0
\(323\) −1.44871 + 1.44871i −0.0806085 + 0.0806085i
\(324\) 0 0
\(325\) −1.37919 1.37919i −0.0765038 0.0765038i
\(326\) 0 0
\(327\) 28.5385i 1.57818i
\(328\) 0 0
\(329\) 14.2158i 0.783743i
\(330\) 0 0
\(331\) −1.79195 1.79195i −0.0984944 0.0984944i 0.656143 0.754637i \(-0.272187\pi\)
−0.754637 + 0.656143i \(0.772187\pi\)
\(332\) 0 0
\(333\) 1.87891 1.87891i 0.102964 0.102964i
\(334\) 0 0
\(335\) 8.14650 0.445091
\(336\) 0 0
\(337\) 16.1071 0.877411 0.438706 0.898631i \(-0.355437\pi\)
0.438706 + 0.898631i \(0.355437\pi\)
\(338\) 0 0
\(339\) 23.8625 23.8625i 1.29603 1.29603i
\(340\) 0 0
\(341\) 16.3036 + 16.3036i 0.882889 + 0.882889i
\(342\) 0 0
\(343\) 17.8331i 0.962898i
\(344\) 0 0
\(345\) 3.19394i 0.171956i
\(346\) 0 0
\(347\) −12.6577 12.6577i −0.679502 0.679502i 0.280385 0.959888i \(-0.409538\pi\)
−0.959888 + 0.280385i \(0.909538\pi\)
\(348\) 0 0
\(349\) −16.3020 + 16.3020i −0.872627 + 0.872627i −0.992758 0.120131i \(-0.961669\pi\)
0.120131 + 0.992758i \(0.461669\pi\)
\(350\) 0 0
\(351\) 8.48445 0.452866
\(352\) 0 0
\(353\) −13.2637 −0.705954 −0.352977 0.935632i \(-0.614831\pi\)
−0.352977 + 0.935632i \(0.614831\pi\)
\(354\) 0 0
\(355\) 5.60202 5.60202i 0.297324 0.297324i
\(356\) 0 0
\(357\) 18.5469 + 18.5469i 0.981604 + 0.981604i
\(358\) 0 0
\(359\) 13.3561i 0.704906i 0.935830 + 0.352453i \(0.114652\pi\)
−0.935830 + 0.352453i \(0.885348\pi\)
\(360\) 0 0
\(361\) 18.8286i 0.990981i
\(362\) 0 0
\(363\) −31.4855 31.4855i −1.65256 1.65256i
\(364\) 0 0
\(365\) 3.08494 3.08494i 0.161473 0.161473i
\(366\) 0 0
\(367\) −11.8938 −0.620852 −0.310426 0.950598i \(-0.600472\pi\)
−0.310426 + 0.950598i \(0.600472\pi\)
\(368\) 0 0
\(369\) −6.35067 −0.330603
\(370\) 0 0
\(371\) −19.7054 + 19.7054i −1.02305 + 1.02305i
\(372\) 0 0
\(373\) −19.0494 19.0494i −0.986342 0.986342i 0.0135655 0.999908i \(-0.495682\pi\)
−0.999908 + 0.0135655i \(0.995682\pi\)
\(374\) 0 0
\(375\) 1.93785i 0.100070i
\(376\) 0 0
\(377\) 15.6474i 0.805882i
\(378\) 0 0
\(379\) 4.64554 + 4.64554i 0.238625 + 0.238625i 0.816281 0.577655i \(-0.196032\pi\)
−0.577655 + 0.816281i \(0.696032\pi\)
\(380\) 0 0
\(381\) 15.0446 15.0446i 0.770757 0.770757i
\(382\) 0 0
\(383\) −38.5131 −1.96793 −0.983964 0.178366i \(-0.942919\pi\)
−0.983964 + 0.178366i \(0.942919\pi\)
\(384\) 0 0
\(385\) −15.9413 −0.812446
\(386\) 0 0
\(387\) 2.43737 2.43737i 0.123898 0.123898i
\(388\) 0 0
\(389\) −0.903192 0.903192i −0.0457937 0.0457937i 0.683839 0.729633i \(-0.260309\pi\)
−0.729633 + 0.683839i \(0.760309\pi\)
\(390\) 0 0
\(391\) 8.15722i 0.412528i
\(392\) 0 0
\(393\) 15.8141i 0.797716i
\(394\) 0 0
\(395\) −3.93213 3.93213i −0.197847 0.197847i
\(396\) 0 0
\(397\) 4.44748 4.44748i 0.223212 0.223212i −0.586637 0.809850i \(-0.699549\pi\)
0.809850 + 0.586637i \(0.199549\pi\)
\(398\) 0 0
\(399\) −2.19386 −0.109831
\(400\) 0 0
\(401\) 27.3379 1.36519 0.682596 0.730796i \(-0.260851\pi\)
0.682596 + 0.730796i \(0.260851\pi\)
\(402\) 0 0
\(403\) 5.45540 5.45540i 0.271753 0.271753i
\(404\) 0 0
\(405\) −7.56278 7.56278i −0.375797 0.375797i
\(406\) 0 0
\(407\) 20.5075i 1.01652i
\(408\) 0 0
\(409\) 38.6889i 1.91304i −0.291661 0.956522i \(-0.594208\pi\)
0.291661 0.956522i \(-0.405792\pi\)
\(410\) 0 0
\(411\) 9.84993 + 9.84993i 0.485861 + 0.485861i
\(412\) 0 0
