Properties

Label 3120.2.l.p.1249.9
Level $3120$
Weight $2$
Character 3120.1249
Analytic conductor $24.913$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3120,2,Mod(1249,3120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3120.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3120.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,-2,0,0,0,-10,0,-10,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.9133254306\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.13266844647424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 16x^{8} + 90x^{6} + 208x^{4} + 169x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.9
Root \(-1.77159i\) of defining polynomial
Character \(\chi\) \(=\) 3120.1249
Dual form 3120.2.l.p.1249.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(1.51036 - 1.64888i) q^{5} +0.437634i q^{7} -1.00000 q^{9} -5.73540 q^{11} -1.00000i q^{13} +(1.64888 + 1.51036i) q^{15} +3.98081i q^{17} +4.77531 q^{19} -0.437634 q^{21} +0.337673i q^{23} +(-0.437634 - 4.98081i) q^{25} -1.00000i q^{27} -1.72295 q^{29} +7.86166 q^{31} -5.73540i q^{33} +(0.721608 + 0.660985i) q^{35} +1.66233i q^{37} +1.00000 q^{39} +2.68304 q^{41} +2.27705i q^{43} +(-1.51036 + 1.64888i) q^{45} +11.7162i q^{47} +6.80848 q^{49} -3.98081 q^{51} +14.2993i q^{53} +(-8.66251 + 9.45701i) q^{55} +4.77531i q^{57} +11.4392 q^{59} -2.25786 q^{61} -0.437634i q^{63} +(-1.64888 - 1.51036i) q^{65} -2.17977i q^{67} -0.337673 q^{69} +13.6970 q^{71} +2.55410i q^{73} +(4.98081 - 0.437634i) q^{75} -2.51001i q^{77} +2.55144 q^{79} +1.00000 q^{81} -5.41158i q^{83} +(6.56389 + 6.01245i) q^{85} -1.72295i q^{87} +4.72448 q^{89} +0.437634 q^{91} +7.86166i q^{93} +(7.21243 - 7.87393i) q^{95} -14.7901i q^{97} +5.73540 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{5} - 10 q^{9} - 10 q^{11} + 16 q^{19} + 10 q^{21} + 10 q^{25} - 16 q^{29} - 24 q^{31} - 12 q^{35} + 10 q^{39} + 10 q^{41} + 2 q^{45} - 44 q^{49} + 10 q^{51} - 2 q^{55} + 16 q^{59} + 26 q^{61}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times\).

\(n\) \(1951\) \(2081\) \(2341\) \(2497\) \(2641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) 1.51036 1.64888i 0.675453 0.737403i
\(6\) 0 0
\(7\) 0.437634i 0.165410i 0.996574 + 0.0827051i \(0.0263560\pi\)
−0.996574 + 0.0827051i \(0.973644\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −5.73540 −1.72929 −0.864644 0.502385i \(-0.832456\pi\)
−0.864644 + 0.502385i \(0.832456\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 1.64888 + 1.51036i 0.425740 + 0.389973i
\(16\) 0 0
\(17\) 3.98081i 0.965488i 0.875761 + 0.482744i \(0.160360\pi\)
−0.875761 + 0.482744i \(0.839640\pi\)
\(18\) 0 0
\(19\) 4.77531 1.09553 0.547765 0.836632i \(-0.315479\pi\)
0.547765 + 0.836632i \(0.315479\pi\)
\(20\) 0 0
\(21\) −0.437634 −0.0954996
\(22\) 0 0
\(23\) 0.337673i 0.0704098i 0.999380 + 0.0352049i \(0.0112084\pi\)
−0.999380 + 0.0352049i \(0.988792\pi\)
\(24\) 0 0
\(25\) −0.437634 4.98081i −0.0875268 0.996162i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −1.72295 −0.319944 −0.159972 0.987122i \(-0.551140\pi\)
−0.159972 + 0.987122i \(0.551140\pi\)
\(30\) 0 0
\(31\) 7.86166 1.41200 0.705998 0.708214i \(-0.250499\pi\)
0.705998 + 0.708214i \(0.250499\pi\)
\(32\) 0 0
\(33\) 5.73540i 0.998405i
\(34\) 0 0
\(35\) 0.721608 + 0.660985i 0.121974 + 0.111727i
\(36\) 0 0
\(37\) 1.66233i 0.273285i 0.990620 + 0.136642i \(0.0436311\pi\)
