Properties

Label 32.12.a.c.1.2
Level $32$
Weight $12$
Character 32.1
Self dual yes
Analytic conductor $24.587$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [32,12,Mod(1,32)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("32.1"); S:= CuspForms(chi, 12); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(32, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 12, names="a")
 
Level: \( N \) \(=\) \( 32 = 2^{5} \)
Weight: \( k \) \(=\) \( 12 \)
Character orbit: \([\chi]\) \(=\) 32.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,14060] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(24.5869817779\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{273}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 68 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-7.76136\) of defining polynomial
Character \(\chi\) \(=\) 32.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+528.727 q^{3} +7030.00 q^{5} +34896.0 q^{7} +102405. q^{9} +724884. q^{11} -1.18207e6 q^{13} +3.71695e6 q^{15} +5.44387e6 q^{17} -2.09772e7 q^{19} +1.84504e7 q^{21} +6.60168e6 q^{23} +592775. q^{25} -3.95181e7 q^{27} +1.64046e8 q^{29} +1.97841e8 q^{31} +3.83266e8 q^{33} +2.45319e8 q^{35} +5.40227e8 q^{37} -6.24990e8 q^{39} +2.79999e8 q^{41} -3.02692e8 q^{43} +7.19907e8 q^{45} -1.87326e9 q^{47} -7.59598e8 q^{49} +2.87832e9 q^{51} +4.77652e9 q^{53} +5.09594e9 q^{55} -1.10912e10 q^{57} -4.44316e9 q^{59} -7.47969e9 q^{61} +3.57352e9 q^{63} -8.30992e9 q^{65} -1.09155e10 q^{67} +3.49049e9 q^{69} -2.70127e9 q^{71} -2.18032e10 q^{73} +3.13416e8 q^{75} +2.52955e10 q^{77} -3.37233e10 q^{79} -3.90350e10 q^{81} +6.18211e10 q^{83} +3.82704e10 q^{85} +8.67358e10 q^{87} +2.21958e10 q^{89} -4.12493e10 q^{91} +1.04604e11 q^{93} -1.47470e11 q^{95} +1.00703e11 q^{97} +7.42318e10 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 14060 q^{5} + 204810 q^{9} - 2364132 q^{13} + 10887748 q^{17} + 36900864 q^{21} + 1185550 q^{25} + 328092988 q^{29} + 766531584 q^{33} + 1080453740 q^{37} + 559998644 q^{41} + 1439814300 q^{45} - 1519196462 q^{49}+ \cdots + 201406465188 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 528.727 1.25622 0.628108 0.778126i \(-0.283830\pi\)
0.628108 + 0.778126i \(0.283830\pi\)
\(4\) 0 0
\(5\) 7030.00 1.00605 0.503026 0.864271i \(-0.332220\pi\)
0.503026 + 0.864271i \(0.332220\pi\)
\(6\) 0 0
\(7\) 34896.0 0.784758 0.392379 0.919804i \(-0.371652\pi\)
0.392379 + 0.919804i \(0.371652\pi\)
\(8\) 0 0
\(9\) 102405. 0.578079
\(10\) 0 0
\(11\) 724884. 1.35709 0.678546 0.734558i \(-0.262611\pi\)
0.678546 + 0.734558i \(0.262611\pi\)
\(12\) 0 0
\(13\) −1.18207e6 −0.882985 −0.441492 0.897265i \(-0.645551\pi\)
−0.441492 + 0.897265i \(0.645551\pi\)
\(14\) 0 0
\(15\) 3.71695e6 1.26382
\(16\) 0 0
\(17\) 5.44387e6 0.929906 0.464953 0.885335i \(-0.346071\pi\)
0.464953 + 0.885335i \(0.346071\pi\)
\(18\) 0 0
\(19\) −2.09772e7 −1.94358 −0.971792 0.235839i \(-0.924216\pi\)
−0.971792 + 0.235839i \(0.924216\pi\)
\(20\) 0 0
\(21\) 1.84504e7 0.985826
\(22\) 0 0
\(23\) 6.60168e6 0.213871 0.106935 0.994266i \(-0.465896\pi\)
0.106935 + 0.994266i \(0.465896\pi\)
\(24\) 0 0
\(25\) 592775. 0.0121400
\(26\) 0 0
\(27\) −3.95181e7 −0.530024
\(28\) 0 0
\(29\) 1.64046e8 1.48518 0.742588 0.669748i \(-0.233598\pi\)
0.742588 + 0.669748i \(0.233598\pi\)
\(30\) 0 0
\(31\) 1.97841e8 1.24116 0.620579 0.784144i \(-0.286898\pi\)
0.620579 + 0.784144i \(0.286898\pi\)
\(32\) 0 0
\(33\) 3.83266e8 1.70480
\(34\) 0 0
\(35\) 2.45319e8 0.789508
\(36\) 0 0
\(37\) 5.40227e8 1.28076 0.640378 0.768060i \(-0.278778\pi\)
0.640378 + 0.768060i \(0.278778\pi\)
\(38\) 0 0
\(39\) −6.24990e8 −1.10922
\(40\) 0 0
\(41\) 2.79999e8 0.377438 0.188719 0.982031i \(-0.439566\pi\)
0.188719 + 0.982031i \(0.439566\pi\)
\(42\) 0 0
\(43\) −3.02692e8 −0.313997 −0.156998 0.987599i \(-0.550182\pi\)
−0.156998 + 0.987599i \(0.550182\pi\)
\(44\) 0 0
\(45\) 7.19907e8 0.581578
\(46\) 0 0
\(47\) −1.87326e9 −1.19141 −0.595703 0.803205i \(-0.703126\pi\)
−0.595703 + 0.803205i \(0.703126\pi\)
\(48\) 0 0
\(49\) −7.59598e8 −0.384154
\(50\) 0 0
\(51\) 2.87832e9 1.16816
\(52\) 0 0
\(53\) 4.77652e9 1.56890 0.784448 0.620194i \(-0.212946\pi\)
0.784448 + 0.620194i \(0.212946\pi\)
\(54\) 0 0
\(55\) 5.09594e9 1.36530
\(56\) 0 0
\(57\) −1.10912e10 −2.44156
\(58\) 0 0
\(59\) −4.44316e9 −0.809107 −0.404554 0.914514i \(-0.632573\pi\)
−0.404554 + 0.914514i \(0.632573\pi\)
\(60\) 0 0
\(61\) −7.47969e9 −1.13389 −0.566943 0.823757i \(-0.691874\pi\)
