Properties

Label 3120.2.r.n
Level $3120$
Weight $2$
Character orbit 3120.r
Analytic conductor $24.913$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3120,2,Mod(2209,3120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3120.2209"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3120.r (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0,0,0,0,-12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(25)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.9133254306\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.2593100598870016.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{10} + 9x^{8} - 16x^{6} + 36x^{4} - 64x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{9} \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} - \beta_{7} q^{5} + (\beta_{8} + \beta_{4} + \beta_{2}) q^{7} - q^{9} + \beta_{5} q^{11} + (\beta_{10} - \beta_{7} - \beta_{4} + \beta_1) q^{13} - \beta_{8} q^{15} + ( - \beta_{6} - \beta_{3} - 2 \beta_1) q^{17}+ \cdots - \beta_{5} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{9} + 4 q^{25} - 24 q^{29} - 8 q^{35} - 8 q^{39} + 44 q^{49} + 32 q^{51} - 16 q^{55} + 8 q^{61} + 28 q^{65} + 48 q^{69} - 8 q^{75} + 64 q^{79} + 12 q^{81} - 48 q^{91} + 72 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 4x^{10} + 9x^{8} - 16x^{6} + 36x^{4} - 64x^{2} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{10} - 4\nu^{8} - \nu^{6} + 8\nu^{4} - 12\nu^{2} - 32 ) / 80 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{11} - 16\nu^{9} + 41\nu^{7} - 28\nu^{5} + 52\nu^{3} - 368\nu ) / 160 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{8} + 2\nu^{6} - 5\nu^{4} + 6\nu^{2} - 16 ) / 4 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 3\nu^{11} - 8\nu^{9} + 3\nu^{7} + 36\nu^{5} + 36\nu^{3} + 96\nu ) / 160 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{11} - 8\nu^{9} + 9\nu^{7} - 20\nu^{5} + 52\nu^{3} - 80\nu ) / 32 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{10} + 2\nu^{8} - 5\nu^{6} + 6\nu^{4} - 8\nu^{2} + 16 ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -9\nu^{11} + 24\nu^{9} - 9\nu^{7} + 52\nu^{5} - 108\nu^{3} + 192\nu ) / 160 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -3\nu^{11} + 8\nu^{9} - 13\nu^{7} + 24\nu^{5} - 86\nu^{3} + 124\nu ) / 40 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 7\nu^{11} - 12\nu^{9} + 27\nu^{7} - 56\nu^{5} + 104\nu^{3} - 56\nu ) / 80 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 5 \nu^{11} - 4 \nu^{10} - 10 \nu^{9} + 24 \nu^{8} + 25 \nu^{7} - 44 \nu^{6} - 30 \nu^{5} + 72 \nu^{4} + \cdots + 352 ) / 80 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( \nu^{11} - 2 \nu^{10} - 2 \nu^{9} + 4 \nu^{8} + 5 \nu^{7} - 2 \nu^{6} - 6 \nu^{5} + 12 \nu^{4} + \cdots + 32 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{9} + \beta_{8} + \beta_{7} + \beta_{5} + \beta_{4} - \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{10} + \beta_{9} - \beta_{8} + \beta_{7} + \beta_{6} + \beta_{4} - \beta_{3} - 2\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{9} - 3\beta_{8} + 3\beta_{7} + \beta_{5} + \beta_{4} - 3\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 2\beta_{11} - 4\beta_{10} + \beta_{9} - \beta_{8} + \beta_{7} - \beta_{6} + \beta_{4} - 5\beta_{3} + 6\beta _1 - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -3\beta_{9} - 3\beta_{8} + \beta_{7} - 3\beta_{5} + 9\beta_{4} + 3\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 8\beta_{11} - 6\beta_{10} - \beta_{9} + \beta_{8} - \beta_{7} - 5\beta_{6} - \beta_{4} - 3\beta_{3} - 6\beta _1 + 6 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 9\beta_{9} + 3\beta_{8} + 13\beta_{7} - \beta_{5} + 7\beta_{4} + 11\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 6\beta_{11} - 4\beta_{10} - \beta_{9} + \beta_{8} - \beta_{7} + \beta_{6} - \beta_{4} - 3\beta_{3} - 54\beta _1 - 30 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 3\beta_{9} - 21\beta_{8} + 15\beta_{7} - 21\beta_{5} - 17\beta_{4} - 3\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 16 \beta_{11} + 14 \beta_{10} + \beta_{9} - \beta_{8} + \beta_{7} - 19 \beta_{6} + \beta_{4} + \cdots - 54 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 15\beta_{9} - 19\beta_{8} - 53\beta_{7} - 63\beta_{5} + 9\beta_{4} + 13\beta_{2} ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times\).