−0.990620 + 0.136642i \(0.956369\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 2.68304 0.419021 0.209511 0.977806i \(-0.432813\pi\)
0.209511 + 0.977806i \(0.432813\pi\)
\(42\) 0 0
\(43\) 2.27705i 0.347247i 0.984812 + 0.173623i \(0.0555476\pi\)
−0.984812 + 0.173623i \(0.944452\pi\)
\(44\) 0 0
\(45\) −1.51036 + 1.64888i −0.225151 + 0.245801i
\(46\) 0 0
\(47\) 11.7162i 1.70899i 0.519464 + 0.854493i \(0.326132\pi\)
−0.519464 + 0.854493i \(0.673868\pi\)
\(48\) 0 0
\(49\) 6.80848 0.972639
\(50\) 0 0
\(51\) −3.98081 −0.557425
\(52\) 0 0
\(53\) 14.2993i 1.96416i 0.188467 + 0.982080i \(0.439648\pi\)
−0.188467 + 0.982080i \(0.560352\pi\)
\(54\) 0 0
\(55\) −8.66251 + 9.45701i −1.16805 + 1.27518i
\(56\) 0 0
\(57\) 4.77531i 0.632505i
\(58\) 0 0
\(59\) 11.4392 1.48925 0.744626 0.667482i \(-0.232628\pi\)
0.744626 + 0.667482i \(0.232628\pi\)
\(60\) 0 0
\(61\) −2.25786 −0.289089 −0.144545 0.989498i \(-0.546172\pi\)
−0.144545 + 0.989498i \(0.546172\pi\)
\(62\) 0 0
\(63\) 0.437634i 0.0551367i
\(64\) 0 0
\(65\) −1.64888 1.51036i −0.204519 0.187337i
\(66\) 0 0
\(67\) 2.17977i 0.266302i −0.991096 0.133151i \(-0.957491\pi\)
0.991096 0.133151i \(-0.0425095\pi\)
\(68\) 0 0
\(69\) −0.337673 −0.0406511
\(70\) 0 0
\(71\) 13.6970 1.62554 0.812769 0.582586i \(-0.197959\pi\)
0.812769 + 0.582586i \(0.197959\pi\)
\(72\) 0 0
\(73\) 2.55410i 0.298935i 0.988767 + 0.149467i \(0.0477559\pi\)
−0.988767 + 0.149467i \(0.952244\pi\)
\(74\) 0 0
\(75\) 4.98081 0.437634i 0.575134 0.0505336i
\(76\) 0 0
\(77\) 2.51001i 0.286042i
\(78\) 0 0
\(79\) 2.55144 0.287060 0.143530 0.989646i \(-0.454155\pi\)
0.143530 + 0.989646i \(0.454155\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.41158i 0.593998i −0.954878 0.296999i \(-0.904014\pi\)
0.954878 0.296999i \(-0.0959857\pi\)
\(84\) 0 0
\(85\) 6.56389 + 6.01245i 0.711954 + 0.652142i
\(86\) 0 0
\(87\) 1.72295i 0.184720i
\(88\) 0 0
\(89\) 4.72448 0.500794 0.250397 0.968143i \(-0.419439\pi\)
0.250397 + 0.968143i \(0.419439\pi\)
\(90\) 0 0
\(91\) 0.437634 0.0458765
\(92\) 0 0
\(93\) 7.86166i 0.815216i
\(94\) 0 0
\(95\) 7.21243 7.87393i 0.739979 0.807848i
\(96\) 0 0
\(97\) 14.7901i 1.50171i −0.660468 0.750854i \(-0.729642\pi\)
0.660468 0.750854i \(-0.270358\pi\)
\(98\) 0 0
\(99\) 5.73540 0.576430
\(100\) 0 0
\(101\) 12.5955 1.25330 0.626651 0.779300i \(-0.284425\pi\)
0.626651 + 0.779300i \(0.284425\pi\)
\(102\) 0 0
\(103\) 6.23867i 0.614715i −0.951594 0.307357i \(-0.900555\pi\)
0.951594 0.307357i \(-0.0994447\pi\)
\(104\) 0 0
\(105\) −0.660985 + 0.721608i −0.0645055 + 0.0704217i
\(106\) 0 0
\(107\) 1.10554i 0.106877i 0.998571 + 0.0534384i \(0.0170181\pi\)
−0.998571 + 0.0534384i \(0.982982\pi\)
\(108\) 0 0
\(109\) −7.92019 −0.758616 −0.379308 0.925270i \(-0.623838\pi\)
−0.379308 + 0.925270i \(0.623838\pi\)
\(110\) 0 0
\(111\) −1.66233 −0.157781
\(112\) 0 0
\(113\) 11.4432i 1.07649i 0.842789 + 0.538244i \(0.180912\pi\)
−0.842789 + 0.538244i \(0.819088\pi\)
\(114\) 0 0
\(115\) 0.556784 + 0.510008i 0.0519204 + 0.0475585i
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) −1.74214 −0.159702
\(120\) 0 0
\(121\) 21.8948 1.99044
\(122\) 0 0
\(123\) 2.68304i 0.241922i
\(124\) 0 0
\(125\) −8.87376 6.80120i −0.793693 0.608318i
\(126\) 0 0
\(127\) 1.42937i 0.126836i −0.997987 0.0634180i \(-0.979800\pi\)
0.997987 0.0634180i \(-0.0202001\pi\)
\(128\) 0 0
\(129\) −2.27705 −0.200483