−0.566943 + 0.823757i \(0.691874\pi\)
\(62\) 0 0
\(63\) 3.57352e9 0.453653
\(64\) 0 0
\(65\) −8.30992e9 −0.888328
\(66\) 0 0
\(67\) −1.09155e10 −0.987720 −0.493860 0.869541i \(-0.664415\pi\)
−0.493860 + 0.869541i \(0.664415\pi\)
\(68\) 0 0
\(69\) 3.49049e9 0.268668
\(70\) 0 0
\(71\) −2.70127e9 −0.177683 −0.0888417 0.996046i \(-0.528317\pi\)
−0.0888417 + 0.996046i \(0.528317\pi\)
\(72\) 0 0
\(73\) −2.18032e10 −1.23096 −0.615480 0.788153i \(-0.711038\pi\)
−0.615480 + 0.788153i \(0.711038\pi\)
\(74\) 0 0
\(75\) 3.13416e8 0.0152505
\(76\) 0 0
\(77\) 2.52955e10 1.06499
\(78\) 0 0
\(79\) −3.37233e10 −1.23305 −0.616525 0.787335i \(-0.711460\pi\)
−0.616525 + 0.787335i \(0.711460\pi\)
\(80\) 0 0
\(81\) −3.90350e10 −1.24390
\(82\) 0 0
\(83\) 6.18211e10 1.72269 0.861345 0.508021i \(-0.169623\pi\)
0.861345 + 0.508021i \(0.169623\pi\)
\(84\) 0 0
\(85\) 3.82704e10 0.935533
\(86\) 0 0
\(87\) 8.67358e10 1.86570
\(88\) 0 0
\(89\) 2.21958e10 0.421333 0.210666 0.977558i \(-0.432437\pi\)
0.210666 + 0.977558i \(0.432437\pi\)
\(90\) 0 0
\(91\) −4.12493e10 −0.692930
\(92\) 0 0
\(93\) 1.04604e11 1.55916
\(94\) 0 0
\(95\) −1.47470e11 −1.95535
\(96\) 0 0
\(97\) 1.00703e11 1.19069 0.595345 0.803470i \(-0.297015\pi\)
0.595345 + 0.803470i \(0.297015\pi\)
\(98\) 0 0
\(99\) 7.42318e10 0.784506
\(100\) 0 0
\(101\) −1.68408e10 −0.159439 −0.0797194 0.996817i \(-0.525402\pi\)
−0.0797194 + 0.996817i \(0.525402\pi\)
\(102\) 0 0
\(103\) −2.37472e10 −0.201840 −0.100920 0.994895i \(-0.532179\pi\)
−0.100920 + 0.994895i \(0.532179\pi\)
\(104\) 0 0
\(105\) 1.29707e11 0.991792
\(106\) 0 0
\(107\) −2.58781e11 −1.78370 −0.891850 0.452331i \(-0.850593\pi\)
−0.891850 + 0.452331i \(0.850593\pi\)
\(108\) 0 0
\(109\) −9.93062e10 −0.618202 −0.309101 0.951029i \(-0.600028\pi\)
−0.309101 + 0.951029i \(0.600028\pi\)
\(110\) 0 0
\(111\) 2.85632e11 1.60891
\(112\) 0 0
\(113\) −1.60348e11 −0.818716 −0.409358 0.912374i \(-0.634247\pi\)
−0.409358 + 0.912374i \(0.634247\pi\)
\(114\) 0 0
\(115\) 4.64098e10 0.215165
\(116\) 0 0
\(117\) −1.21049e11 −0.510435
\(118\) 0 0
\(119\) 1.89969e11 0.729752
\(120\) 0 0
\(121\) 2.40146e11 0.841696
\(122\) 0 0
\(123\) 1.48043e11 0.474144
\(124\) 0 0
\(125\) −3.39095e11 −0.993838
\(126\) 0 0
\(127\) −2.75925e11 −0.741088 −0.370544 0.928815i \(-0.620829\pi\)
−0.370544 + 0.928815i \(0.620829\pi\)
\(128\) 0 0
\(129\) −1.60042e11 −0.394448
\(130\) 0 0
\(131\) 5.67091e10 0.128428 0.0642141 0.997936i \(-0.479546\pi\)
0.0642141 + 0.997936i \(0.479546\pi\)
\(132\) 0 0
\(133\) −7.32021e11 −1.52524
\(134\) 0 0
\(135\) −2.77812e11 −0.533231
\(136\) 0 0
\(137\) −3.27687e11 −0.580091 −0.290046 0.957013i \(-0.593670\pi\)
−0.290046 + 0.957013i \(0.593670\pi\)
\(138\) 0 0
\(139\) 1.52515e11 0.249305 0.124652 0.992200i \(-0.460218\pi\)
0.124652 + 0.992200i \(0.460218\pi\)
\(140\) 0 0
\(141\) −9.90443e11 −1.49666
\(142\) 0 0
\(143\) −8.56861e11 −1.19829
\(144\) 0 0
\(145\) 1.15325e12 1.49416
\(146\) 0 0
\(147\) −4.01620e11 −0.482581
\(148\) 0 0
\(149\) 5.68879e11 0.634593 0.317296 0.948326i \(-0.397225\pi\)
0.317296 + 0.948326i \(0.397225\pi\)
\(150\) 0 0
\(151\) −4.64770e10 −0.0481798 −0.0240899 0.999710i \(-0.507669\pi\)
−0.0240899 + 0.999710i \(0.507669\pi\)
\(152\) 0 0
\(153\) 5.57480e11 0.537559
\(154\) 0 0
\(155\) 1.39082e12 1.24867
\(156\) 0 0
\(157\) 1.71773e11 0.143717 0.0718585 0.997415i \(-0.477107\pi\)
0.0718585 + 0.997415i \(0.477107\pi\)
\(158\) 0 0
\(159\) 2.52547e12 1.97087
\(160\) 0 0
\(161\) 2.30372e11 0.167837
\(162\) 0 0
\(163\) −7.11815e11 −0.484546 −0.242273 0.970208i \(-0.577893\pi\)
−0.242273 + 0.970208i \(0.577893\pi\)
\(164\) 0 0
\(165\) 2.69436e12 1.71512
\(166\) 0 0
\(167\) 1.30459e11 0.0777202 0.0388601 0.999245i \(-0.487627\pi\)
0.0388601 + 0.999245i \(0.487627\pi\)
\(168\) 0 0
\(169\) −3.94880e11 −0.220338
\(170\) 0 0
\(171\) −2.14817e12 −1.12355
\(172\) 0 0
\(173\) 1.40825e12 0.690919 0.345460 0.938434i \(-0.387723\pi\)
0.345460 + 0.938434i \(0.387723\pi\)
\(174\) 0 0
\(175\) 2.06855e10 0.00952699
\(176\) 0 0
\(177\) −2.34922e12 −1.01641
\(178\) 0 0
\(179\) −1.44332e12 −0.587042 −0.293521 0.955953i \(-0.594827\pi\)
−0.293521 + 0.955953i \(0.594827\pi\)
\(180\) 0 0
\(181\) 3.12844e12 1.19700 0.598502 0.801122i \(-0.295763\pi\)
0.598502 + 0.801122i \(0.295763\pi\)
\(182\) 0 0
\(183\) −3.95471e12 −1.42441
\(184\) 0 0
\(185\) 3.79779e12 1.28851
\(186\) 0 0
\(187\) 3.94618e12 1.26197
\(188\) 0 0
\(189\) −1.37902e12 −0.415941