\(n\) \(1951\) \(2081\) \(2341\) \(2497\) \(2641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2209.1
−1.25694 + 0.648161i
1.37820 + 0.317122i
−0.721581 1.21627i
0.721581 + 1.21627i
−1.37820 0.317122i
1.25694 0.648161i
−1.25694 0.648161i
1.37820 0.317122i
−0.721581 + 1.21627i
0.721581 1.21627i
−1.37820 + 0.317122i
1.25694 + 0.648161i
0 1.00000i 0 −2.15160 + 0.608775i 0 2.59264 0 −1.00000 0
2209.2 0 1.00000i 0 −1.45804 1.69532i 0 1.26849 0 −1.00000 0
2209.3 0 1.00000i 0 −1.11567 + 1.93785i 0 −4.86509 0 −1.00000 0
2209.4 0 1.00000i 0 1.11567 1.93785i 0 4.86509 0 −1.00000 0
2209.5 0 1.00000i 0 1.45804 + 1.69532i 0 −1.26849 0 −1.00000 0
2209.6 0 1.00000i 0 2.15160 0.608775i 0 −2.59264 0 −1.00000 0
2209.7 0 1.00000i 0 −2.15160 0.608775i 0 2.59264 0 −1.00000 0
2209.8 0 1.00000i 0 −1.45804 + 1.69532i 0 1.26849 0 −1.00000 0
2209.9 0 1.00000i 0 −1.11567 1.93785i 0 −4.86509 0 −1.00000 0
2209.10 0 1.00000i 0 1.11567 + 1.93785i 0 4.86509 0 −1.00000 0
2209.11 0 1.00000i 0 1.45804 1.69532i 0 −1.26849 0 −1.00000 0
2209.12 0 1.00000i 0 2.15160 + 0.608775i 0 −2.59264 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2209.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
13.b even 2 1 inner
65.d even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3120.2.r.n 12
4.b odd 2 1 195.2.h.c 12
5.b even 2 1 inner 3120.2.r.n 12
12.b even 2 1 585.2.h.g 12
13.b even 2 1 inner 3120.2.r.n 12
20.d odd 2 1 195.2.h.c 12
20.e even 4 1 975.2.b.j 6
20.e even 4 1 975.2.b.l 6
52.b odd 2 1 195.2.h.c 12
60.h even 2 1 585.2.h.g 12
65.d even 2 1 inner 3120.2.r.n 12
156.h even 2 1 585.2.h.g 12
260.g odd 2 1 195.2.h.c 12
260.p even 4 1 975.2.b.j 6
260.p even 4 1 975.2.b.l 6
780.d even 2 1 585.2.h.g 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
195.2.h.c 12 4.b odd 2 1
195.2.h.c 12 20.d odd 2 1
195.2.h.c 12 52.b odd 2 1
195.2.h.c 12 260.g odd 2 1
585.2.h.g 12 12.b even 2 1
585.2.h.g 12 60.h even 2 1
585.2.h.g 12 156.h even 2 1
585.2.h.g 12 780.d even 2 1
975.2.b.j 6 20.e even 4 1
975.2.b.j 6 260.p even 4 1
975.2.b.l 6 20.e even 4 1
975.2.b.l 6 260.p even 4 1
3120.2.r.n 12 1.a even 1 1 trivial
3120.2.r.n 12 5.b even 2 1 inner
3120.2.r.n 12 13.b even 2 1 inner
3120.2.r.n 12 65.d even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{6} - 32T_{7}^{4} + 208T_{7}^{2} - 256 \) acting on \(S_{2}^{\mathrm{new}}(3120, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( (T^{2} + 1)^{6} \) Copy content Toggle raw display
$5$ \( T^{12} - 2 T^{10} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( (T^{6} - 32 T^{4} + \cdots - 256)^{2} \) Copy content Toggle raw display
$11$ \( (T^{6} + 20 T^{4} + \cdots + 64)^{2} \) Copy content Toggle raw display
$13$ \( T^{12} + 26 T^{10} + \cdots + 4826809 \) Copy content Toggle raw display
$17$ \( (T^{6} + 88 T^{4} + \cdots + 16384)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} + 64 T^{4} + \cdots + 6400)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 16)^{6} \) Copy content Toggle raw display
$29$ \( (T^{3} + 6 T^{2} + \cdots - 104)^{4} \) Copy content Toggle raw display
$31$ \( (T^{6} + 160 T^{4} + \cdots + 43264)^{2} \) Copy content Toggle raw display
$37$ \( (T^{6} - 132 T^{4} + \cdots - 256)^{2} \) Copy content Toggle raw display
$41$ \( (T^{6} + 76 T^{4} + \cdots + 1024)^{2} \) Copy content Toggle raw display
$43$ \( (T^{6} + 72 T^{4} + \cdots + 256)^{2} \) Copy content Toggle raw display
$47$ \( (T^{6} - 20 T^{4} + \cdots - 64)^{2} \) Copy content Toggle raw display
$53$ \( (T^{6} + 104 T^{4} + \cdots + 25600)^{2} \) Copy content Toggle raw display
$59$ \( (T^{6} + 164 T^{4} + \cdots + 141376)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} - 2 T^{2} + \cdots - 256)^{4} \) Copy content Toggle raw display
$67$ \( (T^{6} - 240 T^{4} + \cdots - 1024)^{2} \) Copy content Toggle raw display
$71$ \( (T^{6} + 468 T^{4} + \cdots + 3356224)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} - 52 T^{4} + \cdots - 1024)^{2} \) Copy content Toggle raw display
$79$ \( (T^{3} - 16 T^{2} + \cdots - 32)^{4} \) Copy content Toggle raw display
$83$ \( (T^{6} - 228 T^{4} + \cdots - 12544)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} + 140 T^{4} + \cdots + 16384)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} - 340 T^{4} + \cdots - 640000)^{2} \) Copy content Toggle raw display
show more
show less