\(130\) 0 0
\(131\) −17.6819 −1.54487 −0.772437 0.635092i \(-0.780962\pi\)
−0.772437 + 0.635092i \(0.780962\pi\)
\(132\) 0 0
\(133\) 2.08984i 0.181212i
\(134\) 0 0
\(135\) −1.64888 1.51036i −0.141913 0.129991i
\(136\) 0 0
\(137\) 10.7686i 0.920021i 0.887913 + 0.460011i \(0.152154\pi\)
−0.887913 + 0.460011i \(0.847846\pi\)
\(138\) 0 0
\(139\) 3.80848 0.323031 0.161515 0.986870i \(-0.448362\pi\)
0.161515 + 0.986870i \(0.448362\pi\)
\(140\) 0 0
\(141\) −11.7162 −0.986683
\(142\) 0 0
\(143\) 5.73540i 0.479618i
\(144\) 0 0
\(145\) −2.60227 + 2.84094i −0.216107 + 0.235928i
\(146\) 0 0
\(147\) 6.80848i 0.561554i
\(148\) 0 0
\(149\) 16.3649 1.34067 0.670334 0.742060i \(-0.266151\pi\)
0.670334 + 0.742060i \(0.266151\pi\)
\(150\) 0 0
\(151\) −20.3774 −1.65829 −0.829144 0.559035i \(-0.811172\pi\)
−0.829144 + 0.559035i \(0.811172\pi\)
\(152\) 0 0
\(153\) 3.98081i 0.321829i
\(154\) 0 0
\(155\) 11.8739 12.9630i 0.953737 1.04121i
\(156\) 0 0
\(157\) 13.1911i 1.05276i −0.850249 0.526381i \(-0.823549\pi\)
0.850249 0.526381i \(-0.176451\pi\)
\(158\) 0 0
\(159\) −14.2993 −1.13401
\(160\) 0 0
\(161\) −0.147777 −0.0116465
\(162\) 0 0
\(163\) 10.3578i 0.811287i 0.914031 + 0.405644i \(0.132953\pi\)
−0.914031 + 0.405644i \(0.867047\pi\)
\(164\) 0 0
\(165\) −9.45701 8.66251i −0.736227 0.674376i
\(166\) 0 0
\(167\) 10.6713i 0.825769i 0.910783 + 0.412885i \(0.135479\pi\)
−0.910783 + 0.412885i \(0.864521\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −4.77531 −0.365177
\(172\) 0 0
\(173\) 5.64045i 0.428836i −0.976742 0.214418i \(-0.931215\pi\)
0.976742 0.214418i \(-0.0687854\pi\)
\(174\) 0 0
\(175\) 2.17977 0.191524i 0.164775 0.0144778i
\(176\) 0 0
\(177\) 11.4392i 0.859820i
\(178\) 0 0
\(179\) −11.9616 −0.894054 −0.447027 0.894521i \(-0.647517\pi\)
−0.447027 + 0.894521i \(0.647517\pi\)
\(180\) 0 0
\(181\) 11.3442 0.843209 0.421604 0.906780i \(-0.361467\pi\)
0.421604 + 0.906780i \(0.361467\pi\)
\(182\) 0 0
\(183\) 2.25786i 0.166906i
\(184\) 0 0
\(185\) 2.74098 + 2.51071i 0.201521 + 0.184591i
\(186\) 0 0
\(187\) 22.8315i 1.66961i
\(188\) 0 0
\(189\) 0.437634 0.0318332
\(190\) 0 0
\(191\) 19.8691 1.43768 0.718839 0.695177i \(-0.244674\pi\)
0.718839 + 0.695177i \(0.244674\pi\)
\(192\) 0 0
\(193\) 1.10823i 0.0797719i −0.999204 0.0398859i \(-0.987301\pi\)
0.999204 0.0398859i \(-0.0126995\pi\)
\(194\) 0 0
\(195\) 1.51036 1.64888i 0.108159 0.118079i
\(196\) 0 0
\(197\) 5.37758i 0.383137i 0.981479 + 0.191568i \(0.0613574\pi\)
−0.981479 + 0.191568i \(0.938643\pi\)
\(198\) 0 0
\(199\) −11.2736 −0.799162 −0.399581 0.916698i \(-0.630844\pi\)
−0.399581 + 0.916698i \(0.630844\pi\)
\(200\) 0 0
\(201\) 2.17977 0.153749
\(202\) 0 0
\(203\) 0.754022i 0.0529220i
\(204\) 0 0
\(205\) 4.05236 4.42403i 0.283029 0.308987i
\(206\) 0 0
\(207\) 0.337673i 0.0234699i
\(208\) 0 0
\(209\) −27.3883 −1.89449
\(210\) 0 0
\(211\) 16.4498 1.13245 0.566224 0.824251i \(-0.308404\pi\)
0.566224 + 0.824251i \(0.308404\pi\)
\(212\) 0 0
\(213\) 13.6970i 0.938505i
\(214\) 0 0
\(215\) 3.75459 + 3.43916i 0.256061 + 0.234549i
\(216\) 0 0
\(217\) 3.44053i 0.233559i
\(218\) 0 0
\(219\) −2.55410 −0.172590
\(220\) 0 0
\(221\) 3.98081 0.267778
\(222\) 0 0
\(223\) 25.0527i 1.67765i 0.544397 + 0.838827i \(0.316758\pi\)
−0.544397 + 0.838827i \(0.683242\pi\)
\(224\) 0 0
\(225\) 0.437634 + 4.98081i 0.0291756 + 0.332054i
\(226\) 0 0