\(190\) 0 0
\(191\) 3.15325e12 0.897583 0.448792 0.893636i \(-0.351854\pi\)
0.448792 + 0.893636i \(0.351854\pi\)
\(192\) 0 0
\(193\) −3.47912e12 −0.935199 −0.467599 0.883940i \(-0.654881\pi\)
−0.467599 + 0.883940i \(0.654881\pi\)
\(194\) 0 0
\(195\) −4.39368e12 −1.11593
\(196\) 0 0
\(197\) −1.71468e12 −0.411736 −0.205868 0.978580i \(-0.566002\pi\)
−0.205868 + 0.978580i \(0.566002\pi\)
\(198\) 0 0
\(199\) −1.04789e12 −0.238026 −0.119013 0.992893i \(-0.537973\pi\)
−0.119013 + 0.992893i \(0.537973\pi\)
\(200\) 0 0
\(201\) −5.77134e12 −1.24079
\(202\) 0 0
\(203\) 5.72456e12 1.16550
\(204\) 0 0
\(205\) 1.96840e12 0.379722
\(206\) 0 0
\(207\) 6.76045e11 0.123634
\(208\) 0 0
\(209\) −1.52061e13 −2.63762
\(210\) 0 0
\(211\) 1.14266e13 1.88089 0.940445 0.339946i \(-0.110409\pi\)
0.940445 + 0.339946i \(0.110409\pi\)
\(212\) 0 0
\(213\) −1.42823e12 −0.223209
\(214\) 0 0
\(215\) −2.12793e12 −0.315897
\(216\) 0 0
\(217\) 6.90386e12 0.974010
\(218\) 0 0
\(219\) −1.15279e13 −1.54635
\(220\) 0 0
\(221\) −6.43502e12 −0.821093
\(222\) 0 0
\(223\) −9.17386e12 −1.11397 −0.556987 0.830521i \(-0.688043\pi\)
−0.556987 + 0.830521i \(0.688043\pi\)
\(224\) 0 0
\(225\) 6.07031e10 0.00701790
\(226\) 0 0
\(227\) 3.88316e11 0.0427605 0.0213803 0.999771i \(-0.493194\pi\)
0.0213803 + 0.999771i \(0.493194\pi\)
\(228\) 0 0
\(229\) 1.37176e13 1.43941 0.719705 0.694280i \(-0.244277\pi\)
0.719705 + 0.694280i \(0.244277\pi\)
\(230\) 0 0
\(231\) 1.33744e13 1.33786
\(232\) 0 0
\(233\) 1.27243e12 0.121388 0.0606942 0.998156i \(-0.480669\pi\)
0.0606942 + 0.998156i \(0.480669\pi\)
\(234\) 0 0
\(235\) −1.31690e13 −1.19862
\(236\) 0 0
\(237\) −1.78304e13 −1.54898
\(238\) 0 0
\(239\) −9.28197e12 −0.769930 −0.384965 0.922931i \(-0.625787\pi\)
−0.384965 + 0.922931i \(0.625787\pi\)
\(240\) 0 0
\(241\) 7.46994e12 0.591866 0.295933 0.955209i \(-0.404370\pi\)
0.295933 + 0.955209i \(0.404370\pi\)
\(242\) 0 0
\(243\) −1.36383e13 −1.03259
\(244\) 0 0
\(245\) −5.33998e12 −0.386479
\(246\) 0 0
\(247\) 2.47965e13 1.71616
\(248\) 0 0
\(249\) 3.26865e13 2.16407
\(250\) 0 0
\(251\) 1.53661e13 0.973548 0.486774 0.873528i \(-0.338173\pi\)
0.486774 + 0.873528i \(0.338173\pi\)
\(252\) 0 0
\(253\) 4.78546e12 0.290242
\(254\) 0 0
\(255\) 2.02346e13 1.17523
\(256\) 0 0
\(257\) 1.14664e13 0.637962 0.318981 0.947761i \(-0.396659\pi\)
0.318981 + 0.947761i \(0.396659\pi\)
\(258\) 0 0
\(259\) 1.88517e13 1.00508
\(260\) 0 0
\(261\) 1.67992e13 0.858549
\(262\) 0 0
\(263\) −3.22103e13 −1.57848 −0.789238 0.614088i \(-0.789524\pi\)
−0.789238 + 0.614088i \(0.789524\pi\)
\(264\) 0 0
\(265\) 3.35789e13 1.57839
\(266\) 0 0
\(267\) 1.17355e13 0.529285
\(268\) 0 0
\(269\) −2.79224e13 −1.20869 −0.604345 0.796723i \(-0.706565\pi\)
−0.604345 + 0.796723i \(0.706565\pi\)
\(270\) 0 0
\(271\) −4.40610e13 −1.83115 −0.915573 0.402152i \(-0.868262\pi\)
−0.915573 + 0.402152i \(0.868262\pi\)
\(272\) 0 0
\(273\) −2.18096e13 −0.870470
\(274\) 0 0
\(275\) 4.29693e11 0.0164751
\(276\) 0 0
\(277\) 4.52311e13 1.66647 0.833237 0.552916i \(-0.186485\pi\)
0.833237 + 0.552916i \(0.186485\pi\)
\(278\) 0 0
\(279\) 2.02599e13 0.717488
\(280\) 0 0
\(281\) −1.58668e12 −0.0540261 −0.0270131 0.999635i \(-0.508600\pi\)
−0.0270131 + 0.999635i \(0.508600\pi\)
\(282\) 0 0
\(283\) −5.49142e13 −1.79829 −0.899144 0.437653i \(-0.855810\pi\)
−0.899144 + 0.437653i \(0.855810\pi\)
\(284\) 0 0
\(285\) −7.79713e13 −2.45634
\(286\) 0 0
\(287\) 9.77085e12 0.296198
\(288\) 0 0
\(289\) −4.63613e12 −0.135275
\(290\) 0 0
\(291\) 5.32445e13 1.49576
\(292\) 0 0
\(293\) 4.14937e12 0.112256 0.0561281 0.998424i \(-0.482124\pi\)
0.0561281 + 0.998424i \(0.482124\pi\)
\(294\) 0 0
\(295\) −3.12354e13 −0.814004
\(296\) 0 0
\(297\) −2.86461e13 −0.719290
\(298\) 0 0
\(299\) −7.80362e12 −0.188845
\(300\) 0 0
\(301\) −1.05627e13 −0.246412
\(302\) 0 0
\(303\) −8.90416e12 −0.200290
\(304\) 0 0
\(305\) −5.25822e13 −1.14075
\(306\) 0 0
\(307\) 8.76112e11 0.0183357 0.00916787 0.999958i \(-0.497082\pi\)
0.00916787 + 0.999958i \(0.497082\pi\)
\(308\) 0 0
\(309\) −1.25558e13 −0.253555
\(310\) 0 0
\(311\) 6.63328e13 1.29284 0.646422 0.762980i \(-0.276265\pi\)
0.646422 + 0.762980i \(0.276265\pi\)
\(312\) 0 0
\(313\) 7.98746e13 1.50285 0.751424 0.659820i \(-0.229367\pi\)
0.751424 + 0.659820i \(0.229367\pi\)
\(314\) 0 0
\(315\) 2.51219e13 0.456398
\(316\) 0 0
\(317\) −6.12431e11 −0.0107456 −0.00537280 0.999986i \(-0.501710\pi\)
−0.00537280 + 0.999986i \(0.501710\pi\)
\(318\) 0 0