\(413\) −17.5341 + 17.5341i −0.862794 + 0.862794i
\(414\) 0 0
\(415\) −0.730005 −0.0358345
\(416\) 0 0
\(417\) 13.4650 0.659384
\(418\) 0 0
\(419\) −7.41439 + 7.41439i −0.362217 + 0.362217i −0.864628 0.502412i \(-0.832446\pi\)
0.502412 + 0.864628i \(0.332446\pi\)
\(420\) 0 0
\(421\) −10.3279 10.3279i −0.503351 0.503351i 0.409127 0.912478i \(-0.365833\pi\)
−0.912478 + 0.409127i \(0.865833\pi\)
\(422\) 0 0
\(423\) 3.92598i 0.190888i
\(424\) 0 0
\(425\) 4.94921i 0.240072i
\(426\) 0 0
\(427\) −10.4639 10.4639i −0.506383 0.506383i
\(428\) 0 0
\(429\) −15.5791 + 15.5791i −0.752165 + 0.752165i
\(430\) 0 0
\(431\) 14.8644 0.715991 0.357995 0.933723i \(-0.383460\pi\)
0.357995 + 0.933723i \(0.383460\pi\)
\(432\) 0 0
\(433\) −4.96284 −0.238499 −0.119249 0.992864i \(-0.538049\pi\)
−0.119249 + 0.992864i \(0.538049\pi\)
\(434\) 0 0
\(435\) −10.9928 + 10.9928i −0.527064 + 0.527064i
\(436\) 0 0
\(437\) 0.482449 + 0.482449i 0.0230787 + 0.0230787i
\(438\) 0 0
\(439\) 13.7348i 0.655527i −0.944760 0.327763i \(-0.893705\pi\)
0.944760 0.327763i \(-0.106295\pi\)
\(440\) 0 0
\(441\) 0.361946i 0.0172355i
\(442\) 0 0
\(443\) 7.62584 + 7.62584i 0.362315 + 0.362315i 0.864664 0.502350i \(-0.167531\pi\)
−0.502350 + 0.864664i \(0.667531\pi\)
\(444\) 0 0
\(445\) −4.54129 + 4.54129i −0.215278 + 0.215278i
\(446\) 0 0
\(447\) −26.7646 −1.26592
\(448\) 0 0
\(449\) −15.8544 −0.748215 −0.374108 0.927385i \(-0.622051\pi\)
−0.374108 + 0.927385i \(0.622051\pi\)
\(450\) 0 0
\(451\) −34.6574 + 34.6574i −1.63195 + 1.63195i
\(452\) 0 0
\(453\) 2.61385 + 2.61385i 0.122809 + 0.122809i
\(454\) 0 0
\(455\) 5.33418i 0.250070i
\(456\) 0 0
\(457\) 14.1978i 0.664144i 0.943254 + 0.332072i \(0.107748\pi\)
−0.943254 + 0.332072i \(0.892252\pi\)
\(458\) 0 0
\(459\) 15.2232 + 15.2232i 0.710557 + 0.710557i
\(460\) 0 0
\(461\) −22.8952 + 22.8952i −1.06634 + 1.06634i −0.0686980 + 0.997638i \(0.521884\pi\)
−0.997638 + 0.0686980i \(0.978116\pi\)
\(462\) 0 0
\(463\) −25.0175 −1.16266 −0.581330 0.813668i \(-0.697467\pi\)
−0.581330 + 0.813668i \(0.697467\pi\)
\(464\) 0 0
\(465\) −7.66519 −0.355465
\(466\) 0 0
\(467\) 23.5446 23.5446i 1.08951 1.08951i 0.0939334 0.995578i \(-0.470056\pi\)
0.995578 0.0939334i \(-0.0299441\pi\)
\(468\) 0 0
\(469\) −15.7538 15.7538i −0.727441 0.727441i
\(470\) 0 0
\(471\) 12.0939i 0.557256i
\(472\) 0 0
\(473\) 26.6028i 1.22320i
\(474\) 0 0
\(475\) 0.292715 + 0.292715i 0.0134307 + 0.0134307i
\(476\) 0 0
\(477\) 5.44203 5.44203i 0.249173 0.249173i
\(478\) 0 0
\(479\) −39.3416 −1.79756 −0.898781 0.438398i \(-0.855546\pi\)
−0.898781 + 0.438398i \(0.855546\pi\)
\(480\) 0 0
\(481\) −6.86209 −0.312884
\(482\) 0 0
\(483\) 6.17647 6.17647i 0.281039 0.281039i
\(484\) 0 0
\(485\) 6.67886 + 6.67886i 0.303272 + 0.303272i
\(486\) 0 0
\(487\) 25.6970i 1.16444i 0.813030 + 0.582222i \(0.197816\pi\)
−0.813030 + 0.582222i \(0.802184\pi\)
\(488\) 0 0
\(489\) 9.83612i 0.444805i
\(490\) 0 0
\(491\) 29.0344 + 29.0344i 1.31030 + 1.31030i 0.921190 + 0.389113i \(0.127219\pi\)
0.389113 + 0.921190i \(0.372781\pi\)
\(492\) 0 0
\(493\) 28.0753 28.0753i 1.26445 1.26445i
\(494\) 0 0
\(495\) 4.40252 0.197879
\(496\) 0 0
\(497\) −21.6665 −0.971873
\(498\) 0 0
\(499\) 7.89904 7.89904i 0.353610 0.353610i −0.507841 0.861451i \(-0.669556\pi\)
0.861451 + 0.507841i \(0.169556\pi\)
