Properties

Label 315.2.ce.a.233.10
Level $315$
Weight $2$
Character 315.233
Analytic conductor $2.515$
Analytic rank $0$
Dimension $64$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [315,2,Mod(53,315)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("315.53"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(315, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 9, 8])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 315 = 3^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 315.ce (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.51528766367\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(16\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 233.10
Character \(\chi\) \(=\) 315.233
Dual form 315.2.ce.a.242.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.370100 - 0.0991680i) q^{2} +(-1.60491 + 0.926596i) q^{4} +(0.266643 - 2.22011i) q^{5} +(-1.13202 - 2.39134i) q^{7} +(-1.04395 + 1.04395i) q^{8} +(-0.121480 - 0.848106i) q^{10} +(3.48588 - 2.01257i) q^{11} +(-2.94019 - 2.94019i) q^{13} +(-0.656107 - 0.772776i) q^{14} +(1.57035 - 2.71993i) q^{16} +(0.510805 - 1.90635i) q^{17} +(-3.06607 - 1.77020i) q^{19} +(1.62921 + 3.81015i) q^{20} +(1.09054 - 1.09054i) q^{22} +(0.467117 + 1.74330i) q^{23} +(-4.85780 - 1.18396i) q^{25} +(-1.37974 - 0.796592i) q^{26} +(4.03261 + 2.78897i) q^{28} +7.33557 q^{29} +(1.20124 + 2.08061i) q^{31} +(1.07568 - 4.01451i) q^{32} -0.756196i q^{34} +(-5.61090 + 1.87558i) q^{35} +(2.22373 + 8.29907i) q^{37} +(-1.31030 - 0.351094i) q^{38} +(2.03933 + 2.59606i) q^{40} -5.20836i q^{41} +(-1.29106 - 1.29106i) q^{43} +(-3.72969 + 6.46001i) q^{44} +(0.345760 + 0.598874i) q^{46} +(-1.06806 + 0.286186i) q^{47} +(-4.43705 + 5.41411i) q^{49} +(-1.91528 + 0.0435568i) q^{50} +(7.44311 + 1.99437i) q^{52} +(-10.7964 - 2.89287i) q^{53} +(-3.53866 - 8.27569i) q^{55} +(3.67823 + 1.31467i) q^{56} +(2.71489 - 0.727454i) q^{58} +(7.20215 + 12.4745i) q^{59} +(-2.48813 + 4.30957i) q^{61} +(0.650911 + 0.650911i) q^{62} +4.68896i q^{64} +(-7.31153 + 5.74357i) q^{65} +(5.94931 + 1.59411i) q^{67} +(0.946620 + 3.53283i) q^{68} +(-1.89060 + 1.25058i) q^{70} +1.99948i q^{71} +(3.35751 - 12.5304i) q^{73} +(1.64601 + 2.85096i) q^{74} +6.56103 q^{76} +(-8.75886 - 6.05766i) q^{77} +(12.9543 + 7.47918i) q^{79} +(-5.61982 - 4.21161i) q^{80} +(-0.516502 - 1.92761i) q^{82} +(11.2724 - 11.2724i) q^{83} +(-4.09611 - 1.64236i) q^{85} +(-0.605851 - 0.349788i) q^{86} +(-1.53806 + 5.74013i) q^{88} +(4.22341 - 7.31516i) q^{89} +(-3.70264 + 10.3594i) q^{91} +(-2.36502 - 2.36502i) q^{92} +(-0.366909 + 0.211835i) q^{94} +(-4.74759 + 6.33502i) q^{95} +(4.46118 - 4.46118i) q^{97} +(-1.10525 + 2.44378i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q + 8 q^{7} + 8 q^{10} + 32 q^{16} - 48 q^{22} - 16 q^{25} + 88 q^{28} + 32 q^{31} - 16 q^{37} - 40 q^{40} - 16 q^{43} - 80 q^{52} - 32 q^{55} - 88 q^{58} + 48 q^{61} - 32 q^{67} - 112 q^{70} - 88 q^{73}+ \cdots + 208 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/315\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(136\) \(281\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(e\left(\frac{1}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.370100 0.0991680i 0.261700 0.0701224i −0.125583 0.992083i \(-0.540080\pi\)
0.387283 + 0.921961i \(0.373414\pi\)
\(3\) 0 0
\(4\) −1.60491 + 0.926596i −0.802456 + 0.463298i
\(5\) 0.266643 2.22011i 0.119246 0.992865i
\(6\) 0 0
\(7\) −1.13202 2.39134i −0.427864 0.903843i
\(8\) −1.04395 + 1.04395i −0.369093 + 0.369093i
\(9\) 0 0
\(10\) −0.121480 0.848106i −0.0384152 0.268195i
\(11\) 3.48588 2.01257i 1.05103 0.606814i 0.128095 0.991762i \(-0.459114\pi\)
0.922938 + 0.384948i \(0.125781\pi\)
\(12\) 0 0
\(13\) −2.94019 2.94019i −0.815462 0.815462i 0.169985 0.985447i \(-0.445628\pi\)
−0.985447 + 0.169985i \(0.945628\pi\)
\(14\) −0.656107 0.772776i −0.175352 0.206533i
\(15\) 0 0
\(16\) 1.57035 2.71993i 0.392588 0.679982i
\(17\) 0.510805 1.90635i 0.123888 0.462358i −0.875909 0.482476i \(-0.839738\pi\)
0.999798 + 0.0201182i \(0.00640424\pi\)
\(18\) 0 0
\(19\) −3.06607 1.77020i −0.703406 0.406111i 0.105209 0.994450i \(-0.466449\pi\)
−0.808615 + 0.588339i \(0.799782\pi\)
\(20\) 1.62921 + 3.81015i 0.364302 + 0.851976i
\(21\) 0 0
\(22\) 1.09054 1.09054i 0.232504 0.232504i
\(23\) 0.467117 + 1.74330i 0.0974006 + 0.363504i 0.997372 0.0724439i \(-0.0230798\pi\)
−0.899972 + 0.435948i \(0.856413\pi\)
\(24\) 0 0
\(25\) −4.85780 1.18396i −0.971561 0.236791i
\(26\) −1.37974 0.796592i −0.270589 0.156224i
\(27\) 0 0
\(28\) 4.03261 + 2.78897i 0.762091 + 0.527065i
\(29\) 7.33557 1.36218 0.681090 0.732199i \(-0.261506\pi\)
0.681090 + 0.732199i \(0.261506\pi\)
\(30\) 0 0
\(31\) 1.20124 + 2.08061i 0.215750 + 0.373689i 0.953504 0.301380i \(-0.0974472\pi\)
−0.737755 + 0.675069i \(0.764114\pi\)
\(32\) 1.07568 4.01451i 0.190156 0.709671i
\(33\) 0 0
\(34\) 0.756196i 0.129687i
\(35\) −5.61090 + 1.87558i −0.948415 + 0.317032i
\(36\) 0 0
\(37\) 2.22373 + 8.29907i 0.365579 + 1.36436i 0.866634 + 0.498944i \(0.166279\pi\)
−0.501055 + 0.865415i \(0.667055\pi\)
\(38\) −1.31030 0.351094i −0.212559 0.0569550i
\(39\) 0 0
\(40\) 2.03933 + 2.59606i 0.322447 + 0.410473i
\(41\) 5.20836i 0.813408i −0.913560 0.406704i \(-0.866678\pi\)
0.913560 0.406704i \(-0.133322\pi\)
\(42\) 0 0
\(43\) −1.29106 1.29106i −0.196884 0.196884i 0.601779 0.798663i \(-0.294459\pi\)
−0.798663 + 0.601779i \(0.794459\pi\)
\(44\) −3.72969 + 6.46001i −0.562271 + 0.973883i
\(45\) 0 0
\(46\) 0.345760 + 0.598874i 0.0509795 + 0.0882991i
\(47\) −1.06806 + 0.286186i −0.155793 + 0.0417445i −0.335872 0.941907i \(-0.609031\pi\)
0.180080 + 0.983652i \(0.442364\pi\)
\(48\) 0 0
\(49\) −4.43705 + 5.41411i −0.633864 + 0.773445i
\(50\) −1.91528 + 0.0435568i −0.270862 + 0.00615987i
\(51\) 0 0
\(52\) 7.44311 + 1.99437i 1.03217 + 0.276570i
\(53\) −10.7964 2.89287i −1.48299 0.397367i −0.575628 0.817711i \(-0.695242\pi\)
−0.907364 + 0.420345i \(0.861909\pi\)
\(54\) 0 0
\(55\) −3.53866 8.27569i −0.477152 1.11589i
\(56\) 3.67823 + 1.31467i 0.491524 + 0.175680i
\(57\) 0 0
\(58\) 2.71489 0.727454i 0.356483 0.0955193i
\(59\) 7.20215 + 12.4745i 0.937640 + 1.62404i 0.769858 + 0.638215i \(0.220327\pi\)
0.167782 + 0.985824i \(0.446340\pi\)
\(60\) 0 0
\(61\) −2.48813 + 4.30957i −0.318572 + 0.551783i −0.980190 0.198058i \(-0.936537\pi\)