\(227\) 8.11414i 0.538554i 0.963063 + 0.269277i \(0.0867847\pi\)
−0.963063 + 0.269277i \(0.913215\pi\)
\(228\) 0 0
\(229\) −9.57717 −0.632877 −0.316439 0.948613i \(-0.602487\pi\)
−0.316439 + 0.948613i \(0.602487\pi\)
\(230\) 0 0
\(231\) 2.51001 0.165146
\(232\) 0 0
\(233\) 16.3791i 1.07303i 0.843890 + 0.536516i \(0.180260\pi\)
−0.843890 + 0.536516i \(0.819740\pi\)
\(234\) 0 0
\(235\) 19.3187 + 17.6957i 1.26021 + 1.15434i
\(236\) 0 0
\(237\) 2.55144i 0.165734i
\(238\) 0 0
\(239\) −22.2511 −1.43931 −0.719653 0.694334i \(-0.755699\pi\)
−0.719653 + 0.694334i \(0.755699\pi\)
\(240\) 0 0
\(241\) 23.8031 1.53329 0.766647 0.642068i \(-0.221924\pi\)
0.766647 + 0.642068i \(0.221924\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 10.2832 11.2264i 0.656972 0.717227i
\(246\) 0 0
\(247\) 4.77531i 0.303846i
\(248\) 0 0
\(249\) 5.41158 0.342945
\(250\) 0 0
\(251\) 4.35992 0.275196 0.137598 0.990488i \(-0.456062\pi\)
0.137598 + 0.990488i \(0.456062\pi\)
\(252\) 0 0
\(253\) 1.93669i 0.121759i
\(254\) 0 0
\(255\) −6.01245 + 6.56389i −0.376514 + 0.411047i
\(256\) 0 0
\(257\) 14.9965i 0.935457i −0.883872 0.467728i \(-0.845073\pi\)
0.883872 0.467728i \(-0.154927\pi\)
\(258\) 0 0
\(259\) −0.727491 −0.0452041
\(260\) 0 0
\(261\) 1.72295 0.106648
\(262\) 0 0
\(263\) 10.7029i 0.659971i −0.943986 0.329986i \(-0.892956\pi\)
0.943986 0.329986i \(-0.107044\pi\)
\(264\) 0 0
\(265\) 23.5779 + 21.5971i 1.44838 + 1.32670i
\(266\) 0 0
\(267\) 4.72448i 0.289133i
\(268\) 0 0
\(269\) −15.0076 −0.915028 −0.457514 0.889202i \(-0.651260\pi\)
−0.457514 + 0.889202i \(0.651260\pi\)
\(270\) 0 0
\(271\) 1.71386 0.104109 0.0520547 0.998644i \(-0.483423\pi\)
0.0520547 + 0.998644i \(0.483423\pi\)
\(272\) 0 0
\(273\) 0.437634i 0.0264868i
\(274\) 0 0
\(275\) 2.51001 + 28.5669i 0.151359 + 1.72265i
\(276\) 0 0
\(277\) 21.1527i 1.27094i 0.772125 + 0.635471i \(0.219194\pi\)
−0.772125 + 0.635471i \(0.780806\pi\)
\(278\) 0 0
\(279\) −7.86166 −0.470665
\(280\) 0 0
\(281\) 18.7440 1.11818 0.559088 0.829108i \(-0.311151\pi\)
0.559088 + 0.829108i \(0.311151\pi\)
\(282\) 0 0
\(283\) 9.29744i 0.552675i −0.961061 0.276338i \(-0.910879\pi\)
0.961061 0.276338i \(-0.0891208\pi\)
\(284\) 0 0
\(285\) 7.87393 + 7.21243i 0.466411 + 0.427227i
\(286\) 0 0
\(287\) 1.17419i 0.0693103i
\(288\) 0 0
\(289\) 1.15315 0.0678321
\(290\) 0 0
\(291\) 14.7901 0.867012
\(292\) 0 0
\(293\) 17.9762i 1.05018i −0.851047 0.525090i \(-0.824032\pi\)
0.851047 0.525090i \(-0.175968\pi\)
\(294\) 0 0
\(295\) 17.2772 18.8618i 1.00592 1.09818i
\(296\) 0 0
\(297\) 5.73540i 0.332802i
\(298\) 0 0
\(299\) 0.337673 0.0195282
\(300\) 0 0
\(301\) −0.996515 −0.0574382
\(302\) 0 0
\(303\) 12.5955i 0.723595i
\(304\) 0 0
\(305\) −3.41018 + 3.72295i −0.195266 + 0.213175i
\(306\) 0 0
\(307\) 13.3129i 0.759807i −0.925026 0.379904i \(-0.875957\pi\)
0.925026 0.379904i \(-0.124043\pi\)
\(308\) 0 0
\(309\) 6.23867 0.354906
\(310\) 0 0
\(311\) −2.64776 −0.150141 −0.0750703 0.997178i \(-0.523918\pi\)
−0.0750703 + 0.997178i \(0.523918\pi\)
\(312\) 0 0
\(313\) 15.8718i 0.897126i 0.893751 + 0.448563i \(0.148064\pi\)
−0.893751 + 0.448563i \(0.851936\pi\)
\(314\) 0 0
\(315\) −0.721608 0.660985i −0.0406580 0.0372423i
\(316\) 0 0
\(317\) 3.85187i 0.216342i −0.994132 0.108171i \(-0.965501\pi\)
0.994132 0.108171i \(-0.0344995\pi\)
\(318\) 0 0
\(319\) 9.88181 0.553275
\(320\) 0 0
\(321\) −1.10554 −0.0617054
\(322\) 0 0
\(323\) 19.0096i 1.05772i