\(500\) 0 0
\(501\) 24.1158 + 24.1158i 1.07741 + 1.07741i
\(502\) 0 0
\(503\) 9.53668i 0.425220i 0.977137 + 0.212610i \(0.0681963\pi\)
−0.977137 + 0.212610i \(0.931804\pi\)
\(504\) 0 0
\(505\) 15.6330i 0.695658i
\(506\) 0 0
\(507\) −12.6005 12.6005i −0.559609 0.559609i
\(508\) 0 0
\(509\) −4.24956 + 4.24956i −0.188358 + 0.188358i −0.794986 0.606628i \(-0.792522\pi\)
0.606628 + 0.794986i \(0.292522\pi\)
\(510\) 0 0
\(511\) −11.9313 −0.527812
\(512\) 0 0
\(513\) −1.80071 −0.0795035
\(514\) 0 0
\(515\) 3.86663 3.86663i 0.170384 0.170384i
\(516\) 0 0
\(517\) −21.4252 21.4252i −0.942280 0.942280i
\(518\) 0 0
\(519\) 20.0711i 0.881022i
\(520\) 0 0
\(521\) 9.71766i 0.425739i 0.977081 + 0.212869i \(0.0682809\pi\)
−0.977081 + 0.212869i \(0.931719\pi\)
\(522\) 0 0
\(523\) 4.62580 + 4.62580i 0.202272 + 0.202272i 0.800973 0.598701i \(-0.204316\pi\)
−0.598701 + 0.800973i \(0.704316\pi\)
\(524\) 0 0
\(525\) 3.74744 3.74744i 0.163551 0.163551i
\(526\) 0 0
\(527\) 19.5766 0.852772
\(528\) 0 0
\(529\) 20.2835 0.881891
\(530\) 0 0
\(531\) 4.84238 4.84238i 0.210141 0.210141i
\(532\) 0 0
\(533\) 11.5968 + 11.5968i 0.502314 + 0.502314i
\(534\) 0 0
\(535\) 0.415360i 0.0179576i
\(536\) 0 0
\(537\) 17.6175i 0.760252i
\(538\) 0 0
\(539\) 1.97524 + 1.97524i 0.0850798 + 0.0850798i
\(540\) 0 0
\(541\) 24.0206 24.0206i 1.03272 1.03272i 0.0332788 0.999446i \(-0.489405\pi\)
0.999446 0.0332788i \(-0.0105949\pi\)
\(542\) 0 0
\(543\) 10.0820 0.432660
\(544\) 0 0
\(545\) −14.7269 −0.630829
\(546\) 0 0
\(547\) −4.63900 + 4.63900i −0.198349 + 0.198349i −0.799292 0.600943i \(-0.794792\pi\)
0.600943 + 0.799292i \(0.294792\pi\)
\(548\) 0 0
\(549\) 2.88981 + 2.88981i 0.123334 + 0.123334i
\(550\) 0 0
\(551\) 3.32096i 0.141477i
\(552\) 0 0
\(553\) 15.2080i 0.646709i
\(554\) 0 0
\(555\) 4.82084 + 4.82084i 0.204633 + 0.204633i
\(556\) 0 0
\(557\) 13.6258 13.6258i 0.577345 0.577345i −0.356826 0.934171i \(-0.616141\pi\)
0.934171 + 0.356826i \(0.116141\pi\)
\(558\) 0 0
\(559\) −8.90166 −0.376500
\(560\) 0 0
\(561\) −55.9054 −2.36033
\(562\) 0 0
\(563\) −28.0885 + 28.0885i −1.18379 + 1.18379i −0.205035 + 0.978755i \(0.565731\pi\)
−0.978755 + 0.205035i \(0.934269\pi\)
\(564\) 0 0
\(565\) 12.3139 + 12.3139i 0.518050 + 0.518050i
\(566\) 0 0
\(567\) 29.2499i 1.22838i
\(568\) 0 0
\(569\) 42.3770i 1.77654i 0.459326 + 0.888268i \(0.348091\pi\)
−0.459326 + 0.888268i \(0.651909\pi\)
\(570\) 0 0
\(571\) −7.99217 7.99217i −0.334462 0.334462i 0.519816 0.854278i \(-0.326000\pi\)
−0.854278 + 0.519816i \(0.826000\pi\)
\(572\) 0 0
\(573\) −7.38702 + 7.38702i −0.308597 + 0.308597i
\(574\) 0 0
\(575\) −1.64818 −0.0687341
\(576\) 0 0
\(577\) −20.4651 −0.851972 −0.425986 0.904730i \(-0.640073\pi\)
−0.425986 + 0.904730i \(0.640073\pi\)
\(578\) 0 0
\(579\) 4.84826 4.84826i 0.201487 0.201487i
\(580\) 0 0
\(581\) 1.41169 + 1.41169i 0.0585667 + 0.0585667i
\(582\) 0 0
\(583\) 59.3974i 2.45999i
\(584\) 0 0
\(585\) 1.47314i 0.0609069i
\(586\) 0 0
\(587\) −0.429976 0.429976i −0.0177470 0.0177470i 0.698178 0.715925i \(-0.253995\pi\)
−0.715925 + 0.698178i \(0.753995\pi\)
\(588\) 0 0
\(589\) −1.15784 + 1.15784i −0.0477079 + 0.0477079i
\(590\) 0 0
\(591\) −29.2962 −1.20509
\(592\) 0 0
\(593\) 37.9620 1.55891 0.779455 0.626458i \(-0.215496\pi\)
0.779455 + 0.626458i \(0.215496\pi\)