0.661618 + 0.749841i \(0.269870\pi\)
\(62\) 0.650911 + 0.650911i 0.0826657 + 0.0826657i
\(63\) 0 0
\(64\) 4.68896i 0.586120i
\(65\) −7.31153 + 5.74357i −0.906884 + 0.712402i
\(66\) 0 0
\(67\) 5.94931 + 1.59411i 0.726824 + 0.194752i 0.603214 0.797579i \(-0.293886\pi\)
0.123609 + 0.992331i \(0.460553\pi\)
\(68\) 0.946620 + 3.53283i 0.114794 + 0.428419i
\(69\) 0 0
\(70\) −1.89060 + 1.25058i −0.225969 + 0.149472i
\(71\) 1.99948i 0.237295i 0.992936 + 0.118647i \(0.0378558\pi\)
−0.992936 + 0.118647i \(0.962144\pi\)
\(72\) 0 0
\(73\) 3.35751 12.5304i 0.392966 1.46657i −0.432250 0.901754i \(-0.642280\pi\)
0.825217 0.564816i \(-0.191053\pi\)
\(74\) 1.64601 + 2.85096i 0.191344 + 0.331418i
\(75\) 0 0
\(76\) 6.56103 0.752602
\(77\) −8.75886 6.05766i −0.998164 0.690334i
\(78\) 0 0
\(79\) 12.9543 + 7.47918i 1.45747 + 0.841474i 0.998887 0.0471753i \(-0.0150219\pi\)
0.458588 + 0.888649i \(0.348355\pi\)
\(80\) −5.61982 4.21161i −0.628315 0.470872i
\(81\) 0 0
\(82\) −0.516502 1.92761i −0.0570381 0.212869i
\(83\) 11.2724 11.2724i 1.23731 1.23731i 0.276212 0.961097i \(-0.410921\pi\)
0.961097 0.276212i \(-0.0890792\pi\)
\(84\) 0 0
\(85\) −4.09611 1.64236i −0.444286 0.178139i
\(86\) −0.605851 0.349788i −0.0653306 0.0377186i
\(87\) 0 0
\(88\) −1.53806 + 5.74013i −0.163958 + 0.611900i
\(89\) 4.22341 7.31516i 0.447680 0.775405i −0.550554 0.834799i \(-0.685584\pi\)
0.998235 + 0.0593942i \(0.0189169\pi\)
\(90\) 0 0
\(91\) −3.70264 + 10.3594i −0.388142 + 1.08596i
\(92\) −2.36502 2.36502i −0.246570 0.246570i
\(93\) 0 0
\(94\) −0.366909 + 0.211835i −0.0378438 + 0.0218491i
\(95\) −4.74759 + 6.33502i −0.487092 + 0.649959i
\(96\) 0 0
\(97\) 4.46118 4.46118i 0.452964 0.452964i −0.443373 0.896337i \(-0.646218\pi\)
0.896337 + 0.443373i \(0.146218\pi\)
\(98\) −1.10525 + 2.44378i −0.111647 + 0.246859i
\(99\) 0 0
\(100\) 8.89339 2.60108i 0.889339 0.260108i
\(101\) 8.98534 5.18769i 0.894074 0.516194i 0.0188014 0.999823i \(-0.494015\pi\)
0.875273 + 0.483629i \(0.160682\pi\)
\(102\) 0 0
\(103\) −3.82430 + 1.02472i −0.376819 + 0.100968i −0.442257 0.896888i \(-0.645822\pi\)
0.0654380 + 0.997857i \(0.479156\pi\)
\(104\) 6.13884 0.601963
\(105\) 0 0
\(106\) −4.28261 −0.415964
\(107\) −1.69403 + 0.453913i −0.163768 + 0.0438815i −0.339771 0.940508i \(-0.610350\pi\)
0.176003 + 0.984390i \(0.443683\pi\)
\(108\) 0 0
\(109\) −12.9603 + 7.48264i −1.24137 + 0.716707i −0.969374 0.245591i \(-0.921018\pi\)
−0.271999 + 0.962298i \(0.587685\pi\)
\(110\) −2.13034 2.71191i −0.203120 0.258571i
\(111\) 0 0
\(112\) −8.28196 0.676228i −0.782571 0.0638975i
\(113\) −1.92868 + 1.92868i −0.181435 + 0.181435i −0.791981 0.610546i \(-0.790950\pi\)
0.610546 + 0.791981i \(0.290950\pi\)
\(114\) 0 0
\(115\) 3.99489 0.572213i 0.372525 0.0533591i
\(116\) −11.7729 + 6.79711i −1.09309 + 0.631095i
\(117\) 0 0
\(118\) 3.90259 + 3.90259i 0.359262 + 0.359262i
\(119\) −5.13698 + 0.936522i −0.470906 + 0.0858508i
\(120\) 0 0
\(121\) 2.60091 4.50492i 0.236447 0.409538i
\(122\) −0.493486 + 1.84171i −0.0446781 + 0.166741i
\(123\) 0 0
\(124\) −3.85578 2.22613i −0.346259 0.199913i
\(125\) −3.92381 + 10.4692i −0.350957 + 0.936392i
\(126\) 0 0
\(127\) 4.99811 4.99811i 0.443511 0.443511i −0.449679 0.893190i \(-0.648462\pi\)
0.893190 + 0.449679i \(0.148462\pi\)
\(128\) 2.61636 + 9.76440i 0.231256 + 0.863059i
\(129\) 0 0
\(130\) −2.13642 + 2.85077i −0.187376 + 0.250029i
\(131\) 12.8763 + 7.43415i 1.12501 + 0.649525i 0.942675 0.333712i \(-0.108301\pi\)
0.182335 + 0.983237i \(0.441635\pi\)
\(132\) 0 0
\(133\) −0.762287 + 9.33594i −0.0660986 + 0.809529i
\(134\) 2.35992 0.203866
\(135\) 0 0
\(136\) 1.45688 + 2.52340i 0.124927 + 0.216379i
\(137\) 4.73094 17.6561i 0.404191 1.50846i −0.401351 0.915924i \(-0.631459\pi\)
0.805542 0.592538i \(-0.201874\pi\)
\(138\) 0 0
\(139\) 16.9265i 1.43569i −0.696203 0.717845i \(-0.745129\pi\)
0.696203 0.717845i \(-0.254871\pi\)
\(140\) 7.26709 8.20918i 0.614181 0.693802i
\(141\) 0 0
\(142\) 0.198285 + 0.740008i 0.0166397 + 0.0621001i
\(143\) −16.1665 4.33180i −1.35191 0.362243i
\(144\) 0 0
\(145\) 1.95598 16.2858i 0.162435 1.35246i
\(146\) 4.97045i 0.411358i
\(147\) 0 0
\(148\) −11.2588 11.2588i −0.925466 0.925466i
\(149\) 2.91667 5.05181i 0.238943 0.413861i −0.721469 0.692447i \(-0.756533\pi\)
0.960411 + 0.278586i \(0.0898659\pi\)
\(150\) 0 0
\(151\) −0.781346 1.35333i −0.0635850 0.110132i 0.832480 0.554054i \(-0.186920\pi\)
−0.896065 + 0.443922i \(0.853587\pi\)
\(152\) 5.04884 1.35283i 0.409515 0.109729i
\(153\) 0 0
\(154\) −3.84238 1.37334i −0.309628 0.110667i
\(155\) 4.93950 2.11211i 0.396750 0.169649i
\(156\) 0 0
\(157\) −20.6501 5.53319i −1.64806 0.441597i −0.688992 0.724769i \(-0.741947\pi\)
−0.959069 + 0.283172i \(0.908613\pi\)
\(158\) 5.53609 + 1.48339i 0.440428 + 0.118012i
\(159\) 0 0
\(160\) −8.62584 3.45858i −0.681932 0.273425i
\(161\) 3.64005 3.09050i 0.286876 0.243565i
\(162\) 0 0
\(163\) 5.33299 1.42897i 0.417712 0.111926i −0.0438402 0.999039i \(-0.513959\pi\)
0.461553 + 0.887113i \(0.347293\pi\)
\(164\) 4.82604 + 8.35895i 0.376850 + 0.652724i
\(165\) 0 0
\(166\) 3.05406 5.28979i 0.237041 0.410567i
\(167\) 9.56242 + 9.56242i 0.739962 + 0.739962i 0.972571 0.232608i \(-0.0747259\pi\)
−0.232608 + 0.972571i \(0.574726\pi\)
\(168\) 0 0
\(169\) 4.28942i 0.329956i
\(170\) −1.67884 0.201634i −0.128761 0.0154646i
\(171\) 0 0
\(172\) 3.26832 + 0.875743i 0.249207 + 0.0667747i
\(173\) 0.208360 + 0.777609i 0.0158413 + 0.0591205i 0.973394 0.229138i \(-0.0735906\pi\)
−0.957553 + 0.288258i \(0.906924\pi\)
\(174\) 0 0
\(175\) 2.66790 + 12.9569i 0.201674 + 0.979453i
\(176\) 12.6418i 0.952911i
\(177\) 0 0
\(178\) 0.837654 3.12617i 0.0627848 0.234316i
\(179\) −4.96978 8.60791i −0.371459 0.643385i 0.618332 0.785917i \(-0.287809\pi\)
−0.989790 + 0.142532i \(0.954476\pi\)
\(180\) 0 0
\(181\) −10.5660 −0.785367 −0.392684 0.919674i \(-0.628453\pi\)
−0.392684 + 0.919674i \(0.628453\pi\)
\(182\) −0.343030 + 4.20118i −0.0254271 + 0.311413i
\(183\) 0 0
\(184\) −2.30758 1.33228i −0.170117 0.0982170i
\(185\) 19.0178 2.72404i 1.39822 0.200276i
\(186\) 0 0
\(187\) −2.05607 7.67334i −0.150354 0.561131i
\(188\) 1.44896 1.44896i 0.105677 0.105677i
\(189\) 0 0
\(190\) −1.12885 + 2.81540i −0.0818955 + 0.204251i
\(191\) −3.99141 2.30444i −0.288808 0.166743i 0.348596 0.937273i \(-0.386658\pi\)
