Properties

Label 315.10.be
Level 315315
Weight 1010
Character orbit 315.be
Rep. character χ315(236,)\chi_{315}(236,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 576576
Sturm bound 480480

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 315=3257 315 = 3^{2} \cdot 5 \cdot 7
Weight: k k == 10 10
Character orbit: [χ][\chi] == 315.be (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 63 63
Character field: Q(ζ6)\Q(\zeta_{6})
Sturm bound: 480480

Dimensions

The following table gives the dimensions of various subspaces of M10(315,[χ])M_{10}(315, [\chi]).

Total New Old
Modular forms 872 576 296
Cusp forms 856 576 280
Eisenstein series 16 0 16

Trace form

576q+73728q4684q717746q9194616q13+191136q14132500q1518874368q16+1660204q18+553590q21+5234688q24+225000000q2511022720q26+2113812q27++8901336316q99+O(q100) 576 q + 73728 q^{4} - 684 q^{7} - 17746 q^{9} - 194616 q^{13} + 191136 q^{14} - 132500 q^{15} - 18874368 q^{16} + 1660204 q^{18} + 553590 q^{21} + 5234688 q^{24} + 225000000 q^{25} - 11022720 q^{26} + 2113812 q^{27}+ \cdots + 8901336316 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S10new(315,[χ])S_{10}^{\mathrm{new}}(315, [\chi]) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of S10old(315,[χ])S_{10}^{\mathrm{old}}(315, [\chi]) into lower level spaces

S10old(315,[χ]) S_{10}^{\mathrm{old}}(315, [\chi]) \simeq S10new(63,[χ])S_{10}^{\mathrm{new}}(63, [\chi])2^{\oplus 2}