Properties

Label 315.10.bf
Level 315315
Weight 1010
Character orbit 315.bf
Rep. character χ315(109,)\chi_{315}(109,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 356356
Sturm bound 480480

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 315=3257 315 = 3^{2} \cdot 5 \cdot 7
Weight: k k == 10 10
Character orbit: [χ][\chi] == 315.bf (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 35 35
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 480480

Dimensions

The following table gives the dimensions of various subspaces of M10(315,[χ])M_{10}(315, [\chi]).

Total New Old
Modular forms 880 364 516
Cusp forms 848 356 492
Eisenstein series 32 8 24

Trace form

356q+45054q4+285q5+15700q10+51408q11+502462q1411002566q16+1081088q19662336q20+3480701q25+10213594q26+10674676q2912099478q31+11333024q34+602198285q95+O(q100) 356 q + 45054 q^{4} + 285 q^{5} + 15700 q^{10} + 51408 q^{11} + 502462 q^{14} - 11002566 q^{16} + 1081088 q^{19} - 662336 q^{20} + 3480701 q^{25} + 10213594 q^{26} + 10674676 q^{29} - 12099478 q^{31} + 11333024 q^{34}+ \cdots - 602198285 q^{95}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(315,[χ])S_{10}^{\mathrm{new}}(315, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S10old(315,[χ])S_{10}^{\mathrm{old}}(315, [\chi]) into lower level spaces

S10old(315,[χ]) S_{10}^{\mathrm{old}}(315, [\chi]) \simeq S10new(35,[χ])S_{10}^{\mathrm{new}}(35, [\chi])3^{\oplus 3}\oplusS10new(105,[χ])S_{10}^{\mathrm{new}}(105, [\chi])2^{\oplus 2}