−0.637404 + 0.770530i \(0.719992\pi\)
\(192\) 0 0
\(193\) −0.0106297 + 0.0396705i −0.000765141 + 0.00285555i −0.966307 0.257391i \(-0.917137\pi\)
0.965542 + 0.260247i \(0.0838038\pi\)
\(194\) 1.20868 2.09349i 0.0867779 0.150304i
\(195\) 0 0
\(196\) 2.10437 12.8005i 0.150312 0.914323i
\(197\) 6.07098 + 6.07098i 0.432539 + 0.432539i 0.889491 0.456952i \(-0.151059\pi\)
−0.456952 + 0.889491i \(0.651059\pi\)
\(198\) 0 0
\(199\) −0.549943 + 0.317510i −0.0389845 + 0.0225077i −0.519366 0.854552i \(-0.673832\pi\)
0.480381 + 0.877060i \(0.340498\pi\)
\(200\) 6.30731 3.83533i 0.445994 0.271198i
\(201\) 0 0
\(202\) 2.81102 2.81102i 0.197783 0.197783i
\(203\) −8.30403 17.5419i −0.582829 1.23120i
\(204\) 0 0
\(205\) −11.5631 1.38877i −0.807605 0.0969960i
\(206\) −1.31375 + 0.758496i −0.0915336 + 0.0528469i
\(207\) 0 0
\(208\) −12.6142 + 3.37997i −0.874640 + 0.234359i
\(209\) −14.2506 −0.985737
\(210\) 0 0
\(211\) 25.5980 1.76224 0.881119 0.472895i \(-0.156791\pi\)
0.881119 + 0.472895i \(0.156791\pi\)
\(212\) 20.0077 5.36105i 1.37413 0.368198i
\(213\) 0 0
\(214\) −0.581946 + 0.335987i −0.0397810 + 0.0229676i
\(215\) −3.21054 + 2.52204i −0.218957 + 0.172002i
\(216\) 0 0
\(217\) 3.61563 5.22789i 0.245445 0.354892i
\(218\) −4.05457 + 4.05457i −0.274610 + 0.274610i
\(219\) 0 0
\(220\) 13.3475 + 10.0028i 0.899885 + 0.674391i
\(221\) −7.10689 + 4.10317i −0.478061 + 0.276009i
\(222\) 0 0
\(223\) 7.50244 + 7.50244i 0.502401 + 0.502401i 0.912183 0.409783i \(-0.134395\pi\)
−0.409783 + 0.912183i \(0.634395\pi\)
\(224\) −10.8178 + 1.97218i −0.722792 + 0.131772i
\(225\) 0 0
\(226\) −0.522542 + 0.905069i −0.0347590 + 0.0602043i
\(227\) −3.25451 + 12.1460i −0.216010 + 0.806159i 0.769799 + 0.638286i \(0.220356\pi\)
−0.985809 + 0.167873i \(0.946310\pi\)
\(228\) 0 0
\(229\) 10.1070 + 5.83527i 0.667888 + 0.385605i 0.795276 0.606248i \(-0.207326\pi\)
−0.127388 + 0.991853i \(0.540659\pi\)
\(230\) 1.42176 0.607941i 0.0937482 0.0400864i
\(231\) 0 0
\(232\) −7.65799 + 7.65799i −0.502772 + 0.502772i
\(233\) 4.19304 + 15.6486i 0.274695 + 1.02518i 0.956046 + 0.293218i \(0.0947262\pi\)
−0.681351 + 0.731957i \(0.738607\pi\)
\(234\) 0 0
\(235\) 0.350575 + 2.44753i 0.0228690 + 0.159659i
\(236\) −23.1176 13.3470i −1.50483 0.868813i
\(237\) 0 0
\(238\) −1.80832 + 0.856031i −0.117216 + 0.0554883i
\(239\) −16.0682 −1.03936 −0.519682 0.854360i \(-0.673950\pi\)
−0.519682 + 0.854360i \(0.673950\pi\)
\(240\) 0 0
\(241\) −1.35376 2.34478i −0.0872034 0.151041i 0.819125 0.573616i \(-0.194460\pi\)
−0.906328 + 0.422575i \(0.861126\pi\)
\(242\) 0.515855 1.92520i 0.0331604 0.123756i
\(243\) 0 0
\(244\) 9.22196i 0.590375i
\(245\) 10.8368 + 11.2944i 0.692340 + 0.721572i
\(246\) 0 0
\(247\) 3.81012 + 14.2196i 0.242432 + 0.904769i
\(248\) −3.42611 0.918022i −0.217558 0.0582945i
\(249\) 0 0
\(250\) −0.413996 + 4.26376i −0.0261834 + 0.269664i
\(251\) 16.0085i 1.01045i 0.862989 + 0.505223i \(0.168590\pi\)
−0.862989 + 0.505223i \(0.831410\pi\)
\(252\) 0 0
\(253\) 5.13684 + 5.13684i 0.322951 + 0.322951i
\(254\) 1.35415 2.34545i 0.0849668 0.147167i
\(255\) 0 0
\(256\) −2.75233 4.76717i −0.172021 0.297948i
\(257\) −22.0568 + 5.91009i −1.37586 + 0.368662i −0.869617 0.493727i \(-0.835634\pi\)
−0.506247 + 0.862389i \(0.668968\pi\)
\(258\) 0 0
\(259\) 17.3286 14.7124i 1.07675 0.914187i
\(260\) 6.41239 15.9928i 0.397680 0.991829i
\(261\) 0 0
\(262\) 5.50276 + 1.47446i 0.339962 + 0.0910925i
\(263\) 26.7207 + 7.15980i 1.64767 + 0.441492i 0.958959 0.283544i \(-0.0915102\pi\)
0.688711 + 0.725036i \(0.258177\pi\)
\(264\) 0 0
\(265\) −9.30128 + 23.1978i −0.571373 + 1.42503i
\(266\) 0.643704 + 3.53083i 0.0394680 + 0.216489i
\(267\) 0 0
\(268\) −11.0252 + 2.95420i −0.673472 + 0.180456i
\(269\) −2.20972 3.82735i −0.134729 0.233357i 0.790765 0.612120i \(-0.209683\pi\)
−0.925494 + 0.378762i \(0.876350\pi\)
\(270\) 0 0
\(271\) −8.32314 + 14.4161i −0.505595 + 0.875716i 0.494384 + 0.869243i \(0.335394\pi\)
−0.999979 + 0.00647219i \(0.997940\pi\)
\(272\) −4.38299 4.38299i −0.265758 0.265758i
\(273\) 0 0
\(274\) 7.00368i 0.423108i
\(275\) −19.3165 + 5.64956i −1.16483 + 0.340682i
\(276\) 0 0
\(277\) −11.3131 3.03132i −0.679735 0.182135i −0.0975991 0.995226i \(-0.531116\pi\)
−0.582136 + 0.813091i \(0.697783\pi\)
\(278\) −1.67857 6.26451i −0.100674 0.375720i
\(279\) 0 0
\(280\) 3.89949 7.81554i 0.233039 0.467068i
\(281\) 15.8649i 0.946421i 0.880949 + 0.473211i \(0.156905\pi\)
−0.880949 + 0.473211i \(0.843095\pi\)
\(282\) 0 0
\(283\) 1.79393 6.69505i 0.106638 0.397979i −0.891888 0.452257i \(-0.850619\pi\)
0.998526 + 0.0542777i \(0.0172856\pi\)
\(284\) −1.85271 3.20899i −0.109938 0.190418i
\(285\) 0 0
\(286\) −6.41280 −0.379197
\(287\) −12.4550 + 5.89598i −0.735193 + 0.348029i
\(288\) 0 0
\(289\) 11.3492 + 6.55245i 0.667599 + 0.385438i
\(290\) −0.891122 6.22134i −0.0523285 0.365330i
\(291\) 0 0
\(292\) 6.22210 + 23.2212i 0.364121 + 1.35892i
\(293\) 8.89793 8.89793i 0.519823 0.519823i −0.397695 0.917518i \(-0.630190\pi\)
0.917518 + 0.397695i \(0.130190\pi\)
\(294\) 0 0
\(295\) 29.6152 12.6633i 1.72426 0.737289i
\(296\) −10.9853 6.34237i −0.638508 0.368643i
\(297\) 0 0
\(298\) 0.578480 2.15892i 0.0335104 0.125063i
\(299\) 3.75223 6.49906i 0.216997 0.375850i
\(300\) 0 0
\(301\) −1.62585 + 4.54886i −0.0937126 + 0.262192i
\(302\) −0.423383 0.423383i −0.0243630 0.0243630i
\(303\) 0 0
\(304\) −9.62963 + 5.55967i −0.552297 + 0.318869i
\(305\) 8.90428 + 6.67304i 0.509858 + 0.382097i
\(306\) 0 0
\(307\) −8.47590 + 8.47590i −0.483745 + 0.483745i −0.906326 0.422580i \(-0.861125\pi\)
0.422580 + 0.906326i \(0.361125\pi\)
\(308\) 19.6702 + 1.60609i 1.12081 + 0.0915152i
\(309\) 0 0
\(310\) 1.61866 1.27153i 0.0919335 0.0722183i
\(311\) 5.89965 3.40617i 0.334539 0.193146i −0.323316 0.946291i \(-0.604798\pi\)
0.657854 + 0.753145i \(0.271464\pi\)
\(312\) 0 0
\(313\) 18.3126 4.90685i 1.03509 0.277352i 0.299013 0.954249i \(-0.403342\pi\)
0.736078 + 0.676897i \(0.236676\pi\)
\(314\) −8.19134 −0.462264
\(315\) 0 0
\(316\) −27.7207 −1.55941
\(317\) 5.70405 1.52839i 0.320371 0.0858432i −0.0950497 0.995473i \(-0.530301\pi\)
0.415421 + 0.909629i \(0.363634\pi\)
\(318\) 0 0
\(319\) 25.5709 14.7634i 1.43170 0.826590i
\(320\) 10.4100 + 1.25028i 0.581938 + 0.0698927i
\(321\) 0 0
\(322\) 1.04070 1.50477i 0.0579962 0.0838576i
\(323\) −4.94078 + 4.94078i −0.274913 + 0.274913i