\(594\) 0 0
\(595\) −9.57083 + 9.57083i −0.392366 + 0.392366i
\(596\) 0 0
\(597\) −21.4507 21.4507i −0.877917 0.877917i
\(598\) 0 0
\(599\) 13.7108i 0.560207i 0.959970 + 0.280104i \(0.0903688\pi\)
−0.959970 + 0.280104i \(0.909631\pi\)
\(600\) 0 0
\(601\) 2.84070i 0.115875i −0.998320 0.0579373i \(-0.981548\pi\)
0.998320 0.0579373i \(-0.0184523\pi\)
\(602\) 0 0
\(603\) 4.35072 + 4.35072i 0.177175 + 0.177175i
\(604\) 0 0
\(605\) 16.2476 16.2476i 0.660561 0.660561i
\(606\) 0 0
\(607\) 42.8562 1.73948 0.869740 0.493510i \(-0.164287\pi\)
0.869740 + 0.493510i \(0.164287\pi\)
\(608\) 0 0
\(609\) 42.5159 1.72283
\(610\) 0 0
\(611\) −7.16916 + 7.16916i −0.290033 + 0.290033i
\(612\) 0 0
\(613\) 5.48393 + 5.48393i 0.221494 + 0.221494i 0.809127 0.587633i \(-0.199940\pi\)
−0.587633 + 0.809127i \(0.699940\pi\)
\(614\) 0 0
\(615\) 16.2943i 0.657049i
\(616\) 0 0
\(617\) 22.2539i 0.895908i 0.894057 + 0.447954i \(0.147847\pi\)
−0.894057 + 0.447954i \(0.852153\pi\)
\(618\) 0 0
\(619\) −10.0974 10.0974i −0.405849 0.405849i 0.474439 0.880288i \(-0.342651\pi\)
−0.880288 + 0.474439i \(0.842651\pi\)
\(620\) 0 0
\(621\) 5.06962 5.06962i 0.203437 0.203437i
\(622\) 0 0
\(623\) 17.5640 0.703685
\(624\) 0 0
\(625\) −1.00000 −0.0400000
\(626\) 0 0
\(627\) 3.30646 3.30646i 0.132047 0.132047i
\(628\) 0 0
\(629\) −12.3123 12.3123i −0.490922 0.490922i
\(630\) 0 0
\(631\) 49.5996i 1.97453i −0.159086 0.987265i \(-0.550855\pi\)
0.159086 0.987265i \(-0.449145\pi\)
\(632\) 0 0
\(633\) 54.6351i 2.17155i
\(634\) 0 0
\(635\) 7.76353 + 7.76353i 0.308086 + 0.308086i
\(636\) 0 0
\(637\) 0.660942 0.660942i 0.0261875 0.0261875i
\(638\) 0 0
\(639\) 5.98362 0.236709
\(640\) 0 0
\(641\) −42.5379 −1.68015 −0.840074 0.542472i \(-0.817488\pi\)
−0.840074 + 0.542472i \(0.817488\pi\)
\(642\) 0 0
\(643\) 29.3128 29.3128i 1.15598 1.15598i 0.170653 0.985331i \(-0.445412\pi\)
0.985331 0.170653i \(-0.0545878\pi\)
\(644\) 0 0
\(645\) 6.25370 + 6.25370i 0.246239 + 0.246239i
\(646\) 0 0
\(647\) 4.35345i 0.171152i −0.996332 0.0855759i \(-0.972727\pi\)
0.996332 0.0855759i \(-0.0272730\pi\)
\(648\) 0 0
\(649\) 52.8525i 2.07464i
\(650\) 0 0
\(651\) 14.8230 + 14.8230i 0.580959 + 0.580959i
\(652\) 0 0
\(653\) −12.3460 + 12.3460i −0.483137 + 0.483137i −0.906132 0.422995i \(-0.860979\pi\)
0.422995 + 0.906132i \(0.360979\pi\)
\(654\) 0 0
\(655\) 8.16063 0.318862
\(656\) 0 0
\(657\) 3.29508 0.128553
\(658\) 0 0
\(659\) −19.5367 + 19.5367i −0.761040 + 0.761040i −0.976510 0.215470i \(-0.930872\pi\)
0.215470 + 0.976510i \(0.430872\pi\)
\(660\) 0 0
\(661\) 26.4901 + 26.4901i 1.03035 + 1.03035i 0.999525 + 0.0308210i \(0.00981219\pi\)
0.0308210 + 0.999525i \(0.490188\pi\)
\(662\) 0 0
\(663\) 18.7067i 0.726507i
\(664\) 0 0
\(665\) 1.13211i 0.0439014i
\(666\) 0 0
\(667\) −9.34961 9.34961i −0.362018 0.362018i
\(668\) 0 0
\(669\) 29.0734 29.0734i 1.12404 1.12404i
\(670\) 0 0
\(671\) 31.5411 1.21763
\(672\) 0 0
\(673\) −11.5260 −0.444295 −0.222148 0.975013i \(-0.571307\pi\)
−0.222148 + 0.975013i \(0.571307\pi\)
\(674\) 0 0
\(675\) 3.07588 3.07588i 0.118391 0.118391i
\(676\) 0 0
\(677\) −15.8009 15.8009i −0.607278 0.607278i 0.334956 0.942234i \(-0.391279\pi\)
−0.942234 + 0.334956i \(0.891279\pi\)
\(678\) 0 0
\(679\) 25.8313i 0.991314i
\(680\) 0 0