\(319\) 1.18915e14 2.01552
\(320\) 0 0
\(321\) −1.36825e14 −2.24071
\(322\) 0 0
\(323\) −1.14197e14 −1.80735
\(324\) 0 0
\(325\) −7.00699e11 −0.0107195
\(326\) 0 0
\(327\) −5.25058e13 −0.776596
\(328\) 0 0
\(329\) −6.53692e13 −0.934966
\(330\) 0 0
\(331\) 7.69109e13 1.06398 0.531991 0.846750i \(-0.321444\pi\)
0.531991 + 0.846750i \(0.321444\pi\)
\(332\) 0 0
\(333\) 5.53219e13 0.740379
\(334\) 0 0
\(335\) −7.67363e13 −0.993698
\(336\) 0 0
\(337\) −6.66260e12 −0.0834986 −0.0417493 0.999128i \(-0.513293\pi\)
−0.0417493 + 0.999128i \(0.513293\pi\)
\(338\) 0 0
\(339\) −8.47805e13 −1.02848
\(340\) 0 0
\(341\) 1.43412e14 1.68436
\(342\) 0 0
\(343\) −9.55076e13 −1.08623
\(344\) 0 0
\(345\) 2.45381e13 0.270294
\(346\) 0 0
\(347\) 1.59901e13 0.170623 0.0853116 0.996354i \(-0.472811\pi\)
0.0853116 + 0.996354i \(0.472811\pi\)
\(348\) 0 0
\(349\) 1.50287e14 1.55375 0.776876 0.629654i \(-0.216803\pi\)
0.776876 + 0.629654i \(0.216803\pi\)
\(350\) 0 0
\(351\) 4.67130e13 0.468003
\(352\) 0 0
\(353\) −9.89478e13 −0.960827 −0.480414 0.877042i \(-0.659513\pi\)
−0.480414 + 0.877042i \(0.659513\pi\)
\(354\) 0 0
\(355\) −1.89899e13 −0.178759
\(356\) 0 0
\(357\) 1.00442e14 0.916726
\(358\) 0 0
\(359\) 4.58069e13 0.405426 0.202713 0.979238i \(-0.435024\pi\)
0.202713 + 0.979238i \(0.435024\pi\)
\(360\) 0 0
\(361\) 3.23554e14 2.77752
\(362\) 0 0
\(363\) 1.26971e14 1.05735
\(364\) 0 0
\(365\) −1.53276e14 −1.23841
\(366\) 0 0
\(367\) 6.94482e12 0.0544500 0.0272250 0.999629i \(-0.491333\pi\)
0.0272250 + 0.999629i \(0.491333\pi\)
\(368\) 0 0
\(369\) 2.86733e13 0.218189
\(370\) 0 0
\(371\) 1.66681e14 1.23120
\(372\) 0 0
\(373\) 6.39415e13 0.458548 0.229274 0.973362i \(-0.426365\pi\)
0.229274 + 0.973362i \(0.426365\pi\)
\(374\) 0 0
\(375\) −1.79288e14 −1.24848
\(376\) 0 0
\(377\) −1.93914e14 −1.31139
\(378\) 0 0
\(379\) 6.60185e13 0.433661 0.216830 0.976209i \(-0.430428\pi\)
0.216830 + 0.976209i \(0.430428\pi\)
\(380\) 0 0
\(381\) −1.45889e14 −0.930967
\(382\) 0 0
\(383\) 1.81624e14 1.12611 0.563055 0.826419i \(-0.309626\pi\)
0.563055 + 0.826419i \(0.309626\pi\)
\(384\) 0 0
\(385\) 1.77828e14 1.07143
\(386\) 0 0
\(387\) −3.09972e13 −0.181515
\(388\) 0 0
\(389\) 2.19065e13 0.124695 0.0623476 0.998054i \(-0.480141\pi\)
0.0623476 + 0.998054i \(0.480141\pi\)
\(390\) 0 0
\(391\) 3.59387e13 0.198880
\(392\) 0 0
\(393\) 2.99836e13 0.161334
\(394\) 0 0
\(395\) −2.37075e14 −1.24051
\(396\) 0 0
\(397\) 3.00980e13 0.153176 0.0765879 0.997063i \(-0.475597\pi\)
0.0765879 + 0.997063i \(0.475597\pi\)
\(398\) 0 0
\(399\) −3.87039e14 −1.91604
\(400\) 0 0
\(401\) −3.17010e13 −0.152679 −0.0763395 0.997082i \(-0.524323\pi\)
−0.0763395 + 0.997082i \(0.524323\pi\)
\(402\) 0 0
\(403\) −2.33861e14 −1.09592
\(404\) 0 0
\(405\) −2.74416e14 −1.25143
\(406\) 0 0
\(407\) 3.91602e14 1.73810
\(408\) 0 0
\(409\) −2.07090e14 −0.894706 −0.447353 0.894357i \(-0.647633\pi\)
−0.447353 + 0.894357i \(0.647633\pi\)
\(410\) 0 0
\(411\) −1.73257e14 −0.728720
\(412\) 0 0
\(413\) −1.55048e14 −0.634954
\(414\) 0 0
\(415\) 4.34602e14 1.73311
\(416\) 0 0
\(417\) 8.06387e13 0.313181
\(418\) 0 0
\(419\) 1.03612e14 0.391952 0.195976 0.980609i \(-0.437213\pi\)
0.195976 + 0.980609i \(0.437213\pi\)
\(420\) 0 0
\(421\) −2.80328e14 −1.03303 −0.516517 0.856277i \(-0.672772\pi\)
−0.516517 + 0.856277i \(0.672772\pi\)
\(422\) 0 0
\(423\) −1.91831e14 −0.688727
\(424\) 0 0
\(425\) 3.22699e12 0.0112891
\(426\) 0 0
\(427\) −2.61011e14 −0.889826
\(428\) 0 0
\(429\) −4.53045e14 −1.50531
\(430\) 0 0
\(431\) −5.16298e14 −1.67215 −0.836076 0.548614i \(-0.815156\pi\)
−0.836076 + 0.548614i \(0.815156\pi\)
\(432\) 0 0
\(433\) 1.27910e14 0.403852 0.201926 0.979401i \(-0.435280\pi\)
0.201926 + 0.979401i \(0.435280\pi\)
\(434\) 0 0
\(435\) 6.09752e14 1.87699
\(436\) 0 0
\(437\) −1.38485e14 −0.415676
\(438\) 0 0
\(439\) 2.90652e14 0.850781 0.425391 0.905010i \(-0.360137\pi\)
0.425391 + 0.905010i \(0.360137\pi\)
\(440\) 0 0
\(441\) −7.77867e13 −0.222072
\(442\) 0 0
\(443\) 4.18452e14 1.16527 0.582633 0.812735i \(-0.302023\pi\)
0.582633 + 0.812735i \(0.302023\pi\)
\(444\) 0 0
\(445\) 1.56036e14 0.423883
\(446\) 0 0
\(447\) 3.00781e14 0.797186
\(448\) 0 0
\(449\) 2.33717e14 0.604416 0.302208 0.953242i \(-0.402276\pi\)
0.302208 + 0.953242i \(0.402276\pi\)
\(450\) 0 0
\(451\) 2.02967e14 0.512218
\(452\) 0 0
\(453\) −2.45736e13 −0.0605242
\(454\) 0 0
\(455\) −2.89983e14 −0.697123
\(456\) 0 0
\(457\) 2.93493e14 0.688745 0.344373 0.938833i \(-0.388092\pi\)