\(324\) 0 0
\(325\) 10.8018 + 17.7639i 0.599176 + 0.985364i
\(326\) 1.83203 1.05773i 0.101467 0.0585820i
\(327\) 0 0
\(328\) 5.43728 + 5.43728i 0.300224 + 0.300224i
\(329\) 1.89344 + 2.23013i 0.104389 + 0.122951i
\(330\) 0 0
\(331\) −4.17653 + 7.23397i −0.229563 + 0.397615i −0.957679 0.287839i \(-0.907063\pi\)
0.728116 + 0.685454i \(0.240396\pi\)
\(332\) −7.64625 + 28.5362i −0.419643 + 1.56613i
\(333\) 0 0
\(334\) 4.48734 + 2.59077i 0.245536 + 0.141760i
\(335\) 5.12545 12.7831i 0.280033 0.698414i
\(336\) 0 0
\(337\) 0.454919 0.454919i 0.0247810 0.0247810i −0.694608 0.719389i \(-0.744422\pi\)
0.719389 + 0.694608i \(0.244422\pi\)
\(338\) 0.425374 + 1.58752i 0.0231373 + 0.0863495i
\(339\) 0 0
\(340\) 8.09570 1.15960i 0.439051 0.0628880i
\(341\) 8.37478 + 4.83518i 0.453520 + 0.261840i
\(342\) 0 0
\(343\) 17.9698 + 4.48161i 0.970280 + 0.241984i
\(344\) 2.69560 0.145337
\(345\) 0 0
\(346\) 0.154228 + 0.267130i 0.00829134 + 0.0143610i
\(347\) −9.25852 + 34.5533i −0.497023 + 1.85492i 0.0213654 + 0.999772i \(0.493199\pi\)
−0.518389 + 0.855145i \(0.673468\pi\)
\(348\) 0 0
\(349\) 14.2309i 0.761762i 0.924624 + 0.380881i \(0.124379\pi\)
−0.924624 + 0.380881i \(0.875621\pi\)
\(350\) 2.27230 + 4.53079i 0.121460 + 0.242181i
\(351\) 0 0
\(352\) −4.32979 16.1590i −0.230779 0.861277i
\(353\) −25.2551 6.76709i −1.34419 0.360176i −0.486206 0.873844i \(-0.661619\pi\)
−0.857989 + 0.513669i \(0.828286\pi\)
\(354\) 0 0
\(355\) 4.43907 + 0.533148i 0.235602 + 0.0282965i
\(356\) 15.6536i 0.829638i
\(357\) 0 0
\(358\) −2.69294 2.69294i −0.142327 0.142327i
\(359\) 14.8840 25.7798i 0.785545 1.36060i −0.143128 0.989704i \(-0.545716\pi\)
0.928673 0.370899i \(-0.120951\pi\)
\(360\) 0 0
\(361\) −3.23279 5.59936i −0.170147 0.294703i
\(362\) −3.91049 + 1.04781i −0.205531 + 0.0550718i
\(363\) 0 0
\(364\) −3.65653 20.0567i −0.191654 1.05126i
\(365\) −26.9236 10.7952i −1.40925 0.565045i
\(366\) 0 0
\(367\) −14.2575 3.82028i −0.744234 0.199417i −0.133275 0.991079i \(-0.542549\pi\)
−0.610959 + 0.791662i \(0.709216\pi\)
\(368\) 5.47520 + 1.46708i 0.285414 + 0.0764766i
\(369\) 0 0
\(370\) 6.76836 2.89413i 0.351870 0.150459i
\(371\) 5.30386 + 29.0926i 0.275363 + 1.51041i
\(372\) 0 0
\(373\) −35.3044 + 9.45979i −1.82799 + 0.489809i −0.997716 0.0675413i \(-0.978485\pi\)
−0.830277 + 0.557351i \(0.811818\pi\)
\(374\) −1.52190 2.63601i −0.0786956 0.136305i
\(375\) 0 0
\(376\) 0.816241 1.41377i 0.0420944 0.0729097i
\(377\) −21.5680 21.5680i −1.11081 1.11081i
\(378\) 0 0
\(379\) 14.2298i 0.730936i 0.930824 + 0.365468i \(0.119091\pi\)
−0.930824 + 0.365468i \(0.880909\pi\)
\(380\) 1.74945 14.5662i 0.0897451 0.747232i
\(381\) 0 0
\(382\) −1.70575 0.457053i −0.0872736 0.0233849i
\(383\) 7.22126 + 26.9501i 0.368989 + 1.37709i 0.861932 + 0.507025i \(0.169255\pi\)
−0.492942 + 0.870062i \(0.664079\pi\)
\(384\) 0 0
\(385\) −15.7842 + 17.8304i −0.804436 + 0.908722i
\(386\) 0.0157362i 0.000800951i
\(387\) 0 0
\(388\) −3.02608 + 11.2935i −0.153626 + 0.573341i
\(389\) −11.9954 20.7767i −0.608191 1.05342i −0.991538 0.129814i \(-0.958562\pi\)
0.383347 0.923604i \(-0.374771\pi\)
\(390\) 0 0
\(391\) 3.56195 0.180136
\(392\) −1.02001 10.2841i −0.0515182 0.519428i
\(393\) 0 0
\(394\) 2.84892 + 1.64482i 0.143526 + 0.0828649i
\(395\) 20.0588 26.7658i 1.00927 1.34673i
\(396\) 0 0
\(397\) −1.14584 4.27635i −0.0575083 0.214624i 0.931192 0.364529i \(-0.118770\pi\)
−0.988700 + 0.149905i \(0.952103\pi\)
\(398\) −0.172047 + 0.172047i −0.00862395 + 0.00862395i
\(399\) 0 0
\(400\) −10.8487 + 11.3536i −0.542436 + 0.567682i
\(401\) −8.36213 4.82788i −0.417585 0.241093i 0.276459 0.961026i \(-0.410839\pi\)
−0.694044 + 0.719933i \(0.744172\pi\)
\(402\) 0 0
\(403\) 2.58552 9.64928i 0.128794 0.480665i
\(404\) −9.61378 + 16.6516i −0.478303 + 0.828446i
\(405\) 0 0
\(406\) −4.81291 5.66875i −0.238861 0.281335i
\(407\) 24.4542 + 24.4542i 1.21215 + 1.21215i
\(408\) 0 0
\(409\) −5.80046 + 3.34890i −0.286814 + 0.165592i −0.636504 0.771273i \(-0.719620\pi\)
0.349690 + 0.936865i \(0.386287\pi\)
\(410\) −4.41724 + 0.632709i −0.218152 + 0.0312473i
\(411\) 0 0
\(412\) 5.18816 5.18816i 0.255602 0.255602i
\(413\) 21.6778 31.3442i 1.06669 1.54235i
\(414\) 0 0
\(415\) −22.0203 28.0318i −1.08094 1.37602i
\(416\) −14.9661 + 8.64070i −0.733775 + 0.423645i
\(417\) 0 0
\(418\) −5.27416 + 1.41321i −0.257968 + 0.0691222i
\(419\) −28.3239 −1.38371 −0.691855 0.722036i \(-0.743206\pi\)
−0.691855 + 0.722036i \(0.743206\pi\)
\(420\) 0 0
\(421\) 3.09516 0.150849 0.0754244 0.997152i \(-0.475969\pi\)
0.0754244 + 0.997152i \(0.475969\pi\)
\(422\) 9.47381 2.53850i 0.461178 0.123572i
\(423\) 0 0
\(424\) 14.2909 8.25086i 0.694028 0.400697i
\(425\) −4.73842 + 8.65590i −0.229847 + 0.419873i
\(426\) 0 0
\(427\) 13.1223 + 1.07144i 0.635031 + 0.0518508i
\(428\) 2.29817 2.29817i 0.111086 0.111086i
\(429\) 0 0
\(430\) −0.938116 + 1.25179i −0.0452400 + 0.0603666i
\(431\) 3.56921 2.06068i 0.171923 0.0992597i −0.411569 0.911378i \(-0.635019\pi\)
0.583492 + 0.812119i \(0.301686\pi\)
\(432\) 0 0
\(433\) 17.3170 + 17.3170i 0.832201 + 0.832201i 0.987818 0.155616i \(-0.0497364\pi\)
−0.155616 + 0.987818i \(0.549736\pi\)
\(434\) 0.819705 2.29340i 0.0393471 0.110087i
\(435\) 0 0
\(436\) 13.8668 24.0179i 0.664097 1.15025i
\(437\) 1.65378 6.17199i 0.0791110 0.295246i
\(438\) 0 0
\(439\) −18.3960 10.6209i −0.877993 0.506909i −0.00799680 0.999968i \(-0.502545\pi\)
−0.869996 + 0.493059i \(0.835879\pi\)
\(440\) 12.3336 + 4.94524i 0.587983 + 0.235755i
\(441\) 0 0
\(442\) −2.22336 + 2.22336i −0.105754 + 0.105754i
\(443\) −1.79350 6.69343i −0.0852117 0.318015i 0.910142 0.414295i \(-0.135972\pi\)
−0.995354 + 0.0962809i \(0.969305\pi\)
\(444\) 0 0
\(445\) −15.1143 11.3270i −0.716488 0.536950i
\(446\) 3.52066 + 2.03265i 0.166708 + 0.0962489i
\(447\) 0 0
\(448\) 11.2129 5.30801i 0.529761 0.250780i
\(449\) 16.8279 0.794159 0.397080 0.917784i \(-0.370024\pi\)
0.397080 + 0.917784i \(0.370024\pi\)
\(450\) 0 0
\(451\) −10.4822 18.1557i −0.493588 0.854919i
\(452\) 1.30825 4.88247i 0.0615351 0.229652i
\(453\) 0 0
\(454\) 4.81798i 0.226119i
\(455\) 22.0117 + 10.9825i 1.03192 + 0.514869i
\(456\) 0 0
\(457\) −4.00916 14.9624i −0.187540 0.699910i −0.994072 0.108720i \(-0.965325\pi\)
0.806532 0.591190i \(-0.201342\pi\)
\(458\) 4.31927 + 1.15734i 0.201826 + 0.0540791i
\(459\) 0 0