\(324\) 0 0
\(325\) −4.98081 + 0.437634i −0.276286 + 0.0242756i
\(326\) 0 0
\(327\) 7.92019i 0.437987i
\(328\) 0 0
\(329\) −5.12742 −0.282684
\(330\) 0 0
\(331\) 8.15256 0.448105 0.224053 0.974577i \(-0.428071\pi\)
0.224053 + 0.974577i \(0.428071\pi\)
\(332\) 0 0
\(333\) 1.66233i 0.0910949i
\(334\) 0 0
\(335\) −3.59419 3.29224i −0.196372 0.179874i
\(336\) 0 0
\(337\) 0.343016i 0.0186852i −0.999956 0.00934262i \(-0.997026\pi\)
0.999956 0.00934262i \(-0.00297389\pi\)
\(338\) 0 0
\(339\) −11.4432 −0.621510
\(340\) 0 0
\(341\) −45.0898 −2.44175
\(342\) 0 0
\(343\) 6.04306i 0.326295i
\(344\) 0 0
\(345\) −0.510008 + 0.556784i −0.0274579 + 0.0299763i
\(346\) 0 0
\(347\) 32.2306i 1.73023i 0.501572 + 0.865116i \(0.332755\pi\)
−0.501572 + 0.865116i \(0.667245\pi\)
\(348\) 0 0
\(349\) −23.6186 −1.26427 −0.632137 0.774856i \(-0.717822\pi\)
−0.632137 + 0.774856i \(0.717822\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 30.5552i 1.62629i 0.582063 + 0.813144i \(0.302246\pi\)
−0.582063 + 0.813144i \(0.697754\pi\)
\(354\) 0 0
\(355\) 20.6874 22.5848i 1.09797 1.19868i
\(356\) 0 0
\(357\) 1.74214i 0.0922038i
\(358\) 0 0
\(359\) −30.2293 −1.59544 −0.797719 0.603029i \(-0.793960\pi\)
−0.797719 + 0.603029i \(0.793960\pi\)
\(360\) 0 0
\(361\) 3.80356 0.200188
\(362\) 0 0
\(363\) 21.8948i 1.14918i
\(364\) 0 0
\(365\) 4.21141 + 3.85761i 0.220435 + 0.201916i
\(366\) 0 0
\(367\) 10.0441i 0.524299i −0.965027 0.262149i \(-0.915569\pi\)
0.965027 0.262149i \(-0.0844313\pi\)
\(368\) 0 0
\(369\) −2.68304 −0.139674
\(370\) 0 0
\(371\) −6.25786 −0.324892
\(372\) 0 0
\(373\) 28.8097i 1.49171i −0.666109 0.745854i \(-0.732042\pi\)
0.666109 0.745854i \(-0.267958\pi\)
\(374\) 0 0
\(375\) 6.80120 8.87376i 0.351213 0.458239i
\(376\) 0 0
\(377\) 1.72295i 0.0887364i
\(378\) 0 0
\(379\) 17.0581 0.876216 0.438108 0.898922i \(-0.355649\pi\)
0.438108 + 0.898922i \(0.355649\pi\)
\(380\) 0 0
\(381\) 1.42937 0.0732288
\(382\) 0 0
\(383\) 6.58842i 0.336653i −0.985731 0.168326i \(-0.946164\pi\)
0.985731 0.168326i \(-0.0538363\pi\)
\(384\) 0 0
\(385\) −4.13871 3.79101i −0.210928 0.193208i
\(386\) 0 0
\(387\) 2.27705i 0.115749i
\(388\) 0 0
\(389\) −30.5741 −1.55017 −0.775083 0.631859i \(-0.782292\pi\)
−0.775083 + 0.631859i \(0.782292\pi\)
\(390\) 0 0
\(391\) −1.34421 −0.0679798
\(392\) 0 0
\(393\) 17.6819i 0.891933i
\(394\) 0 0
\(395\) 3.85359 4.20703i 0.193895 0.211679i
\(396\) 0 0
\(397\) 21.5069i 1.07940i −0.841857 0.539700i \(-0.818538\pi\)
0.841857 0.539700i \(-0.181462\pi\)
\(398\) 0 0
\(399\) −2.08984 −0.104623
\(400\) 0 0
\(401\) −17.8990 −0.893835 −0.446918 0.894575i \(-0.647478\pi\)
−0.446918 + 0.894575i \(0.647478\pi\)
\(402\) 0 0
\(403\) 7.86166i 0.391617i
\(404\) 0 0
\(405\) 1.51036 1.64888i 0.0750503 0.0819337i
\(406\) 0 0
\(407\) 9.53411i 0.472588i
\(408\) 0 0
\(409\) −22.3844 −1.10684 −0.553420 0.832902i \(-0.686678\pi\)
−0.553420 + 0.832902i \(0.686678\pi\)
\(410\) 0 0
\(411\) −10.7686 −0.531174
\(412\) 0 0
\(413\) 5.00617i 0.246337i
\(414\) 0 0
\(415\) −8.92306 8.17342i −0.438016 0.401217i
\(416\) 0 0
\(417\) 3.80848i 0.186502i
\(418\) 0 0
\(419\) −27.5153 −1.34421 −0.672105 0.740456i \(-0.734610\pi\)
−0.672105 + 0.740456i \(0.734610\pi\)
\(420\) 0 0
\(421\) 6.34607 0.309289 0.154644 0.987970i \(-0.450577\pi\)
0.154644 + 0.987970i \(0.450577\pi\)
\(422\) 0 0
\(423\) 11.7162i 0.569662i
\(424\) 0 0