\(681\) 32.9841i 1.26395i
\(682\) 0 0
\(683\) 25.1439 + 25.1439i 0.962105 + 0.962105i 0.999308 0.0372032i \(-0.0118449\pi\)
−0.0372032 + 0.999308i \(0.511845\pi\)
\(684\) 0 0
\(685\) −5.08291 + 5.08291i −0.194208 + 0.194208i
\(686\) 0 0
\(687\) −18.3838 −0.701385
\(688\) 0 0
\(689\) −19.8752 −0.757183
\(690\) 0 0
\(691\) 27.2647 27.2647i 1.03720 1.03720i 0.0379162 0.999281i \(-0.487928\pi\)
0.999281 0.0379162i \(-0.0120720\pi\)
\(692\) 0 0
\(693\) −8.51363 8.51363i −0.323406 0.323406i
\(694\) 0 0
\(695\) 6.94841i 0.263568i
\(696\) 0 0
\(697\) 41.6151i 1.57628i
\(698\) 0 0
\(699\) 7.40536 + 7.40536i 0.280096 + 0.280096i
\(700\) 0 0
\(701\) 12.5566 12.5566i 0.474257 0.474257i −0.429032 0.903289i \(-0.641145\pi\)
0.903289 + 0.429032i \(0.141145\pi\)
\(702\) 0 0
\(703\) 1.45639 0.0549288
\(704\) 0 0
\(705\) 10.0731 0.379376
\(706\) 0 0
\(707\) 30.2312 30.2312i 1.13696 1.13696i
\(708\) 0 0
\(709\) 18.0518 + 18.0518i 0.677950 + 0.677950i 0.959536 0.281586i \(-0.0908604\pi\)
−0.281586 + 0.959536i \(0.590860\pi\)
\(710\) 0 0
\(711\) 4.19999i 0.157512i
\(712\) 0 0
\(713\) 6.51940i 0.244154i
\(714\) 0 0
\(715\) −8.03935 8.03935i −0.300655 0.300655i
\(716\) 0 0
\(717\) −2.55649 + 2.55649i −0.0954739 + 0.0954739i
\(718\) 0 0
\(719\) 1.68053 0.0626731 0.0313366 0.999509i \(-0.490024\pi\)
0.0313366 + 0.999509i \(0.490024\pi\)
\(720\) 0 0
\(721\) −14.9546 −0.556939
\(722\) 0 0
\(723\) −22.4367 + 22.4367i −0.834431 + 0.834431i
\(724\) 0 0
\(725\) −5.67267 5.67267i −0.210678 0.210678i
\(726\) 0 0
\(727\) 15.5235i 0.575735i 0.957670 + 0.287867i \(0.0929462\pi\)
−0.957670 + 0.287867i \(0.907054\pi\)
\(728\) 0 0
\(729\) 17.2107i 0.637435i
\(730\) 0 0
\(731\) −15.9718 15.9718i −0.590737 0.590737i
\(732\) 0 0
\(733\) −8.79758 + 8.79758i −0.324946 + 0.324946i −0.850661 0.525715i \(-0.823798\pi\)
0.525715 + 0.850661i \(0.323798\pi\)
\(734\) 0 0
\(735\) −0.928667 −0.0342544
\(736\) 0 0
\(737\) 47.4862 1.74918
\(738\) 0 0
\(739\) 6.44190 6.44190i 0.236969 0.236969i −0.578625 0.815594i \(-0.696410\pi\)
0.815594 + 0.578625i \(0.196410\pi\)
\(740\) 0 0
\(741\) −1.10638 1.10638i −0.0406440 0.0406440i
\(742\) 0 0
\(743\) 34.8920i 1.28006i 0.768348 + 0.640032i \(0.221079\pi\)
−0.768348 + 0.640032i \(0.778921\pi\)
\(744\) 0 0
\(745\) 13.8115i 0.506014i
\(746\) 0 0
\(747\) −0.389866 0.389866i −0.0142645 0.0142645i
\(748\) 0 0
\(749\) 0.803225 0.803225i 0.0293492 0.0293492i
\(750\) 0 0
\(751\) −17.4058 −0.635148 −0.317574 0.948234i \(-0.602868\pi\)
−0.317574 + 0.948234i \(0.602868\pi\)
\(752\) 0 0
\(753\) 8.25325 0.300765
\(754\) 0 0
\(755\) −1.34884 + 1.34884i −0.0490893 + 0.0490893i
\(756\) 0 0
\(757\) 20.6521 + 20.6521i 0.750614 + 0.750614i 0.974594 0.223980i \(-0.0719050\pi\)
−0.223980 + 0.974594i \(0.571905\pi\)
\(758\) 0 0
\(759\) 18.6176i 0.675776i
\(760\) 0 0
\(761\) 8.36636i 0.303280i −0.988436 0.151640i \(-0.951545\pi\)
0.988436 0.151640i \(-0.0484555\pi\)
\(762\) 0 0
\(763\) 28.4789 + 28.4789i 1.03101 + 1.03101i
\(764\) 0 0
\(765\) 2.64318 2.64318i 0.0955642 0.0955642i
\(766\) 0 0
\(767\) −17.6851 −0.638574
\(768\) 0 0
\(769\) 45.1264 1.62730 0.813650 0.581356i \(-0.197477\pi\)
0.813650 + 0.581356i \(0.197477\pi\)
\(770\) 0 0
\(771\) −31.1609 + 31.1609i −1.12223 + 1.12223i
\(772\) 0 0