\(460\) −5.88123 + 4.61999i −0.274214 + 0.215408i
\(461\) 8.02877i 0.373937i 0.982366 + 0.186968i \(0.0598662\pi\)
−0.982366 + 0.186968i \(0.940134\pi\)
\(462\) 0 0
\(463\) 5.00172 + 5.00172i 0.232450 + 0.232450i 0.813715 0.581265i \(-0.197442\pi\)
−0.581265 + 0.813715i \(0.697442\pi\)
\(464\) 11.5194 19.9522i 0.534776 0.926258i
\(465\) 0 0
\(466\) 3.10369 + 5.37574i 0.143775 + 0.249026i
\(467\) 34.2874 9.18727i 1.58663 0.425136i 0.645660 0.763625i \(-0.276582\pi\)
0.940970 + 0.338489i \(0.109916\pi\)
\(468\) 0 0
\(469\) −2.92268 16.0314i −0.134957 0.740262i
\(470\) 0.372464 + 0.871064i 0.0171805 + 0.0401792i
\(471\) 0 0
\(472\) −20.5415 5.50407i −0.945498 0.253346i
\(473\) −7.09881 1.90212i −0.326404 0.0874596i
\(474\) 0 0
\(475\) 12.7985 + 12.2294i 0.587238 + 0.561122i
\(476\) 7.37662 6.26294i 0.338107 0.287061i
\(477\) 0 0
\(478\) −5.94684 + 1.59345i −0.272002 + 0.0728827i
\(479\) −2.23639 3.87354i −0.102183 0.176986i 0.810401 0.585876i \(-0.199249\pi\)
−0.912584 + 0.408890i \(0.865916\pi\)
\(480\) 0 0
\(481\) 17.8627 30.9390i 0.814467 1.41070i
\(482\) −0.733554 0.733554i −0.0334125 0.0334125i
\(483\) 0 0
\(484\) 9.63999i 0.438181i
\(485\) −8.71477 11.0939i −0.395718 0.503746i
\(486\) 0 0
\(487\) 16.2736 + 4.36050i 0.737428 + 0.197593i 0.607934 0.793987i \(-0.291998\pi\)
0.129493 + 0.991580i \(0.458665\pi\)
\(488\) −1.90149 7.09648i −0.0860766 0.321242i
\(489\) 0 0
\(490\) 5.13075 + 3.10538i 0.231784 + 0.140287i
\(491\) 13.8498i 0.625034i −0.949912 0.312517i \(-0.898828\pi\)
0.949912 0.312517i \(-0.101172\pi\)
\(492\) 0 0
\(493\) 3.74704 13.9842i 0.168758 0.629815i
\(494\) 2.82025 + 4.88482i 0.126889 + 0.219778i
\(495\) 0 0
\(496\) 7.54549 0.338803
\(497\) 4.78145 2.26346i 0.214477 0.101530i
\(498\) 0 0
\(499\) −30.2262 17.4511i −1.35311 0.781220i −0.364428 0.931232i \(-0.618735\pi\)
−0.988684 + 0.150012i \(0.952069\pi\)
\(500\) −3.40333 20.4379i −0.152201 0.914010i
\(501\) 0 0
\(502\) 1.58753 + 5.92473i 0.0708548 + 0.264434i
\(503\) 7.45879 7.45879i 0.332571 0.332571i −0.520991 0.853562i \(-0.674438\pi\)
0.853562 + 0.520991i \(0.174438\pi\)
\(504\) 0 0
\(505\) −9.12137 21.3317i −0.405896 0.949249i
\(506\) 2.41056 + 1.39174i 0.107162 + 0.0618702i
\(507\) 0 0
\(508\) −3.39029 + 12.6528i −0.150420 + 0.561375i
\(509\) 7.98917 13.8376i 0.354114 0.613343i −0.632852 0.774273i \(-0.718116\pi\)
0.986966 + 0.160930i \(0.0514492\pi\)
\(510\) 0 0
\(511\) −33.7652 + 6.15573i −1.49369 + 0.272313i
\(512\) −15.7875 15.7875i −0.697714 0.697714i
\(513\) 0 0
\(514\) −7.57712 + 4.37465i −0.334213 + 0.192958i
\(515\) 1.25527 + 8.76361i 0.0553137 + 0.386171i
\(516\) 0 0
\(517\) −3.14716 + 3.14716i −0.138412 + 0.138412i
\(518\) 4.95432 7.16352i 0.217680 0.314747i
\(519\) 0 0
\(520\) 1.63688 13.6289i 0.0717819 0.597668i
\(521\) 33.0945 19.1071i 1.44990 0.837098i 0.451421 0.892311i \(-0.350917\pi\)
0.998475 + 0.0552134i \(0.0175839\pi\)
\(522\) 0 0
\(523\) 5.99602 1.60663i 0.262188 0.0702529i −0.125331 0.992115i \(-0.539999\pi\)
0.387518 + 0.921862i \(0.373332\pi\)
\(524\) −27.5538 −1.20369
\(525\) 0 0
\(526\) 10.5994 0.462154
\(527\) 4.57998 1.22720i 0.199507 0.0534578i
\(528\) 0 0
\(529\) 17.0977 9.87135i 0.743377 0.429189i
\(530\) −1.14193 + 9.50788i −0.0496022 + 0.412996i
\(531\) 0 0
\(532\) −7.42724 15.6897i −0.322012 0.680234i
\(533\) −15.3135 + 15.3135i −0.663303 + 0.663303i
\(534\) 0 0
\(535\) 0.556038 + 3.88197i 0.0240396 + 0.167832i
\(536\) −7.87498 + 4.54662i −0.340147 + 0.196384i
\(537\) 0 0
\(538\) −1.19737 1.19737i −0.0516222 0.0516222i
\(539\) −4.57072 + 27.8028i −0.196875 + 1.19755i
\(540\) 0 0
\(541\) −3.79619 + 6.57520i −0.163211 + 0.282690i −0.936019 0.351951i \(-0.885518\pi\)
0.772808 + 0.634640i \(0.218852\pi\)
\(542\) −1.65078 + 6.16079i −0.0709070 + 0.264629i
\(543\) 0 0
\(544\) −7.10359 4.10126i −0.304564 0.175840i
\(545\) 13.1565 + 30.7685i 0.563564 + 1.31798i
\(546\) 0 0
\(547\) −19.3606 + 19.3606i −0.827801 + 0.827801i −0.987212 0.159411i \(-0.949040\pi\)
0.159411 + 0.987212i \(0.449040\pi\)
\(548\) 8.76734 + 32.7201i 0.374522 + 1.39774i
\(549\) 0 0
\(550\) −6.58879 + 4.00649i −0.280947 + 0.170837i
\(551\) −22.4914 12.9854i −0.958165 0.553197i
\(552\) 0 0
\(553\) 3.22070 39.4448i 0.136958 1.67736i
\(554\) −4.48757 −0.190659
\(555\) 0 0
\(556\) 15.6840 + 27.1656i 0.665152 + 1.15208i
\(557\) −6.50195 + 24.2656i −0.275496 + 1.02817i 0.680012 + 0.733201i \(0.261975\pi\)
−0.955508 + 0.294965i \(0.904692\pi\)
\(558\) 0 0
\(559\) 7.59189i 0.321103i
\(560\) −3.70963 + 18.2066i −0.156760 + 0.769368i
\(561\) 0 0
\(562\) 1.57329 + 5.87161i 0.0663653 + 0.247679i
\(563\) −31.5627 8.45719i −1.33021 0.356428i −0.477415 0.878678i \(-0.658426\pi\)
−0.852792 + 0.522250i \(0.825093\pi\)
\(564\) 0 0
\(565\) 3.76762 + 4.79616i 0.158505 + 0.201776i
\(566\) 2.65574i 0.111629i
\(567\) 0 0
\(568\) −2.08736 2.08736i −0.0875839 0.0875839i
\(569\) 8.07272 13.9824i 0.338426 0.586171i −0.645711 0.763582i \(-0.723439\pi\)
0.984137 + 0.177411i \(0.0567722\pi\)
\(570\) 0 0
\(571\) 4.99553 + 8.65252i 0.209057 + 0.362097i 0.951418 0.307904i \(-0.0996274\pi\)
−0.742361 + 0.670000i \(0.766294\pi\)
\(572\) 29.9596 8.02766i 1.25267 0.335653i
\(573\) 0 0
\(574\) −4.02489 + 3.41724i −0.167996 + 0.142633i
\(575\) −0.205168 9.02167i −0.00855611 0.376230i
\(576\) 0 0
\(577\) −15.2049 4.07415i −0.632990 0.169609i −0.0719636 0.997407i \(-0.522927\pi\)
−0.561026 + 0.827798i \(0.689593\pi\)
\(578\) 4.85013 + 1.29959i 0.201739 + 0.0540557i
\(579\) 0 0
\(580\) 11.9512 + 27.9496i 0.496245 + 1.16055i
\(581\) −39.7169 14.1956i −1.64773 0.588932i
\(582\) 0 0
\(583\) −43.4569 + 11.6442i −1.79980 + 0.482255i
\(584\) 9.57605 + 16.5862i 0.396260 + 0.686342i
\(585\) 0 0
\(586\) 2.41073 4.17552i 0.0995865 0.172489i
\(587\) −24.7394 24.7394i −1.02110 1.02110i −0.999772 0.0213323i \(-0.993209\pi\)
−0.0213323 0.999772i \(-0.506791\pi\)
\(588\) 0 0
\(589\) 8.50575i 0.350474i
\(590\) 9.70478 7.62358i 0.399539 0.313858i
\(591\) 0 0
\(592\) 26.0649 + 6.98407i 1.07126 + 0.287044i
\(593\) 4.55376 + 16.9949i 0.187001 + 0.697896i 0.994193 + 0.107608i \(0.0343192\pi\)
−0.807193 + 0.590288i \(0.799014\pi\)
\(594\) 0 0
\(595\) 0.709445 + 11.6544i 0.0290844 + 0.477784i
\(596\) 10.8103i 0.442806i
\(597\) 0 0
\(598\) 0.744203 2.77740i 0.0304327 0.113576i
\(599\) 4.40720 + 7.63350i 0.180073 + 0.311896i 0.941905 0.335878i \(-0.109033\pi\)