\(425\) 19.8277 1.74214i 0.961783 0.0845062i
\(426\) 0 0
\(427\) 0.988117i 0.0478183i
\(428\) 0 0
\(429\) −5.73540 −0.276908
\(430\) 0 0
\(431\) 3.78383 0.182261 0.0911304 0.995839i \(-0.470952\pi\)
0.0911304 + 0.995839i \(0.470952\pi\)
\(432\) 0 0
\(433\) 2.55410i 0.122742i 0.998115 + 0.0613711i \(0.0195473\pi\)
−0.998115 + 0.0613711i \(0.980453\pi\)
\(434\) 0 0
\(435\) −2.84094 2.60227i −0.136213 0.124769i
\(436\) 0 0
\(437\) 1.61249i 0.0771361i
\(438\) 0 0
\(439\) 2.34073 0.111717 0.0558585 0.998439i \(-0.482210\pi\)
0.0558585 + 0.998439i \(0.482210\pi\)
\(440\) 0 0
\(441\) −6.80848 −0.324213
\(442\) 0 0
\(443\) 0.468574i 0.0222626i −0.999938 0.0111313i \(-0.996457\pi\)
0.999938 0.0111313i \(-0.00354328\pi\)
\(444\) 0 0
\(445\) 7.13566 7.79011i 0.338262 0.369287i
\(446\) 0 0
\(447\) 16.3649i 0.774035i
\(448\) 0 0
\(449\) 17.5863 0.829947 0.414974 0.909833i \(-0.363791\pi\)
0.414974 + 0.909833i \(0.363791\pi\)
\(450\) 0 0
\(451\) −15.3883 −0.724608
\(452\) 0 0
\(453\) 20.3774i 0.957413i
\(454\) 0 0
\(455\) 0.660985 0.721608i 0.0309874 0.0338295i
\(456\) 0 0
\(457\) 11.9132i 0.557276i −0.960396 0.278638i \(-0.910117\pi\)
0.960396 0.278638i \(-0.0898829\pi\)
\(458\) 0 0
\(459\) 3.98081 0.185808
\(460\) 0 0
\(461\) −17.7540 −0.826886 −0.413443 0.910530i \(-0.635674\pi\)
−0.413443 + 0.910530i \(0.635674\pi\)
\(462\) 0 0
\(463\) 39.4856i 1.83505i 0.397676 + 0.917526i \(0.369817\pi\)
−0.397676 + 0.917526i \(0.630183\pi\)
\(464\) 0 0
\(465\) 12.9630 + 11.8739i 0.601143 + 0.550640i
\(466\) 0 0
\(467\) 19.2793i 0.892139i −0.894998 0.446069i \(-0.852823\pi\)
0.894998 0.446069i \(-0.147177\pi\)
\(468\) 0 0
\(469\) 0.953943 0.0440490
\(470\) 0 0
\(471\) 13.1911 0.607812
\(472\) 0 0
\(473\) 13.0598i 0.600490i
\(474\) 0 0
\(475\) −2.08984 23.7849i −0.0958883 1.09133i
\(476\) 0 0
\(477\) 14.2993i 0.654720i
\(478\) 0 0
\(479\) 38.8194 1.77371 0.886853 0.462052i \(-0.152887\pi\)
0.886853 + 0.462052i \(0.152887\pi\)
\(480\) 0 0
\(481\) 1.66233 0.0757956
\(482\) 0 0
\(483\) 0.147777i 0.00672411i
\(484\) 0 0
\(485\) −24.3872 22.3384i −1.10736 1.01433i
\(486\) 0 0
\(487\) 29.8866i 1.35429i 0.735849 + 0.677145i \(0.236783\pi\)
−0.735849 + 0.677145i \(0.763217\pi\)
\(488\) 0 0
\(489\) −10.3578 −0.468397
\(490\) 0 0
\(491\) −26.7474 −1.20709 −0.603547 0.797327i \(-0.706246\pi\)
−0.603547 + 0.797327i \(0.706246\pi\)
\(492\) 0 0
\(493\) 6.85874i 0.308902i
\(494\) 0 0
\(495\) 8.66251 9.45701i 0.389351 0.425061i
\(496\) 0 0
\(497\) 5.99429i 0.268880i
\(498\) 0 0
\(499\) 31.9694 1.43115 0.715574 0.698537i \(-0.246165\pi\)
0.715574 + 0.698537i \(0.246165\pi\)
\(500\) 0 0
\(501\) −10.6713 −0.476758
\(502\) 0 0
\(503\) 9.37993i 0.418231i −0.977891 0.209115i \(-0.932942\pi\)
0.977891 0.209115i \(-0.0670584\pi\)
\(504\) 0 0
\(505\) 19.0238 20.7686i 0.846547 0.924189i
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) −11.0042 −0.487753 −0.243877 0.969806i \(-0.578419\pi\)
−0.243877 + 0.969806i \(0.578419\pi\)
\(510\) 0 0
\(511\) −1.11776 −0.0494469
\(512\) 0 0
\(513\) 4.77531i 0.210835i
\(514\) 0 0
\(515\) −10.2868 9.42263i −0.453292 0.415211i
\(516\) 0 0
\(517\) 67.1972i 2.95533i
\(518\) 0 0
\(519\) 5.64045 0.247588
\(520\) 0 0
\(521\) 29.1305 1.27623 0.638115 0.769941i \(-0.279715\pi\)
0.638115 + 0.769941i \(0.279715\pi\)
\(522\) 0 0
\(523\) 13.5675i 0.593266i −0.954992 0.296633i \(-0.904136\pi\)
0.954992 0.296633i \(-0.0958638\pi\)