0.344373 + 0.938833i \(0.388092\pi\)
\(458\) 0 0
\(459\) −2.15132e14 −0.492872
\(460\) 0 0
\(461\) 7.48297e14 1.67386 0.836930 0.547310i \(-0.184348\pi\)
0.836930 + 0.547310i \(0.184348\pi\)
\(462\) 0 0
\(463\) −4.98429e14 −1.08870 −0.544349 0.838859i \(-0.683223\pi\)
−0.544349 + 0.838859i \(0.683223\pi\)
\(464\) 0 0
\(465\) 7.35365e14 1.56860
\(466\) 0 0
\(467\) −6.24887e14 −1.30184 −0.650921 0.759145i \(-0.725617\pi\)
−0.650921 + 0.759145i \(0.725617\pi\)
\(468\) 0 0
\(469\) −3.80908e14 −0.775122
\(470\) 0 0
\(471\) 9.08212e13 0.180540
\(472\) 0 0
\(473\) −2.19417e14 −0.426122
\(474\) 0 0
\(475\) −1.24348e13 −0.0235952
\(476\) 0 0
\(477\) 4.89139e14 0.906946
\(478\) 0 0
\(479\) −5.09440e14 −0.923098 −0.461549 0.887115i \(-0.652706\pi\)
−0.461549 + 0.887115i \(0.652706\pi\)
\(480\) 0 0
\(481\) −6.38584e14 −1.13089
\(482\) 0 0
\(483\) 1.21804e14 0.210839
\(484\) 0 0
\(485\) 7.07944e14 1.19790
\(486\) 0 0
\(487\) −6.48709e12 −0.0107310 −0.00536551 0.999986i \(-0.501708\pi\)
−0.00536551 + 0.999986i \(0.501708\pi\)
\(488\) 0 0
\(489\) −3.76356e14 −0.608695
\(490\) 0 0
\(491\) −2.25931e13 −0.0357296 −0.0178648 0.999840i \(-0.505687\pi\)
−0.0178648 + 0.999840i \(0.505687\pi\)
\(492\) 0 0
\(493\) 8.93048e14 1.38107
\(494\) 0 0
\(495\) 5.21849e14 0.789254
\(496\) 0 0
\(497\) −9.42634e13 −0.139439
\(498\) 0 0
\(499\) 3.84953e14 0.556999 0.278500 0.960436i \(-0.410163\pi\)
0.278500 + 0.960436i \(0.410163\pi\)
\(500\) 0 0
\(501\) 6.89772e13 0.0976333
\(502\) 0 0
\(503\) 1.27749e15 1.76903 0.884515 0.466512i \(-0.154490\pi\)
0.884515 + 0.466512i \(0.154490\pi\)
\(504\) 0 0
\(505\) −1.18390e14 −0.160404
\(506\) 0 0
\(507\) −2.08784e14 −0.276792
\(508\) 0 0
\(509\) 1.06672e15 1.38389 0.691945 0.721951i \(-0.256754\pi\)
0.691945 + 0.721951i \(0.256754\pi\)
\(510\) 0 0
\(511\) −7.60843e14 −0.966006
\(512\) 0 0
\(513\) 8.28980e14 1.03015
\(514\) 0 0
\(515\) −1.66943e14 −0.203062
\(516\) 0 0
\(517\) −1.35790e15 −1.61685
\(518\) 0 0
\(519\) 7.44581e14 0.867944
\(520\) 0 0
\(521\) −1.15548e15 −1.31873 −0.659365 0.751823i \(-0.729175\pi\)
−0.659365 + 0.751823i \(0.729175\pi\)
\(522\) 0 0
\(523\) 2.80759e11 0.000313744 0 0.000156872 1.00000i \(-0.499950\pi\)
0.000156872 1.00000i \(0.499950\pi\)
\(524\) 0 0
\(525\) 1.09370e13 0.0119680
\(526\) 0 0
\(527\) 1.07702e15 1.15416
\(528\) 0 0
\(529\) −9.09228e14 −0.954259
\(530\) 0 0
\(531\) −4.55002e14 −0.467728
\(532\) 0 0
\(533\) −3.30978e14 −0.333272
\(534\) 0 0
\(535\) −1.81923e15 −1.79449
\(536\) 0 0
\(537\) −7.63119e14 −0.737452
\(538\) 0 0
\(539\) −5.50621e14 −0.521332
\(540\) 0 0
\(541\) −6.20845e14 −0.575968 −0.287984 0.957635i \(-0.592985\pi\)
−0.287984 + 0.957635i \(0.592985\pi\)
\(542\) 0 0
\(543\) 1.65409e15 1.50369
\(544\) 0 0
\(545\) −6.98123e14 −0.621944
\(546\) 0 0
\(547\) −8.54098e14 −0.745723 −0.372862 0.927887i \(-0.621623\pi\)
−0.372862 + 0.927887i \(0.621623\pi\)
\(548\) 0 0
\(549\) −7.65957e14 −0.655476
\(550\) 0 0
\(551\) −3.44124e15 −2.88657
\(552\) 0 0
\(553\) −1.17681e15 −0.967646
\(554\) 0 0
\(555\) 2.00800e15 1.61864
\(556\) 0 0
\(557\) 4.36204e14 0.344736 0.172368 0.985033i \(-0.444858\pi\)
0.172368 + 0.985033i \(0.444858\pi\)
\(558\) 0 0
\(559\) 3.57802e14 0.277254
\(560\) 0 0
\(561\) 2.08645e15 1.58530
\(562\) 0 0
\(563\) 7.00249e14 0.521743 0.260871 0.965374i \(-0.415990\pi\)
0.260871 + 0.965374i \(0.415990\pi\)
\(564\) 0 0
\(565\) −1.12725e15 −0.823671
\(566\) 0 0
\(567\) −1.36216e15 −0.976164
\(568\) 0 0
\(569\) −1.90009e15 −1.33554 −0.667768 0.744369i \(-0.732750\pi\)
−0.667768 + 0.744369i \(0.732750\pi\)
\(570\) 0 0
\(571\) 1.19112e15 0.821215 0.410608 0.911812i \(-0.365317\pi\)
0.410608 + 0.911812i \(0.365317\pi\)
\(572\) 0 0
\(573\) 1.66721e15 1.12756
\(574\) 0 0
\(575\) 3.91331e12 0.00259640
\(576\) 0 0
\(577\) 1.82145e15 1.18563 0.592817 0.805337i \(-0.298016\pi\)
0.592817 + 0.805337i \(0.298016\pi\)
\(578\) 0 0
\(579\) −1.83950e15 −1.17481
\(580\) 0 0
\(581\) 2.15731e15 1.35190
\(582\) 0 0
\(583\) 3.46242e15 2.12914
\(584\) 0 0
\(585\) −8.50978e14 −0.513524
\(586\) 0 0
\(587\) 1.09273e15 0.647149 0.323574 0.946203i \(-0.395115\pi\)
0.323574 + 0.946203i \(0.395115\pi\)
\(588\) 0 0
\(589\) −4.15016e15 −2.41230
\(590\) 0 0
\(591\) −9.06597e14 −0.517229
\(592\) 0 0
\(593\) 1.47734e15 0.827330 0.413665 0.910429i \(-0.364249\pi\)
0.413665 + 0.910429i \(0.364249\pi\)
\(594\) 0 0
\(595\) 1.33548e15 0.734168
\(596\) 0 0
\(597\) −5.54048e14 −0.299012
\(598\) 0 0