−0.761832 + 0.647775i \(0.775700\pi\)
\(600\) 0 0
\(601\) −11.8686 −0.484131 −0.242066 0.970260i \(-0.577825\pi\)
−0.242066 + 0.970260i \(0.577825\pi\)
\(602\) −0.150627 + 1.84477i −0.00613908 + 0.0751871i
\(603\) 0 0
\(604\) 2.50798 + 1.44798i 0.102048 + 0.0589176i
\(605\) −9.30791 6.97553i −0.378420 0.283596i
\(606\) 0 0
\(607\) 1.03290 + 3.85482i 0.0419239 + 0.156462i 0.983715 0.179738i \(-0.0575249\pi\)
−0.941791 + 0.336200i \(0.890858\pi\)
\(608\) −10.4046 + 10.4046i −0.421962 + 0.421962i
\(609\) 0 0
\(610\) 3.95723 + 1.58667i 0.160223 + 0.0642425i
\(611\) 3.98174 + 2.29886i 0.161084 + 0.0930019i
\(612\) 0 0
\(613\) −7.20520 + 26.8902i −0.291015 + 1.08608i 0.653315 + 0.757086i \(0.273378\pi\)
−0.944331 + 0.328998i \(0.893289\pi\)
\(614\) −2.29639 + 3.97747i −0.0926749 + 0.160518i
\(615\) 0 0
\(616\) 15.4677 2.81992i 0.623213 0.113618i
\(617\) 16.3933 + 16.3933i 0.659968 + 0.659968i 0.955372 0.295405i \(-0.0954544\pi\)
−0.295405 + 0.955372i \(0.595454\pi\)
\(618\) 0 0
\(619\) −18.6355 + 10.7592i −0.749023 + 0.432448i −0.825341 0.564635i \(-0.809017\pi\)
0.0763180 + 0.997084i \(0.475684\pi\)
\(620\) −5.97038 + 7.96668i −0.239776 + 0.319949i
\(621\) 0 0
\(622\) 1.84568 1.84568i 0.0740050 0.0740050i
\(623\) −22.2741 1.81869i −0.892391 0.0728644i
\(624\) 0 0
\(625\) 22.1965 + 11.5028i 0.887860 + 0.460114i
\(626\) 6.29090 3.63205i 0.251435 0.145166i
\(627\) 0 0
\(628\) 38.2687 10.2541i 1.52709 0.409182i
\(629\) 16.9568 0.676113
\(630\) 0 0
\(631\) 5.55021 0.220950 0.110475 0.993879i \(-0.464763\pi\)
0.110475 + 0.993879i \(0.464763\pi\)
\(632\) −21.3316 + 5.71579i −0.848526 + 0.227362i
\(633\) 0 0
\(634\) 1.95950 1.13132i 0.0778217 0.0449304i
\(635\) −9.76366 12.4291i −0.387459 0.493233i
\(636\) 0 0
\(637\) 28.9643 2.87275i 1.14761 0.113823i
\(638\) 7.99975 7.99975i 0.316713 0.316713i
\(639\) 0 0
\(640\) 22.3757 3.20501i 0.884477 0.126689i
\(641\) 38.9210 22.4710i 1.53729 0.887553i 0.538290 0.842760i \(-0.319070\pi\)
0.998996 0.0447931i \(-0.0142629\pi\)
\(642\) 0 0
\(643\) −14.2388 14.2388i −0.561523 0.561523i 0.368217 0.929740i \(-0.379968\pi\)
−0.929740 + 0.368217i \(0.879968\pi\)
\(644\) −2.97832 + 8.33283i −0.117362 + 0.328359i
\(645\) 0 0
\(646\) −1.33862 + 2.31855i −0.0526672 + 0.0912222i
\(647\) 1.83522 6.84915i 0.0721501 0.269268i −0.920422 0.390926i \(-0.872155\pi\)
0.992572 + 0.121659i \(0.0388213\pi\)
\(648\) 0 0
\(649\) 50.2117 + 28.9897i 1.97098 + 1.13795i
\(650\) 5.75936 + 5.50323i 0.225901 + 0.215854i
\(651\) 0 0
\(652\) −7.23490 + 7.23490i −0.283341 + 0.283341i
\(653\) −0.431788 1.61146i −0.0168972 0.0630611i 0.956962 0.290212i \(-0.0937257\pi\)
−0.973860 + 0.227151i \(0.927059\pi\)
\(654\) 0 0
\(655\) 19.9380 26.6046i 0.779044 1.03953i
\(656\) −14.1664 8.17895i −0.553103 0.319334i
\(657\) 0 0
\(658\) 0.921920 + 0.637603i 0.0359402 + 0.0248564i
\(659\) −6.89018 −0.268403 −0.134202 0.990954i \(-0.542847\pi\)
−0.134202 + 0.990954i \(0.542847\pi\)
\(660\) 0 0
\(661\) 18.8965 + 32.7297i 0.734989 + 1.27304i 0.954728 + 0.297479i \(0.0961458\pi\)
−0.219740 + 0.975559i \(0.570521\pi\)
\(662\) −0.828357 + 3.09147i −0.0321950 + 0.120153i
\(663\) 0 0
\(664\) 23.5358i 0.913364i
\(665\) 20.5236 + 4.18173i 0.795871 + 0.162160i
\(666\) 0 0
\(667\) 3.42657 + 12.7881i 0.132677 + 0.495158i
\(668\) −24.2073 6.48634i −0.936610 0.250964i
\(669\) 0 0
\(670\) 0.629257 5.23930i 0.0243103 0.202412i
\(671\) 20.0302i 0.773257i
\(672\) 0 0
\(673\) −5.36449 5.36449i −0.206786 0.206786i 0.596114 0.802900i \(-0.296711\pi\)
−0.802900 + 0.596114i \(0.796711\pi\)
\(674\) 0.123252 0.213479i 0.00474749 0.00822290i
\(675\) 0 0
\(676\) −3.97456 6.88414i −0.152868 0.264775i
\(677\) −33.3312 + 8.93106i −1.28102 + 0.343249i −0.834243 0.551396i \(-0.814095\pi\)
−0.446778 + 0.894645i \(0.647429\pi\)
\(678\) 0 0
\(679\) −15.7184 5.61805i −0.603215 0.215601i
\(680\) 5.99069 2.56160i 0.229733 0.0982329i
\(681\) 0 0
\(682\) 3.57900 + 0.958991i 0.137047 + 0.0367217i
\(683\) 43.8433 + 11.7478i 1.67762 + 0.449516i 0.967148 0.254213i \(-0.0818166\pi\)
0.710468 + 0.703729i \(0.248483\pi\)
\(684\) 0 0
\(685\) −37.9371 15.2111i −1.44950 0.581186i
\(686\) 7.09507 0.123391i 0.270891 0.00471107i
\(687\) 0 0
\(688\) −5.53899 + 1.48417i −0.211172 + 0.0565834i
\(689\) 23.2377 + 40.2489i 0.885286 + 1.53336i
\(690\) 0 0
\(691\) −11.6039 + 20.0985i −0.441433 + 0.764584i −0.997796 0.0663550i \(-0.978863\pi\)
0.556363 + 0.830939i \(0.312196\pi\)
\(692\) −1.05493 1.05493i −0.0401023 0.0401023i
\(693\) 0 0
\(694\) 13.7063i 0.520285i
\(695\) −37.5788 4.51334i −1.42545 0.171201i
\(696\) 0 0
\(697\) −9.92895 2.66045i −0.376086 0.100772i
\(698\) 1.41125 + 5.26686i 0.0534166 + 0.199353i
\(699\) 0 0
\(700\) −16.2876 18.3227i −0.615613 0.692532i
\(701\) 33.8131i 1.27710i −0.769580 0.638551i \(-0.779534\pi\)
0.769580 0.638551i \(-0.220466\pi\)
\(702\) 0 0
\(703\) 7.87289 29.3820i 0.296932 1.10816i
\(704\) 9.43689 + 16.3452i 0.355666 + 0.616032i
\(705\) 0 0
\(706\) −10.0180 −0.377032
\(707\) −22.5771 15.6144i −0.849101 0.587242i
\(708\) 0 0
\(709\) 7.53269 + 4.34900i 0.282896 + 0.163330i 0.634734 0.772731i \(-0.281110\pi\)
−0.351838 + 0.936061i \(0.614443\pi\)
\(710\) 1.69577 0.242896i 0.0636412 0.00911573i
\(711\) 0 0
\(712\) 3.22764 + 12.0457i 0.120961 + 0.451433i
\(713\) −3.06602 + 3.06602i −0.114823 + 0.114823i
\(714\) 0 0
\(715\) −13.9278 + 34.7364i −0.520869 + 1.29907i
\(716\) 15.9521 + 9.20995i 0.596158 + 0.344192i
\(717\) 0 0
\(718\) 2.95202 11.0171i 0.110169 0.411155i
\(719\) −4.14644 + 7.18185i −0.154636 + 0.267838i −0.932926 0.360067i \(-0.882754\pi\)
0.778290 + 0.627905i \(0.216087\pi\)
\(720\) 0 0
\(721\) 6.77965 + 7.98521i 0.252487 + 0.297385i
\(722\) −1.75174 1.75174i −0.0651928 0.0651928i
\(723\) 0 0
\(724\) 16.9575 9.79044i 0.630222 0.363859i
\(725\) −35.6347 8.68498i −1.32344 0.322552i
\(726\) 0 0
\(727\) 18.4277 18.4277i 0.683447 0.683447i −0.277328 0.960775i \(-0.589449\pi\)
0.960775 + 0.277328i \(0.0894490\pi\)
\(728\) −6.94931 14.6801i −0.257558 0.544080i
\(729\) 0 0
\(730\) −11.0350 1.32534i −0.408422 0.0490529i
\(731\) −3.12068 + 1.80173i −0.115423 + 0.0666393i
\(732\) 0 0
\(733\) −44.6895 + 11.9745i −1.65065 + 0.442289i −0.959793 0.280707i \(-0.909431\pi\)
−0.690852 + 0.722996i \(0.742764\pi\)
\(734\) −5.65554 −0.208750
\(735\) 0 0
\(736\) 7.50098 0.276490