\(524\) 0 0
\(525\) 0.191524 + 2.17977i 0.00835878 + 0.0951331i
\(526\) 0 0
\(527\) 31.2958i 1.36327i
\(528\) 0 0
\(529\) 22.8860 0.995042
\(530\) 0 0
\(531\) −11.4392 −0.496417
\(532\) 0 0
\(533\) 2.68304i 0.116216i
\(534\) 0 0
\(535\) 1.82291 + 1.66977i 0.0788113 + 0.0721902i
\(536\) 0 0
\(537\) 11.9616i 0.516182i
\(538\) 0 0
\(539\) −39.0493 −1.68197
\(540\) 0 0
\(541\) −22.6672 −0.974541 −0.487270 0.873251i \(-0.662007\pi\)
−0.487270 + 0.873251i \(0.662007\pi\)
\(542\) 0 0
\(543\) 11.3442i 0.486827i
\(544\) 0 0
\(545\) −11.9623 + 13.0595i −0.512410 + 0.559406i
\(546\) 0 0
\(547\) 33.5014i 1.43242i −0.697886 0.716209i \(-0.745876\pi\)
0.697886 0.716209i \(-0.254124\pi\)
\(548\) 0 0
\(549\) 2.25786 0.0963632
\(550\) 0 0
\(551\) −8.22762 −0.350508
\(552\) 0 0
\(553\) 1.11660i 0.0474826i
\(554\) 0 0
\(555\) −2.51071 + 2.74098i −0.106574 + 0.116348i
\(556\) 0 0
\(557\) 42.6185i 1.80580i 0.429846 + 0.902902i \(0.358568\pi\)
−0.429846 + 0.902902i \(0.641432\pi\)
\(558\) 0 0
\(559\) 2.27705 0.0963090
\(560\) 0 0
\(561\) 22.8315 0.963949
\(562\) 0 0
\(563\) 17.1688i 0.723580i −0.932260 0.361790i \(-0.882166\pi\)
0.932260 0.361790i \(-0.117834\pi\)
\(564\) 0 0
\(565\) 18.8685 + 17.2834i 0.793805 + 0.727116i
\(566\) 0 0
\(567\) 0.437634i 0.0183789i
\(568\) 0 0
\(569\) −16.9018 −0.708561 −0.354281 0.935139i \(-0.615274\pi\)
−0.354281 + 0.935139i \(0.615274\pi\)
\(570\) 0 0
\(571\) 29.9408 1.25298 0.626491 0.779428i \(-0.284490\pi\)
0.626491 + 0.779428i \(0.284490\pi\)
\(572\) 0 0
\(573\) 19.8691i 0.830044i
\(574\) 0 0
\(575\) 1.68189 0.147777i 0.0701396 0.00616275i
\(576\) 0 0
\(577\) 44.8430i 1.86684i 0.358789 + 0.933419i \(0.383190\pi\)
−0.358789 + 0.933419i \(0.616810\pi\)
\(578\) 0 0
\(579\) 1.10823 0.0460563
\(580\) 0 0
\(581\) 2.36829 0.0982532
\(582\) 0 0
\(583\) 82.0122i 3.39660i
\(584\) 0 0
\(585\) 1.64888 + 1.51036i 0.0681729 + 0.0624456i
\(586\) 0 0
\(587\) 24.2703i 1.00174i −0.865522 0.500872i \(-0.833013\pi\)
0.865522 0.500872i \(-0.166987\pi\)
\(588\) 0 0
\(589\) 37.5418 1.54688
\(590\) 0 0
\(591\) −5.37758 −0.221204
\(592\) 0 0
\(593\) 44.2659i 1.81778i −0.417032 0.908892i \(-0.636930\pi\)
0.417032 0.908892i \(-0.363070\pi\)
\(594\) 0 0
\(595\) −2.63125 + 2.87258i −0.107871 + 0.117764i
\(596\) 0 0
\(597\) 11.2736i 0.461396i
\(598\) 0 0
\(599\) −18.9996 −0.776301 −0.388151 0.921596i \(-0.626886\pi\)
−0.388151 + 0.921596i \(0.626886\pi\)
\(600\) 0 0
\(601\) 0.722123 0.0294560 0.0147280 0.999892i \(-0.495312\pi\)
0.0147280 + 0.999892i \(0.495312\pi\)
\(602\) 0 0
\(603\) 2.17977i 0.0887672i
\(604\) 0 0
\(605\) 33.0690 36.1020i 1.34445 1.46776i
\(606\) 0 0
\(607\) 29.9236i 1.21456i −0.794487 0.607281i \(-0.792260\pi\)
0.794487 0.607281i \(-0.207740\pi\)
\(608\) 0 0
\(609\) 0.754022 0.0305545
\(610\) 0 0
\(611\) 11.7162 0.473987
\(612\) 0 0
\(613\) 34.6980i 1.40144i −0.713438 0.700719i \(-0.752863\pi\)
0.713438 0.700719i \(-0.247137\pi\)
\(614\) 0 0
\(615\) 4.42403 + 4.05236i 0.178394 + 0.163407i
\(616\) 0 0
\(617\) 25.8247i 1.03966i 0.854269 + 0.519831i \(0.174005\pi\)
−0.854269 + 0.519831i \(0.825995\pi\)
\(618\) 0 0
\(619\) −29.3106 −1.17809 −0.589047 0.808099i \(-0.700497\pi\)
−0.589047 + 0.808099i \(0.700497\pi\)
\(620\) 0 0
\(621\) 0.337673 0.0135504
\(622\) 0 0
\(623\) 2.06759i 0.0828364i
\(624\) 0 0
\(625\) −24.6170 + 4.35955i −0.984678 + 0.174382i
\(626\) 0 0
\(627\) 27.3883i 1.09378i