\(599\) 8.43489e14 0.446922 0.223461 0.974713i \(-0.428264\pi\)
0.223461 + 0.974713i \(0.428264\pi\)
\(600\) 0 0
\(601\) 3.76961e15 1.96104 0.980520 0.196417i \(-0.0629306\pi\)
0.980520 + 0.196417i \(0.0629306\pi\)
\(602\) 0 0
\(603\) −1.11781e15 −0.570980
\(604\) 0 0
\(605\) 1.68822e15 0.846790
\(606\) 0 0
\(607\) −9.80174e14 −0.482798 −0.241399 0.970426i \(-0.577606\pi\)
−0.241399 + 0.970426i \(0.577606\pi\)
\(608\) 0 0
\(609\) 3.02673e15 1.46413
\(610\) 0 0
\(611\) 2.21432e15 1.05199
\(612\) 0 0
\(613\) −2.87519e15 −1.34163 −0.670817 0.741623i \(-0.734056\pi\)
−0.670817 + 0.741623i \(0.734056\pi\)
\(614\) 0 0
\(615\) 1.04074e15 0.477013
\(616\) 0 0
\(617\) 1.72435e15 0.776348 0.388174 0.921586i \(-0.373106\pi\)
0.388174 + 0.921586i \(0.373106\pi\)
\(618\) 0 0
\(619\) −2.85002e15 −1.26052 −0.630260 0.776384i \(-0.717052\pi\)
−0.630260 + 0.776384i \(0.717052\pi\)
\(620\) 0 0
\(621\) −2.60886e14 −0.113357
\(622\) 0 0
\(623\) 7.74543e14 0.330644
\(624\) 0 0
\(625\) −2.41278e15 −1.01199
\(626\) 0 0
\(627\) −8.03986e15 −3.31342
\(628\) 0 0
\(629\) 2.94093e15 1.19098
\(630\) 0 0
\(631\) −1.03945e15 −0.413659 −0.206829 0.978377i \(-0.566314\pi\)
−0.206829 + 0.978377i \(0.566314\pi\)
\(632\) 0 0
\(633\) 6.04155e15 2.36280
\(634\) 0 0
\(635\) −1.93975e15 −0.745573
\(636\) 0 0
\(637\) 8.97895e14 0.339202
\(638\) 0 0
\(639\) −2.76623e14 −0.102715
\(640\) 0 0
\(641\) −2.10449e12 −0.000768117 0 −0.000384058 1.00000i \(-0.500122\pi\)
−0.000384058 1.00000i \(0.500122\pi\)
\(642\) 0 0
\(643\) 4.20911e15 1.51018 0.755092 0.655619i \(-0.227592\pi\)
0.755092 + 0.655619i \(0.227592\pi\)
\(644\) 0 0
\(645\) −1.12509e15 −0.396835
\(646\) 0 0
\(647\) 2.25242e15 0.781044 0.390522 0.920594i \(-0.372294\pi\)
0.390522 + 0.920594i \(0.372294\pi\)
\(648\) 0 0
\(649\) −3.22078e15 −1.09803
\(650\) 0 0
\(651\) 3.65025e15 1.22357
\(652\) 0 0
\(653\) 3.41913e15 1.12692 0.563460 0.826144i \(-0.309470\pi\)
0.563460 + 0.826144i \(0.309470\pi\)
\(654\) 0 0
\(655\) 3.98665e14 0.129205
\(656\) 0 0
\(657\) −2.23275e15 −0.711592
\(658\) 0 0
\(659\) 5.08319e15 1.59318 0.796592 0.604517i \(-0.206634\pi\)
0.796592 + 0.604517i \(0.206634\pi\)
\(660\) 0 0
\(661\) −5.21637e15 −1.60791 −0.803953 0.594693i \(-0.797274\pi\)
−0.803953 + 0.594693i \(0.797274\pi\)
\(662\) 0 0
\(663\) −3.40237e15 −1.03147
\(664\) 0 0
\(665\) −5.14611e15 −1.53447
\(666\) 0 0
\(667\) 1.08298e15 0.317636
\(668\) 0 0
\(669\) −4.85046e15 −1.39939
\(670\) 0 0
\(671\) −5.42191e15 −1.53879
\(672\) 0 0
\(673\) 5.16121e14 0.144102 0.0720508 0.997401i \(-0.477046\pi\)
0.0720508 + 0.997401i \(0.477046\pi\)
\(674\) 0 0
\(675\) −2.34253e13 −0.00643451
\(676\) 0 0
\(677\) 3.68680e15 0.996349 0.498175 0.867077i \(-0.334004\pi\)
0.498175 + 0.867077i \(0.334004\pi\)
\(678\) 0 0
\(679\) 3.51414e15 0.934404
\(680\) 0 0
\(681\) 2.05313e14 0.0537164
\(682\) 0 0
\(683\) −4.15977e15 −1.07092 −0.535458 0.844562i \(-0.679861\pi\)
−0.535458 + 0.844562i \(0.679861\pi\)
\(684\) 0 0
\(685\) −2.30364e15 −0.583602
\(686\) 0 0
\(687\) 7.25289e15 1.80821
\(688\) 0 0
\(689\) −5.64616e15 −1.38531
\(690\) 0 0
\(691\) 2.43277e15 0.587451 0.293725 0.955890i \(-0.405105\pi\)
0.293725 + 0.955890i \(0.405105\pi\)
\(692\) 0 0
\(693\) 2.59039e15 0.615648
\(694\) 0 0
\(695\) 1.07218e15 0.250813
\(696\) 0 0
\(697\) 1.52428e15 0.350982
\(698\) 0 0
\(699\) 6.72769e14 0.152490
\(700\) 0 0
\(701\) 2.95533e15 0.659413 0.329707 0.944083i \(-0.393050\pi\)
0.329707 + 0.944083i \(0.393050\pi\)
\(702\) 0 0
\(703\) −1.13325e16 −2.48926
\(704\) 0 0
\(705\) −6.96281e15 −1.50572
\(706\) 0 0
\(707\) −5.87674e14 −0.125121
\(708\) 0 0
\(709\) 1.09522e14 0.0229587 0.0114794 0.999934i \(-0.496346\pi\)
0.0114794 + 0.999934i \(0.496346\pi\)
\(710\) 0 0
\(711\) −3.45343e15 −0.712800
\(712\) 0 0
\(713\) 1.30608e15 0.265448
\(714\) 0 0
\(715\) −6.02373e15 −1.20554
\(716\) 0 0
\(717\) −4.90762e15 −0.967199
\(718\) 0 0
\(719\) 2.37930e15 0.461786 0.230893 0.972979i \(-0.425835\pi\)
0.230893 + 0.972979i \(0.425835\pi\)
\(720\) 0 0
\(721\) −8.28683e14 −0.158396
\(722\) 0 0
\(723\) 3.94956e15 0.743511
\(724\) 0 0
\(725\) 9.72427e13 0.0180301
\(726\) 0 0
\(727\) 3.97241e15 0.725463 0.362731 0.931894i \(-0.381844\pi\)
0.362731 + 0.931894i \(0.381844\pi\)
\(728\) 0 0
\(729\) −2.96022e14 −0.0532504
\(730\) 0 0
\(731\) −1.64782e15 −0.291987
\(732\) 0 0
\(733\) 5.77077e15 1.00731 0.503654 0.863906i \(-0.331989\pi\)
0.503654 + 0.863906i \(0.331989\pi\)
\(734\) 0 0