\(737\) 23.9469 6.41654i 0.882094 0.236356i
\(738\) 0 0
\(739\) 6.02263 3.47717i 0.221546 0.127910i −0.385120 0.922867i \(-0.625840\pi\)
0.606666 + 0.794957i \(0.292507\pi\)
\(740\) −27.9978 + 21.9937i −1.02922 + 0.808504i
\(741\) 0 0
\(742\) 4.84801 + 10.2412i 0.177976 + 0.375966i
\(743\) 4.69627 4.69627i 0.172289 0.172289i −0.615695 0.787985i \(-0.711125\pi\)
0.787985 + 0.615695i \(0.211125\pi\)
\(744\) 0 0
\(745\) −10.4379 7.82236i −0.382415 0.286589i
\(746\) −12.1281 + 7.00214i −0.444040 + 0.256367i
\(747\) 0 0
\(748\) 10.4099 + 10.4099i 0.380623 + 0.380623i
\(749\) 3.00314 + 3.53716i 0.109732 + 0.129245i
\(750\) 0 0
\(751\) −6.61449 + 11.4566i −0.241366 + 0.418059i −0.961104 0.276188i \(-0.910929\pi\)
0.719737 + 0.694246i \(0.244262\pi\)
\(752\) −0.898825 + 3.35446i −0.0327768 + 0.122325i
\(753\) 0 0
\(754\) −10.1212 5.84345i −0.368591 0.212806i
\(755\) −3.21289 + 1.37382i −0.116929 + 0.0499984i
\(756\) 0 0
\(757\) 30.1565 30.1565i 1.09606 1.09606i 0.101190 0.994867i \(-0.467735\pi\)
0.994867 0.101190i \(-0.0322649\pi\)
\(758\) 1.41114 + 5.26645i 0.0512550 + 0.191286i
\(759\) 0 0
\(760\) −1.65720 11.5697i −0.0601131 0.419678i
\(761\) 18.9022 + 10.9132i 0.685205 + 0.395603i 0.801813 0.597575i \(-0.203869\pi\)
−0.116608 + 0.993178i \(0.537202\pi\)
\(762\) 0 0
\(763\) 32.5649 + 22.5220i 1.17893 + 0.815352i
\(764\) 8.54114 0.309007
\(765\) 0 0
\(766\) 5.34518 + 9.25812i 0.193129 + 0.334510i
\(767\) 15.5017 57.8530i 0.559733 2.08895i
\(768\) 0 0
\(769\) 6.13772i 0.221332i −0.993858 0.110666i \(-0.964702\pi\)
0.993858 0.110666i \(-0.0352983\pi\)
\(770\) −4.07352 + 8.16432i −0.146799 + 0.294222i
\(771\) 0 0
\(772\) −0.0196988 0.0735171i −0.000708977 0.00264594i
\(773\) −4.08084 1.09346i −0.146778 0.0393290i 0.184682 0.982798i \(-0.440874\pi\)
−0.331460 + 0.943469i \(0.607541\pi\)
\(774\) 0 0
\(775\) −3.37205 11.5294i −0.121128 0.414149i
\(776\) 9.31452i 0.334372i
\(777\) 0 0
\(778\) −6.49988 6.49988i −0.233032 0.233032i
\(779\) −9.21982 + 15.9692i −0.330334 + 0.572156i
\(780\) 0 0
\(781\) 4.02410 + 6.96995i 0.143994 + 0.249405i
\(782\) 1.31828 0.353232i 0.0471416 0.0126315i
\(783\) 0 0
\(784\) 7.75827 + 20.5705i 0.277081 + 0.734661i
\(785\) −17.7905 + 44.3703i −0.634971 + 1.58364i
\(786\) 0 0
\(787\) 21.8845 + 5.86394i 0.780099 + 0.209027i 0.626828 0.779157i \(-0.284353\pi\)
0.153271 + 0.988184i \(0.451019\pi\)
\(788\) −15.3687 4.11804i −0.547488 0.146699i
\(789\) 0 0
\(790\) 4.76946 11.8952i 0.169690 0.423213i
\(791\) 6.79545 + 2.42883i 0.241618 + 0.0863592i
\(792\) 0 0
\(793\) 19.9865 5.35537i 0.709742 0.190175i
\(794\) −0.848154 1.46905i −0.0300999 0.0521345i
\(795\) 0 0
\(796\) 0.588407 1.01915i 0.0208555 0.0361228i
\(797\) −26.3704 26.3704i −0.934088 0.934088i 0.0638707 0.997958i \(-0.479655\pi\)
−0.997958 + 0.0638707i \(0.979655\pi\)
\(798\) 0 0
\(799\) 2.18228i 0.0772037i
\(800\) −9.97846 + 18.2281i −0.352792 + 0.644462i
\(801\) 0 0
\(802\) −3.57360 0.957543i −0.126188 0.0338120i
\(803\) −13.5145 50.4367i −0.476915 1.77987i
\(804\) 0 0
\(805\) −5.89066 8.90539i −0.207618 0.313874i
\(806\) 3.82760i 0.134821i
\(807\) 0 0
\(808\) −3.96457 + 14.7960i −0.139473 + 0.520521i
\(809\) 3.26224 + 5.65037i 0.114694 + 0.198656i 0.917657 0.397372i \(-0.130078\pi\)
−0.802963 + 0.596029i \(0.796744\pi\)
\(810\) 0 0
\(811\) −23.6047 −0.828872 −0.414436 0.910078i \(-0.636021\pi\)
−0.414436 + 0.910078i \(0.636021\pi\)
\(812\) 29.5814 + 20.4586i 1.03811 + 0.717958i
\(813\) 0 0
\(814\) 11.4756 + 6.62542i 0.402218 + 0.232221i
\(815\) −1.75047 12.2209i −0.0613164 0.428079i
\(816\) 0 0
\(817\) 1.67305 + 6.24390i 0.0585325 + 0.218446i
\(818\) −1.81465 + 1.81465i −0.0634477 + 0.0634477i
\(819\) 0 0
\(820\) 19.8446 8.48550i 0.693005 0.296327i
\(821\) −28.7605 16.6049i −1.00375 0.579514i −0.0943923 0.995535i \(-0.530091\pi\)
−0.909355 + 0.416021i \(0.863424\pi\)
\(822\) 0 0
\(823\) −1.35423 + 5.05406i −0.0472055 + 0.176173i −0.985504 0.169654i \(-0.945735\pi\)
0.938298 + 0.345827i \(0.112402\pi\)
\(824\) 2.92263 5.06215i 0.101815 0.176348i
\(825\) 0 0
\(826\) 4.91461 13.7502i 0.171001 0.478432i
\(827\) −2.58727 2.58727i −0.0899681 0.0899681i 0.660690 0.750658i \(-0.270264\pi\)
−0.750658 + 0.660690i \(0.770264\pi\)
\(828\) 0 0
\(829\) −35.3778 + 20.4254i −1.22872 + 0.709403i −0.966762 0.255676i \(-0.917702\pi\)
−0.261959 + 0.965079i \(0.584369\pi\)
\(830\) −10.9296 8.19084i −0.379371 0.284308i
\(831\) 0 0
\(832\) 13.7864 13.7864i 0.477959 0.477959i
\(833\) 8.05473 + 11.2241i 0.279080 + 0.388893i
\(834\) 0 0
\(835\) 23.7794 18.6799i 0.822920 0.646445i
\(836\) 22.8710 13.2046i 0.791010 0.456690i
\(837\) 0 0
\(838\) −10.4827 + 2.80882i −0.362118 + 0.0970291i
\(839\) 36.4857 1.25963 0.629813 0.776746i \(-0.283131\pi\)
0.629813 + 0.776746i \(0.283131\pi\)
\(840\) 0 0
\(841\) 24.8105 0.855536
\(842\) 1.14552 0.306941i 0.0394772 0.0105779i
\(843\) 0 0
\(844\) −41.0825 + 23.7190i −1.41412 + 0.816441i
\(845\) 9.52300 + 1.14374i 0.327601 + 0.0393460i
\(846\) 0 0
\(847\) −13.7171 1.12001i −0.471325 0.0384841i
\(848\) −24.8225 + 24.8225i −0.852407 + 0.852407i
\(849\) 0 0
\(850\) −0.895302 + 3.67345i −0.0307086 + 0.125998i
\(851\) −13.4291 + 7.75327i −0.460342 + 0.265779i
\(852\) 0 0
\(853\) 11.2358 + 11.2358i 0.384707 + 0.384707i 0.872795 0.488087i \(-0.162305\pi\)
−0.488087 + 0.872795i \(0.662305\pi\)
\(854\) 4.96281 0.904768i 0.169824 0.0309605i
\(855\) 0 0
\(856\) 1.29462 2.24235i 0.0442492 0.0766419i
\(857\) −6.66759 + 24.8838i −0.227761 + 0.850014i 0.753519 + 0.657426i \(0.228355\pi\)
−0.981280 + 0.192588i \(0.938312\pi\)
\(858\) 0 0
\(859\) −28.3695 16.3792i −0.967956 0.558850i −0.0693435 0.997593i \(-0.522090\pi\)
−0.898612 + 0.438743i \(0.855424\pi\)
\(860\) 2.81572 7.02252i 0.0960153 0.239466i
\(861\) 0 0
\(862\) 1.11661 1.11661i 0.0380319 0.0380319i
\(863\) −3.95435 14.7578i −0.134608 0.502362i −0.999999 0.00126606i \(-0.999597\pi\)
0.865392 0.501096i \(-0.167070\pi\)
\(864\) 0 0
\(865\) 1.78194 0.255238i 0.0605877 0.00867835i
\(866\) 8.12631 + 4.69173i 0.276143 + 0.159431i
\(867\) 0 0
\(868\) −0.958623 + 11.7405i −0.0325378 + 0.398499i
\(869\) 60.2096 2.04247
\(870\) 0 0
\(871\) −12.8051 22.1791i −0.433884 0.751510i
\(872\) 5.71843 21.3415i 0.193651 0.722714i
\(873\) 0 0
\(874\) 2.44826i 0.0828135i
\(875\) 29.4772 2.46817i 0.996513 0.0834392i