\(773\) −11.1233 11.1233i −0.400076 0.400076i 0.478184 0.878260i \(-0.341295\pi\)
−0.878260 + 0.478184i \(0.841295\pi\)
\(774\) 0 0
\(775\) 3.95550i 0.142086i
\(776\) 0 0
\(777\) 18.6452i 0.668891i
\(778\) 0 0
\(779\) −2.46128 2.46128i −0.0881844 0.0881844i
\(780\) 0 0
\(781\) 32.6544 32.6544i 1.16846 1.16846i
\(782\) 0 0
\(783\) 34.8969 1.24711
\(784\) 0 0
\(785\) 6.24086 0.222746
\(786\) 0 0
\(787\) −7.41779 + 7.41779i −0.264416 + 0.264416i −0.826845 0.562430i \(-0.809867\pi\)
0.562430 + 0.826845i \(0.309867\pi\)
\(788\) 0 0
\(789\) 16.4844 + 16.4844i 0.586860 + 0.586860i
\(790\) 0 0
\(791\) 47.6254i 1.69337i
\(792\) 0 0
\(793\) 10.5541i 0.374786i
\(794\) 0 0
\(795\) 13.9629 + 13.9629i 0.495215 + 0.495215i
\(796\) 0 0
\(797\) −8.05803 + 8.05803i −0.285430 + 0.285430i −0.835270 0.549840i \(-0.814689\pi\)
0.549840 + 0.835270i \(0.314689\pi\)
\(798\) 0 0
\(799\) −25.7264 −0.910136
\(800\) 0 0
\(801\) −4.85064 −0.171389
\(802\) 0 0
\(803\) 17.9822 17.9822i 0.634578 0.634578i
\(804\) 0 0
\(805\) 3.18727 + 3.18727i 0.112337 + 0.112337i
\(806\) 0 0
\(807\) 13.4305i 0.472776i
\(808\) 0 0
\(809\) 20.1500i 0.708436i 0.935163 + 0.354218i \(0.115253\pi\)
−0.935163 + 0.354218i \(0.884747\pi\)
\(810\) 0 0
\(811\) 10.5575 + 10.5575i 0.370723 + 0.370723i 0.867741 0.497018i \(-0.165572\pi\)
−0.497018 + 0.867741i \(0.665572\pi\)
\(812\) 0 0
\(813\) −5.68136 + 5.68136i −0.199254 + 0.199254i
\(814\) 0 0
\(815\) −5.07578 −0.177797
\(816\) 0 0
\(817\) 1.88926 0.0660969
\(818\) 0 0
\(819\) −2.84877 + 2.84877i −0.0995441 + 0.0995441i
\(820\) 0 0
\(821\) −24.3826 24.3826i −0.850957 0.850957i 0.139294 0.990251i \(-0.455517\pi\)
−0.990251 + 0.139294i \(0.955517\pi\)
\(822\) 0 0
\(823\) 32.5617i 1.13503i 0.823363 + 0.567515i \(0.192095\pi\)
−0.823363 + 0.567515i \(0.807905\pi\)
\(824\) 0 0
\(825\) 11.2958i 0.393270i
\(826\) 0 0
\(827\) 1.31121 + 1.31121i 0.0455952 + 0.0455952i 0.729537 0.683942i \(-0.239736\pi\)
−0.683942 + 0.729537i \(0.739736\pi\)
\(828\) 0 0
\(829\) −20.8346 + 20.8346i −0.723617 + 0.723617i −0.969340 0.245723i \(-0.920975\pi\)
0.245723 + 0.969340i \(0.420975\pi\)
\(830\) 0 0
\(831\) 28.7251 0.996462
\(832\) 0 0
\(833\) 2.37179 0.0821775
\(834\) 0 0
\(835\) −12.4446 + 12.4446i −0.430663 + 0.430663i
\(836\) 0 0
\(837\) 12.1666 + 12.1666i 0.420541 + 0.420541i
\(838\) 0 0
\(839\) 54.2029i 1.87129i 0.352939 + 0.935646i \(0.385182\pi\)
−0.352939 + 0.935646i \(0.614818\pi\)
\(840\) 0 0
\(841\) 35.3584i 1.21925i
\(842\) 0 0
\(843\) 4.82234 + 4.82234i 0.166090 + 0.166090i
\(844\) 0 0
\(845\) 6.50232 6.50232i 0.223686 0.223686i
\(846\) 0 0
\(847\) −62.8396 −2.15920
\(848\) 0 0
\(849\) −7.90541 −0.271313
\(850\) 0 0
\(851\) −4.10023 + 4.10023i −0.140554 + 0.140554i
\(852\) 0 0
\(853\) 28.4548 + 28.4548i 0.974274 + 0.974274i 0.999677 0.0254034i \(-0.00808702\pi\)
−0.0254034 + 0.999677i \(0.508087\pi\)
\(854\) 0 0
\(855\) 0.312655i 0.0106926i
\(856\) 0 0
\(857\) 28.9592i 0.989228i −0.869113 0.494614i \(-0.835309\pi\)
0.869113 0.494614i \(-0.164691\pi\)
\(858\) 0 0
\(859\) −35.6101 35.6101i −1.21500 1.21500i −0.969361 0.245640i \(-0.921002\pi\)
−0.245640 0.969361i \(-0.578998\pi\)
\(860\) 0 0
\(861\) −31.5100 + 31.5100i −1.07386 + 1.07386i
\(862\) 0 0
\(863\) 31.8081 1.08276 0.541380 0.840778i \(-0.317902\pi\)
0.541380 + 0.840778i \(0.317902\pi\)