\(735\) −2.82339e15 −0.485501
\(736\) 0 0
\(737\) −7.91251e15 −1.34043
\(738\) 0 0
\(739\) −7.09611e15 −1.18434 −0.592170 0.805813i \(-0.701729\pi\)
−0.592170 + 0.805813i \(0.701729\pi\)
\(740\) 0 0
\(741\) 1.31106e16 2.15586
\(742\) 0 0
\(743\) 1.40436e15 0.227531 0.113766 0.993508i \(-0.463709\pi\)
0.113766 + 0.993508i \(0.463709\pi\)
\(744\) 0 0
\(745\) 3.99922e15 0.638433
\(746\) 0 0
\(747\) 6.33079e15 0.995851
\(748\) 0 0
\(749\) −9.03042e15 −1.39977
\(750\) 0 0
\(751\) 1.24303e16 1.89873 0.949366 0.314173i \(-0.101727\pi\)
0.949366 + 0.314173i \(0.101727\pi\)
\(752\) 0 0
\(753\) 8.12446e15 1.22299
\(754\) 0 0
\(755\) −3.26733e14 −0.0484714
\(756\) 0 0
\(757\) 1.32729e16 1.94061 0.970305 0.241883i \(-0.0777649\pi\)
0.970305 + 0.241883i \(0.0777649\pi\)
\(758\) 0 0
\(759\) 2.53020e15 0.364607
\(760\) 0 0
\(761\) −1.95021e15 −0.276991 −0.138495 0.990363i \(-0.544227\pi\)
−0.138495 + 0.990363i \(0.544227\pi\)
\(762\) 0 0
\(763\) −3.46539e15 −0.485140
\(764\) 0 0
\(765\) 3.91908e15 0.540812
\(766\) 0 0
\(767\) 5.25211e15 0.714430
\(768\) 0 0
\(769\) −2.20177e15 −0.295242 −0.147621 0.989044i \(-0.547162\pi\)
−0.147621 + 0.989044i \(0.547162\pi\)
\(770\) 0 0
\(771\) 6.06259e15 0.801418
\(772\) 0 0
\(773\) 1.21701e16 1.58602 0.793010 0.609209i \(-0.208513\pi\)
0.793010 + 0.609209i \(0.208513\pi\)
\(774\) 0 0
\(775\) 1.17275e14 0.0150677
\(776\) 0 0
\(777\) 9.96742e15 1.26260
\(778\) 0 0
\(779\) −5.87361e15 −0.733583
\(780\) 0 0
\(781\) −1.95811e15 −0.241133
\(782\) 0 0
\(783\) −6.48281e15 −0.787179
\(784\) 0 0
\(785\) 1.20757e15 0.144587
\(786\) 0 0
\(787\) −3.49830e15 −0.413043 −0.206522 0.978442i \(-0.566214\pi\)
−0.206522 + 0.978442i \(0.566214\pi\)
\(788\) 0 0
\(789\) −1.70304e16 −1.98291
\(790\) 0 0
\(791\) −5.59551e15 −0.642494
\(792\) 0 0
\(793\) 8.84148e15 1.00120
\(794\) 0 0
\(795\) 1.77541e16 1.98280
\(796\) 0 0
\(797\) −5.11204e15 −0.563085 −0.281542 0.959549i \(-0.590846\pi\)
−0.281542 + 0.959549i \(0.590846\pi\)
\(798\) 0 0
\(799\) −1.01978e16 −1.10790
\(800\) 0 0
\(801\) 2.27296e15 0.243564
\(802\) 0 0
\(803\) −1.58048e16 −1.67052
\(804\) 0 0
\(805\) 1.61952e15 0.168853
\(806\) 0 0
\(807\) −1.47633e16 −1.51838
\(808\) 0 0
\(809\) −2.92781e15 −0.297048 −0.148524 0.988909i \(-0.547452\pi\)
−0.148524 + 0.988909i \(0.547452\pi\)
\(810\) 0 0
\(811\) 1.13555e16 1.13655 0.568277 0.822838i \(-0.307610\pi\)
0.568277 + 0.822838i \(0.307610\pi\)
\(812\) 0 0
\(813\) −2.32962e16 −2.30031
\(814\) 0 0
\(815\) −5.00406e15 −0.487478
\(816\) 0 0
\(817\) 6.34965e15 0.610279
\(818\) 0 0
\(819\) −4.22414e15 −0.400568
\(820\) 0 0
\(821\) −3.50553e14 −0.0327994 −0.0163997 0.999866i \(-0.505220\pi\)
−0.0163997 + 0.999866i \(0.505220\pi\)
\(822\) 0 0
\(823\) −3.72462e15 −0.343861 −0.171930 0.985109i \(-0.555000\pi\)
−0.171930 + 0.985109i \(0.555000\pi\)
\(824\) 0 0
\(825\) 2.27190e14 0.0206963
\(826\) 0 0
\(827\) 9.10441e15 0.818411 0.409205 0.912442i \(-0.365806\pi\)
0.409205 + 0.912442i \(0.365806\pi\)
\(828\) 0 0
\(829\) −3.32943e15 −0.295338 −0.147669 0.989037i \(-0.547177\pi\)
−0.147669 + 0.989037i \(0.547177\pi\)
\(830\) 0 0
\(831\) 2.39149e16 2.09345
\(832\) 0 0
\(833\) −4.13516e15 −0.357227
\(834\) 0 0
\(835\) 9.17127e14 0.0781905
\(836\) 0 0
\(837\) −7.81830e15 −0.657843
\(838\) 0 0
\(839\) 7.78240e15 0.646283 0.323141 0.946351i \(-0.395261\pi\)
0.323141 + 0.946351i \(0.395261\pi\)
\(840\) 0 0
\(841\) 1.47107e16 1.20575
\(842\) 0 0
\(843\) −8.38919e14 −0.0678685
\(844\) 0 0
\(845\) −2.77601e15 −0.221671
\(846\) 0 0
\(847\) 8.38012e15 0.660528
\(848\) 0 0
\(849\) −2.90346e16 −2.25904
\(850\) 0 0
\(851\) 3.56641e15 0.273917
\(852\) 0 0
\(853\) 2.40598e15 0.182420 0.0912099 0.995832i \(-0.470927\pi\)
0.0912099 + 0.995832i \(0.470927\pi\)
\(854\) 0 0
\(855\) −1.51017e16 −1.13035
\(856\) 0 0
\(857\) −7.74432e15 −0.572254 −0.286127 0.958192i \(-0.592368\pi\)
−0.286127 + 0.958192i \(0.592368\pi\)
\(858\) 0 0
\(859\) −6.81239e15 −0.496978 −0.248489 0.968635i \(-0.579934\pi\)
−0.248489 + 0.968635i \(0.579934\pi\)
\(860\) 0 0
\(861\) 5.16611e15 0.372088
\(862\) 0 0
\(863\) 6.57977e15 0.467898 0.233949 0.972249i \(-0.424835\pi\)
0.233949 + 0.972249i \(0.424835\pi\)
\(864\) 0 0
\(865\) 9.90002e15 0.695101
\(866\) 0 0
\(867\) −2.45125e15 −0.169935
\(868\) 0 0
\(869\) −2.44455e16 −1.67336
\(870\) 0 0
\(871\) 1.29029e16 0.872142
\(872\) 0 0
\(873\) 1.03125e16 0.688313
\(874\) 0 0
\(875\) −1.18330e16 −0.779923
\(876\) 0 0