\(876\) 0 0
\(877\) 1.51081 + 5.63841i 0.0510163 + 0.190396i 0.986731 0.162361i \(-0.0519110\pi\)
−0.935715 + 0.352757i \(0.885244\pi\)
\(878\) −7.86162 2.10651i −0.265317 0.0710914i
\(879\) 0 0
\(880\) −28.0662 3.37085i −0.946112 0.113631i
\(881\) 20.5062i 0.690871i −0.938442 0.345436i \(-0.887731\pi\)
0.938442 0.345436i \(-0.112269\pi\)
\(882\) 0 0
\(883\) 1.83466 + 1.83466i 0.0617412 + 0.0617412i 0.737303 0.675562i \(-0.236099\pi\)
−0.675562 + 0.737303i \(0.736099\pi\)
\(884\) 7.60395 13.1704i 0.255749 0.442970i
\(885\) 0 0
\(886\) −1.32755 2.29938i −0.0445999 0.0772492i
\(887\) 20.9870 5.62344i 0.704673 0.188817i 0.111350 0.993781i \(-0.464482\pi\)
0.593323 + 0.804965i \(0.297816\pi\)
\(888\) 0 0
\(889\) −17.6102 6.29422i −0.590626 0.211102i
\(890\) −6.71709 2.69326i −0.225157 0.0902782i
\(891\) 0 0
\(892\) −18.9925 5.08902i −0.635915 0.170393i
\(893\) 3.78136 + 1.01321i 0.126538 + 0.0339059i
\(894\) 0 0
\(895\) −20.4357 + 8.73823i −0.683089 + 0.292087i
\(896\) 20.3883 17.3101i 0.681124 0.578291i
\(897\) 0 0
\(898\) 6.22802 1.66879i 0.207832 0.0556883i
\(899\) 8.81180 + 15.2625i 0.293890 + 0.509032i
\(900\) 0 0
\(901\) −11.0297 + 19.1039i −0.367451 + 0.636444i
\(902\) −5.67993 5.67993i −0.189121 0.189121i
\(903\) 0 0
\(904\) 4.02691i 0.133933i
\(905\) −2.81736 + 23.4578i −0.0936522 + 0.779763i
\(906\) 0 0
\(907\) −42.0555 11.2687i −1.39643 0.374172i −0.519369 0.854550i \(-0.673833\pi\)
−0.877062 + 0.480378i \(0.840500\pi\)
\(908\) −6.03124 22.5089i −0.200154 0.746984i
\(909\) 0 0
\(910\) 9.23564 + 1.88178i 0.306158 + 0.0623805i
\(911\) 7.86365i 0.260534i 0.991479 + 0.130267i \(0.0415835\pi\)
−0.991479 + 0.130267i \(0.958417\pi\)
\(912\) 0 0
\(913\) 16.6077 61.9809i 0.549636 2.05127i
\(914\) −2.96758 5.14000i −0.0981587 0.170016i
\(915\) 0 0
\(916\) −21.6277 −0.714600
\(917\) 3.20131 39.2074i 0.105717 1.29474i
\(918\) 0 0
\(919\) 11.4005 + 6.58211i 0.376069 + 0.217124i 0.676107 0.736804i \(-0.263666\pi\)
−0.300037 + 0.953927i \(0.596999\pi\)
\(920\) −3.57311 + 4.76784i −0.117802 + 0.157191i
\(921\) 0 0
\(922\) 0.796197 + 2.97145i 0.0262213 + 0.0978594i
\(923\) 5.87885 5.87885i 0.193505 0.193505i
\(924\) 0 0
\(925\) −0.976712 42.9481i −0.0321141 1.41212i
\(926\) 2.34715 + 1.35513i 0.0771321 + 0.0445322i
\(927\) 0 0
\(928\) 7.89075 29.4487i 0.259027 0.966701i
\(929\) −6.03017 + 10.4446i −0.197843 + 0.342675i −0.947829 0.318779i \(-0.896727\pi\)
0.749986 + 0.661454i \(0.230060\pi\)
\(930\) 0 0
\(931\) 23.1884 8.74561i 0.759968 0.286626i
\(932\) −21.2294 21.2294i −0.695392 0.695392i
\(933\) 0 0
\(934\) 11.7787 6.80042i 0.385410 0.222517i
\(935\) −17.5839 + 2.51866i −0.575056 + 0.0823689i
\(936\) 0 0
\(937\) 18.1175 18.1175i 0.591874 0.591874i −0.346264 0.938137i \(-0.612550\pi\)
0.938137 + 0.346264i \(0.112550\pi\)
\(938\) −2.67149 5.64339i −0.0872272 0.184263i
\(939\) 0 0
\(940\) −2.83051 3.60322i −0.0923210 0.117524i
\(941\) −14.8155 + 8.55376i −0.482973 + 0.278844i −0.721655 0.692253i \(-0.756618\pi\)
0.238682 + 0.971098i \(0.423285\pi\)
\(942\) 0 0
\(943\) 9.07975 2.43291i 0.295677 0.0792265i
\(944\) 45.2396 1.47242
\(945\) 0 0
\(946\) −2.81590 −0.0915528
\(947\) 44.5651 11.9412i 1.44817 0.388036i 0.552784 0.833324i \(-0.313565\pi\)
0.895387 + 0.445288i \(0.146899\pi\)
\(948\) 0 0
\(949\) −46.7134 + 26.9700i −1.51638 + 0.875483i
\(950\) 5.94951 + 3.25688i 0.193027 + 0.105667i
\(951\) 0 0
\(952\) 4.38508 6.34045i 0.142121 0.205495i
\(953\) −7.69282 + 7.69282i −0.249195 + 0.249195i −0.820640 0.571445i \(-0.806383\pi\)
0.571445 + 0.820640i \(0.306383\pi\)
\(954\) 0 0
\(955\) −6.18040 + 8.24691i −0.199993 + 0.266864i
\(956\) 25.7880 14.8887i 0.834044 0.481535i
\(957\) 0 0
\(958\) −1.21182 1.21182i −0.0391521 0.0391521i
\(959\) −47.5773 + 8.67382i −1.53635 + 0.280092i
\(960\) 0 0
\(961\) 12.6140 21.8481i 0.406904 0.704779i
\(962\) 3.54281 13.2219i 0.114225 0.426293i
\(963\) 0 0
\(964\) 4.34533 + 2.50878i 0.139954 + 0.0808023i
\(965\) 0.0852387 + 0.0341770i 0.00274393 + 0.00110020i
\(966\) 0 0
\(967\) −27.7133 + 27.7133i −0.891200 + 0.891200i −0.994636 0.103436i \(-0.967016\pi\)
0.103436 + 0.994636i \(0.467016\pi\)
\(968\) 1.98769 + 7.41815i 0.0638867 + 0.238429i
\(969\) 0 0
\(970\) −4.32549 3.24161i −0.138883 0.104082i
\(971\) 28.8000 + 16.6277i 0.924237 + 0.533608i 0.884984 0.465621i \(-0.154169\pi\)
0.0392525 + 0.999229i \(0.487502\pi\)
\(972\) 0 0
\(973\) −40.4771 + 19.1612i −1.29764 + 0.614280i
\(974\) 6.45529 0.206841
\(975\) 0 0
\(976\) 7.81447 + 13.5351i 0.250135 + 0.433247i
\(977\) −2.47403 + 9.23319i −0.0791511 + 0.295396i −0.994142 0.108077i \(-0.965531\pi\)
0.914991 + 0.403473i \(0.132197\pi\)
\(978\) 0 0
\(979\) 33.9997i 1.08664i
\(980\) −27.8575 8.08512i −0.889875 0.258270i
\(981\) 0 0
\(982\) −1.37346 5.12582i −0.0438289 0.163572i
\(983\) 15.6808 + 4.20165i 0.500139 + 0.134012i 0.500064 0.865988i \(-0.333310\pi\)
7.42785e−5 1.00000i \(0.499976\pi\)
\(984\) 0 0
\(985\) 15.0970 11.8595i 0.481032 0.377874i
\(986\) 5.54713i 0.176656i
\(987\) 0 0
\(988\) −19.2907 19.2907i −0.613718 0.613718i
\(989\) 1.64763 2.85378i 0.0523915 0.0907448i
\(990\) 0 0
\(991\) −15.3019 26.5037i −0.486082 0.841919i 0.513790 0.857916i \(-0.328241\pi\)
−0.999872 + 0.0159973i \(0.994908\pi\)
\(992\) 9.64480 2.58432i 0.306223 0.0820521i
\(993\) 0 0
\(994\) 1.54515 1.31187i 0.0490092 0.0416101i
\(995\) 0.558270 + 1.30560i 0.0176983 + 0.0413903i
\(996\) 0 0
\(997\) 39.0130 + 10.4535i 1.23555 + 0.331065i 0.816739 0.577007i \(-0.195779\pi\)
0.418814 + 0.908072i \(0.362446\pi\)
\(998\) −12.9173 3.46119i −0.408891 0.109562i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 315.2.ce.a.233.10 yes 64
3.2 odd 2 inner 315.2.ce.a.233.7 yes 64
5.2 odd 4 inner 315.2.ce.a.107.10 yes 64
7.4 even 3 inner 315.2.ce.a.53.7 64
15.2 even 4 inner 315.2.ce.a.107.7 yes 64
21.11 odd 6 inner 315.2.ce.a.53.10 yes 64
35.32 odd 12 inner 315.2.ce.a.242.7 yes 64
105.32 even 12 inner 315.2.ce.a.242.10 yes 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
315.2.ce.a.53.7 64 7.4 even 3 inner
315.2.ce.a.53.10 yes 64 21.11 odd 6 inner
315.2.ce.a.107.7 yes 64 15.2 even 4 inner
315.2.ce.a.107.10 yes 64 5.2 odd 4 inner
315.2.ce.a.233.7 yes 64 3.2 odd 2 inner
315.2.ce.a.233.10 yes 64 1.1 even 1 trivial
315.2.ce.a.242.7 yes 64 35.32 odd 12 inner
315.2.ce.a.242.10 yes 64 105.32 even 12 inner