\(864\) 0 0
\(865\) 10.3574 0.352161
\(866\) 0 0
\(867\) −10.2698 + 10.2698i −0.348780 + 0.348780i
\(868\) 0 0
\(869\) −22.9205 22.9205i −0.777526 0.777526i
\(870\) 0 0
\(871\) 15.8895i 0.538396i
\(872\) 0 0
\(873\) 7.13382i 0.241443i
\(874\) 0 0
\(875\) 1.93381 + 1.93381i 0.0653746 + 0.0653746i
\(876\) 0 0
\(877\) −29.2864 + 29.2864i −0.988932 + 0.988932i −0.999939 0.0110076i \(-0.996496\pi\)
0.0110076 + 0.999939i \(0.496496\pi\)
\(878\) 0 0
\(879\) −10.7525 −0.362673
\(880\) 0 0
\(881\) −6.72061 −0.226423 −0.113212 0.993571i \(-0.536114\pi\)
−0.113212 + 0.993571i \(0.536114\pi\)
\(882\) 0 0
\(883\) 26.2186 26.2186i 0.882327 0.882327i −0.111444 0.993771i \(-0.535547\pi\)
0.993771 + 0.111444i \(0.0355474\pi\)
\(884\) 0 0
\(885\) 12.4244 + 12.4244i 0.417641 + 0.417641i
\(886\) 0 0
\(887\) 10.4628i 0.351307i 0.984452 + 0.175654i \(0.0562039\pi\)
−0.984452 + 0.175654i \(0.943796\pi\)
\(888\) 0 0
\(889\) 30.0263i 1.00705i
\(890\) 0 0
\(891\) −44.0837 44.0837i −1.47686 1.47686i
\(892\) 0 0
\(893\) 1.52156 1.52156i 0.0509171 0.0509171i
\(894\) 0 0
\(895\) 9.09126 0.303887
\(896\) 0 0
\(897\) 6.22969 0.208003
\(898\) 0 0
\(899\) 22.4383 22.4383i 0.748358 0.748358i
\(900\) 0 0
\(901\) −35.6609 35.6609i −1.18804 1.18804i
\(902\) 0 0
\(903\) 24.1869i 0.804890i
\(904\) 0 0
\(905\) 5.20267i 0.172943i
\(906\) 0 0
\(907\) −12.4762 12.4762i −0.414267 0.414267i 0.468955 0.883222i \(-0.344631\pi\)
−0.883222 + 0.468955i \(0.844631\pi\)
\(908\) 0 0
\(909\) −8.34894 + 8.34894i −0.276917 + 0.276917i
\(910\) 0 0
\(911\) −49.3786 −1.63599 −0.817994 0.575227i \(-0.804914\pi\)
−0.817994 + 0.575227i \(0.804914\pi\)
\(912\) 0 0
\(913\) −4.25522 −0.140827
\(914\) 0 0
\(915\) −7.41457 + 7.41457i −0.245118 + 0.245118i
\(916\) 0 0
\(917\) −15.7811 15.7811i −0.521138 0.521138i
\(918\) 0 0
\(919\) 26.6465i 0.878988i 0.898246 + 0.439494i \(0.144842\pi\)
−0.898246 + 0.439494i \(0.855158\pi\)
\(920\) 0 0
\(921\) 0.538466i 0.0177431i
\(922\) 0 0
\(923\) −10.9266 10.9266i −0.359653 0.359653i
\(924\) 0 0
\(925\) −2.48772 + 2.48772i −0.0817958 + 0.0817958i
\(926\) 0 0
\(927\) 4.13002 0.135648
\(928\) 0 0
\(929\) −29.5531 −0.969606 −0.484803 0.874623i \(-0.661109\pi\)
−0.484803 + 0.874623i \(0.661109\pi\)
\(930\) 0 0
\(931\) −0.140276 + 0.140276i −0.00459737 + 0.00459737i
\(932\) 0 0
\(933\) 3.46579 + 3.46579i 0.113465 + 0.113465i
\(934\) 0 0
\(935\) 28.8491i 0.943468i
\(936\) 0 0
\(937\) 30.5505i 0.998042i −0.866590 0.499021i \(-0.833693\pi\)
0.866590 0.499021i \(-0.166307\pi\)
\(938\) 0 0
\(939\) 5.27380 + 5.27380i 0.172104 + 0.172104i
\(940\) 0 0
\(941\) 0.808622 0.808622i 0.0263603 0.0263603i −0.693804 0.720164i \(-0.744067\pi\)
0.720164 + 0.693804i \(0.244067\pi\)
\(942\) 0 0
\(943\) 13.8586 0.451299
\(944\) 0 0
\(945\) −11.8963 −0.386987
\(946\) 0 0
\(947\) 16.7181 16.7181i 0.543265 0.543265i −0.381220 0.924484i \(-0.624496\pi\)
0.924484 + 0.381220i \(0.124496\pi\)
\(948\) 0 0
\(949\) −6.01708 6.01708i −0.195323 0.195323i
\(950\) 0 0
\(951\) 18.6055i 0.603326i
\(952\) 0 0
\(953\) 5.39705i 0.174828i −0.996172 0.0874138i \(-0.972140\pi\)
0.996172 0.0874138i \(-0.0278603\pi\)
\(954\) 0 0
\(955\) −3.81196 3.81196i −0.123352 0.123352i
\(956\) 0 0
\(957\) −64.0774 + 64.0774i −2.07133 + 2.07133i
\(958\) 0 0
\(959\) 19.6587 0.634813
