Properties

Label 315.10.d
Level 315315
Weight 1010
Character orbit 315.d
Rep. character χ315(64,)\chi_{315}(64,\cdot)
Character field Q\Q
Dimension 134134
Sturm bound 480480

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 315=3257 315 = 3^{2} \cdot 5 \cdot 7
Weight: k k == 10 10
Character orbit: [χ][\chi] == 315.d (of order 22 and degree 11)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 5 5
Character field: Q\Q
Sturm bound: 480480

Dimensions

The following table gives the dimensions of various subspaces of M10(315,[χ])M_{10}(315, [\chi]).

Total New Old
Modular forms 440 134 306
Cusp forms 424 134 290
Eisenstein series 16 0 16

Trace form

134q34476q4+1470q5+6472q10+132540q11153664q14+10587596q161380456q192867080q20+8658890q25+2413124q267743544q29+242424q3125026172q34++4090420484q95+O(q100) 134 q - 34476 q^{4} + 1470 q^{5} + 6472 q^{10} + 132540 q^{11} - 153664 q^{14} + 10587596 q^{16} - 1380456 q^{19} - 2867080 q^{20} + 8658890 q^{25} + 2413124 q^{26} - 7743544 q^{29} + 242424 q^{31} - 25026172 q^{34}+ \cdots + 4090420484 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(315,[χ])S_{10}^{\mathrm{new}}(315, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S10old(315,[χ])S_{10}^{\mathrm{old}}(315, [\chi]) into lower level spaces

S10old(315,[χ]) S_{10}^{\mathrm{old}}(315, [\chi]) \simeq S10new(5,[χ])S_{10}^{\mathrm{new}}(5, [\chi])6^{\oplus 6}\oplusS10new(15,[χ])S_{10}^{\mathrm{new}}(15, [\chi])4^{\oplus 4}\oplusS10new(35,[χ])S_{10}^{\mathrm{new}}(35, [\chi])3^{\oplus 3}\oplusS10new(45,[χ])S_{10}^{\mathrm{new}}(45, [\chi])2^{\oplus 2}\oplusS10new(105,[χ])S_{10}^{\mathrm{new}}(105, [\chi])2^{\oplus 2}