\(877\) −1.74871e16 −1.13820 −0.569101 0.822267i \(-0.692709\pi\)
−0.569101 + 0.822267i \(0.692709\pi\)
\(878\) 0 0
\(879\) 2.19389e15 0.141018
\(880\) 0 0
\(881\) −1.04152e16 −0.661149 −0.330575 0.943780i \(-0.607243\pi\)
−0.330575 + 0.943780i \(0.607243\pi\)
\(882\) 0 0
\(883\) 1.62388e15 0.101805 0.0509025 0.998704i \(-0.483790\pi\)
0.0509025 + 0.998704i \(0.483790\pi\)
\(884\) 0 0
\(885\) −1.65150e16 −1.02256
\(886\) 0 0
\(887\) 1.02417e16 0.626313 0.313157 0.949701i \(-0.398614\pi\)
0.313157 + 0.949701i \(0.398614\pi\)
\(888\) 0 0
\(889\) −9.62865e15 −0.581575
\(890\) 0 0
\(891\) −2.82959e16 −1.68809
\(892\) 0 0
\(893\) 3.92958e16 2.31560
\(894\) 0 0
\(895\) −1.01465e16 −0.590595
\(896\) 0 0
\(897\) −4.12599e15 −0.237230
\(898\) 0 0
\(899\) 3.24551e16 1.84334
\(900\) 0 0
\(901\) 2.60028e16 1.45893
\(902\) 0 0
\(903\) −5.58481e15 −0.309546
\(904\) 0 0
\(905\) 2.19929e16 1.20425
\(906\) 0 0
\(907\) −9.93380e15 −0.537372 −0.268686 0.963228i \(-0.586589\pi\)
−0.268686 + 0.963228i \(0.586589\pi\)
\(908\) 0 0
\(909\) −1.72458e15 −0.0921682
\(910\) 0 0
\(911\) −2.83862e16 −1.49884 −0.749420 0.662094i \(-0.769668\pi\)
−0.749420 + 0.662094i \(0.769668\pi\)
\(912\) 0 0
\(913\) 4.48131e16 2.33785
\(914\) 0 0
\(915\) −2.78016e16 −1.43303
\(916\) 0 0
\(917\) 1.97892e15 0.100785
\(918\) 0 0
\(919\) −3.04547e15 −0.153257 −0.0766284 0.997060i \(-0.524416\pi\)
−0.0766284 + 0.997060i \(0.524416\pi\)
\(920\) 0 0
\(921\) 4.63224e14 0.0230337
\(922\) 0 0
\(923\) 3.19308e15 0.156892
\(924\) 0 0
\(925\) 3.20233e14 0.0155484
\(926\) 0 0
\(927\) −2.43183e15 −0.116680
\(928\) 0 0
\(929\) −2.24387e16 −1.06392 −0.531962 0.846768i \(-0.678545\pi\)
−0.531962 + 0.846768i \(0.678545\pi\)
\(930\) 0 0
\(931\) 1.59343e16 0.746636
\(932\) 0 0
\(933\) 3.50719e16 1.62409
\(934\) 0 0
\(935\) 2.77416e16 1.26960
\(936\) 0 0
\(937\) −1.14631e16 −0.518482 −0.259241 0.965813i \(-0.583472\pi\)
−0.259241 + 0.965813i \(0.583472\pi\)
\(938\) 0 0
\(939\) 4.22318e16 1.88790
\(940\) 0 0
\(941\) −6.08259e15 −0.268748 −0.134374 0.990931i \(-0.542902\pi\)
−0.134374 + 0.990931i \(0.542902\pi\)
\(942\) 0 0
\(943\) 1.84847e15 0.0807230
\(944\) 0 0
\(945\) −9.69453e15 −0.418458
\(946\) 0 0
\(947\) 1.95888e16 0.835762 0.417881 0.908502i \(-0.362773\pi\)
0.417881 + 0.908502i \(0.362773\pi\)
\(948\) 0 0
\(949\) 2.57728e16 1.08692
\(950\) 0 0
\(951\) −3.23808e14 −0.0134988
\(952\) 0 0
\(953\) −1.57650e16 −0.649654 −0.324827 0.945773i \(-0.605306\pi\)
−0.324827 + 0.945773i \(0.605306\pi\)
\(954\) 0 0
\(955\) 2.21673e16 0.903015
\(956\) 0 0
\(957\) 6.28734e16 2.53193
\(958\) 0 0
\(959\) −1.14350e16 −0.455231
\(960\) 0 0
\(961\) 1.37326e16 0.540474
\(962\) 0 0
\(963\) −2.65005e16 −1.03112
\(964\) 0 0
\(965\) −2.44582e16 −0.940858
\(966\) 0 0
\(967\) −1.75917e16 −0.669055 −0.334527 0.942386i \(-0.608577\pi\)
−0.334527 + 0.942386i \(0.608577\pi\)
\(968\) 0 0
\(969\) −6.03792e16 −2.27042
\(970\) 0 0
\(971\) −1.46904e16 −0.546169 −0.273084 0.961990i \(-0.588044\pi\)
−0.273084 + 0.961990i \(0.588044\pi\)
\(972\) 0 0
\(973\) 5.32215e15 0.195644
\(974\) 0 0
\(975\) −3.70478e14 −0.0134660
\(976\) 0 0
\(977\) 2.10824e16 0.757705 0.378853 0.925457i \(-0.376319\pi\)
0.378853 + 0.925457i \(0.376319\pi\)
\(978\) 0 0
\(979\) 1.60894e16 0.571787
\(980\) 0 0
\(981\) −1.01695e16 −0.357370
\(982\) 0 0
\(983\) 2.57442e16 0.894613 0.447306 0.894381i \(-0.352383\pi\)
0.447306 + 0.894381i \(0.352383\pi\)
\(984\) 0 0
\(985\) −1.20542e16 −0.414228
\(986\) 0 0
\(987\) −3.45625e16 −1.17452
\(988\) 0 0
\(989\) −1.99828e15 −0.0671547
\(990\) 0 0
\(991\) 2.31512e16 0.769428 0.384714 0.923036i \(-0.374300\pi\)
0.384714 + 0.923036i \(0.374300\pi\)
\(992\) 0 0
\(993\) 4.06649e16 1.33659
\(994\) 0 0
\(995\) −7.36667e15 −0.239466
\(996\) 0 0
\(997\) 1.95960e16 0.630006 0.315003 0.949091i \(-0.397995\pi\)
0.315003 + 0.949091i \(0.397995\pi\)
\(998\) 0 0
\(999\) −2.13487e16 −0.678832
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 32.12.a.c.1.2 yes 2
4.3 odd 2 inner 32.12.a.c.1.1 2
8.3 odd 2 64.12.a.i.1.2 2
8.5 even 2 64.12.a.i.1.1 2
16.3 odd 4 256.12.b.i.129.1 4
16.5 even 4 256.12.b.i.129.2 4
16.11 odd 4 256.12.b.i.129.4 4
16.13 even 4 256.12.b.i.129.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
32.12.a.c.1.1 2 4.3 odd 2 inner
32.12.a.c.1.2 yes 2 1.1 even 1 trivial
64.12.a.i.1.1 2 8.5 even 2
64.12.a.i.1.2 2 8.3 odd 2
256.12.b.i.129.1 4 16.3 odd 4
256.12.b.i.129.2 4 16.5 even 4
256.12.b.i.129.3 4 16.13 even 4
256.12.b.i.129.4 4 16.11 odd 4