\(960\) 0 0
\(961\) −15.3540 −0.495290
\(962\) 0 0
\(963\) −0.221827 + 0.221827i −0.00714827 + 0.00714827i
\(964\) 0 0
\(965\) 2.50187 + 2.50187i 0.0805381 + 0.0805381i
\(966\) 0 0
\(967\) 14.0430i 0.451593i −0.974175 0.225796i \(-0.927502\pi\)
0.974175 0.225796i \(-0.0724984\pi\)
\(968\) 0 0
\(969\) 3.97025i 0.127543i
\(970\) 0 0
\(971\) −13.5960 13.5960i −0.436316 0.436316i 0.454454 0.890770i \(-0.349834\pi\)
−0.890770 + 0.454454i \(0.849834\pi\)
\(972\) 0 0
\(973\) 13.4369 13.4369i 0.430767 0.430767i
\(974\) 0 0
\(975\) 3.77973 0.121048
\(976\) 0 0
\(977\) 44.9303 1.43745 0.718724 0.695295i \(-0.244726\pi\)
0.718724 + 0.695295i \(0.244726\pi\)
\(978\) 0 0
\(979\) −26.4713 + 26.4713i −0.846028 + 0.846028i
\(980\) 0 0
\(981\) −7.86502 7.86502i −0.251111 0.251111i
\(982\) 0 0
\(983\) 55.7813i 1.77915i 0.456791 + 0.889574i \(0.348999\pi\)
−0.456791 + 0.889574i \(0.651001\pi\)
\(984\) 0 0
\(985\) 15.1179i 0.481696i
\(986\) 0 0
\(987\) −19.4795 19.4795i −0.620039 0.620039i
\(988\) 0 0
\(989\) −5.31891 + 5.31891i −0.169131 + 0.169131i
\(990\) 0 0
\(991\) 46.1815 1.46700 0.733502 0.679688i \(-0.237885\pi\)
0.733502 + 0.679688i \(0.237885\pi\)
\(992\) 0 0
\(993\) 4.91090 0.155843
\(994\) 0 0
\(995\) 11.0693 11.0693i 0.350920 0.350920i
\(996\) 0 0
\(997\) −33.4837 33.4837i −1.06044 1.06044i −0.998052 0.0623860i \(-0.980129\pi\)
−0.0623860 0.998052i \(-0.519871\pi\)
\(998\) 0 0
\(999\) 15.3039i 0.484193i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 320.2.l.a.241.3 16
3.2 odd 2 2880.2.t.c.2161.8 16
4.3 odd 2 80.2.l.a.21.2 16
5.2 odd 4 1600.2.q.h.49.6 16
5.3 odd 4 1600.2.q.g.49.3 16
5.4 even 2 1600.2.l.i.1201.6 16
8.3 odd 2 640.2.l.b.481.3 16
8.5 even 2 640.2.l.a.481.6 16
12.11 even 2 720.2.t.c.181.7 16
16.3 odd 4 80.2.l.a.61.2 yes 16
16.5 even 4 640.2.l.a.161.6 16
16.11 odd 4 640.2.l.b.161.3 16
16.13 even 4 inner 320.2.l.a.81.3 16
20.3 even 4 400.2.q.h.149.5 16
20.7 even 4 400.2.q.g.149.4 16
20.19 odd 2 400.2.l.h.101.7 16
32.3 odd 8 5120.2.a.v.1.6 8
32.13 even 8 5120.2.a.u.1.6 8
32.19 odd 8 5120.2.a.s.1.3 8
32.29 even 8 5120.2.a.t.1.3 8
48.29 odd 4 2880.2.t.c.721.5 16
48.35 even 4 720.2.t.c.541.7 16
80.3 even 4 400.2.q.g.349.4 16
80.13 odd 4 1600.2.q.h.849.6 16
80.19 odd 4 400.2.l.h.301.7 16
80.29 even 4 1600.2.l.i.401.6 16
80.67 even 4 400.2.q.h.349.5 16
80.77 odd 4 1600.2.q.g.849.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.2 16 4.3 odd 2
80.2.l.a.61.2 yes 16 16.3 odd 4
320.2.l.a.81.3 16 16.13 even 4 inner
320.2.l.a.241.3 16 1.1 even 1 trivial
400.2.l.h.101.7 16 20.19 odd 2
400.2.l.h.301.7 16 80.19 odd 4
400.2.q.g.149.4 16 20.7 even 4
400.2.q.g.349.4 16 80.3 even 4
400.2.q.h.149.5 16 20.3 even 4
400.2.q.h.349.5 16 80.67 even 4
640.2.l.a.161.6 16 16.5 even 4
640.2.l.a.481.6 16 8.5 even 2
640.2.l.b.161.3 16 16.11 odd 4
640.2.l.b.481.3 16 8.3 odd 2
720.2.t.c.181.7 16 12.11 even 2
720.2.t.c.541.7 16 48.35 even 4
1600.2.l.i.401.6 16 80.29 even 4
1600.2.l.i.1201.6 16 5.4 even 2
1600.2.q.g.49.3 16 5.3 odd 4
1600.2.q.g.849.3 16 80.77 odd 4
1600.2.q.h.49.6 16 5.2 odd 4
1600.2.q.h.849.6 16 80.13 odd 4
2880.2.t.c.721.5 16 48.29 odd 4
2880.2.t.c.2161.8 16 3.2 odd 2
5120.2.a.s.1.3 8 32.19 odd 8
5120.2.a.t.1.3 8 32.29 even 8
5120.2.a.u.1.6 8 32.13 even 8
5120.2.a.v.1.6 8 32.3 odd 8