\(628\) 0 0
\(629\) −6.61741 −0.263853
\(630\) 0 0
\(631\) 22.9480 0.913546 0.456773 0.889583i \(-0.349005\pi\)
0.456773 + 0.889583i \(0.349005\pi\)
\(632\) 0 0
\(633\) 16.4498i 0.653819i
\(634\) 0 0
\(635\) −2.35686 2.15886i −0.0935292 0.0856717i
\(636\) 0 0
\(637\) 6.80848i 0.269762i
\(638\) 0 0
\(639\) −13.6970 −0.541846
\(640\) 0 0
\(641\) 24.3185 0.960522 0.480261 0.877126i \(-0.340542\pi\)
0.480261 + 0.877126i \(0.340542\pi\)
\(642\) 0 0
\(643\) 11.2911i 0.445276i 0.974901 + 0.222638i \(0.0714668\pi\)
−0.974901 + 0.222638i \(0.928533\pi\)
\(644\) 0 0
\(645\) −3.43916 + 3.75459i −0.135417 + 0.147837i
\(646\) 0 0
\(647\) 7.55633i 0.297070i −0.988907 0.148535i \(-0.952544\pi\)
0.988907 0.148535i \(-0.0474558\pi\)
\(648\) 0 0
\(649\) −65.6082 −2.57535
\(650\) 0 0
\(651\) −3.44053 −0.134845
\(652\) 0 0
\(653\) 33.6711i 1.31765i −0.752295 0.658826i \(-0.771053\pi\)
0.752295 0.658826i \(-0.228947\pi\)
\(654\) 0 0
\(655\) −26.7060 + 29.1554i −1.04349 + 1.13919i
\(656\) 0 0
\(657\) 2.55410i 0.0996449i
\(658\) 0 0
\(659\) −17.1039 −0.666274 −0.333137 0.942878i \(-0.608107\pi\)
−0.333137 + 0.942878i \(0.608107\pi\)
\(660\) 0 0
\(661\) 19.1964 0.746655 0.373327 0.927700i \(-0.378217\pi\)
0.373327 + 0.927700i \(0.378217\pi\)
\(662\) 0 0
\(663\) 3.98081i 0.154602i
\(664\) 0 0
\(665\) 3.44590 + 3.15640i 0.133626 + 0.122400i
\(666\) 0 0
\(667\) 0.581794i 0.0225272i
\(668\) 0 0
\(669\) −25.0527 −0.968594
\(670\) 0 0
\(671\) 12.9497 0.499919
\(672\) 0 0
\(673\) 27.9616i 1.07784i 0.842357 + 0.538921i \(0.181168\pi\)
−0.842357 + 0.538921i \(0.818832\pi\)
\(674\) 0 0
\(675\) −4.98081 + 0.437634i −0.191711 + 0.0168445i
\(676\) 0 0
\(677\) 6.98533i 0.268468i −0.990950 0.134234i \(-0.957143\pi\)
0.990950 0.134234i \(-0.0428574\pi\)
\(678\) 0 0
\(679\) 6.47266 0.248398
\(680\) 0 0
\(681\) −8.11414 −0.310934
\(682\) 0 0
\(683\) 18.0969i 0.692460i −0.938150 0.346230i \(-0.887462\pi\)
0.938150 0.346230i \(-0.112538\pi\)
\(684\) 0 0
\(685\) 17.7561 + 16.2644i 0.678426 + 0.621431i
\(686\) 0 0
\(687\) 9.57717i 0.365392i
\(688\) 0 0
\(689\) 14.2993 0.544760
\(690\) 0 0
\(691\) −13.9818 −0.531892 −0.265946 0.963988i \(-0.585684\pi\)
−0.265946 + 0.963988i \(0.585684\pi\)
\(692\) 0 0
\(693\) 2.51001i 0.0953473i
\(694\) 0 0
\(695\) 5.75216 6.27973i 0.218192 0.238204i
\(696\) 0 0
\(697\) 10.6807i 0.404560i
\(698\) 0 0
\(699\) −16.3791 −0.619515
\(700\) 0 0
\(701\) −2.64470 −0.0998891 −0.0499445 0.998752i \(-0.515904\pi\)
−0.0499445 + 0.998752i \(0.515904\pi\)
\(702\) 0 0
\(703\) 7.93812i 0.299392i
\(704\) 0 0
\(705\) −17.6957 + 19.3187i −0.666458 + 0.727583i
\(706\) 0 0
\(707\) 5.51224i 0.207309i
\(708\) 0 0
\(709\) −9.89834 −0.371740 −0.185870 0.982574i \(-0.559510\pi\)
−0.185870 + 0.982574i \(0.559510\pi\)
\(710\) 0 0
\(711\) −2.55144 −0.0956866
\(712\) 0 0
\(713\) 2.65467i 0.0994183i
\(714\) 0 0
\(715\) 9.45701 + 8.66251i 0.353672 + 0.323960i
\(716\) 0 0
\(717\) 22.2511i 0.830983i
\(718\) 0 0
\(719\) 21.1288 0.787972 0.393986 0.919116i \(-0.371096\pi\)
0.393986 + 0.919116i \(0.371096\pi\)
\(720\) 0 0
\(721\) 2.73026 0.101680
\(722\) 0 0
\(723\) 23.8031i 0.885248i
\(724\) 0 0
\(725\) 0.754022 + 8.58169i 0.0280037 + 0.318716i
\(726\) 0 0
\(727\) 18.7471i 0.695290i 0.937626 + 0.347645i \(0.113019\pi\)
−0.937626 + 0.347645i \(0.886981\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) −9.06451 −0.335263
\(732\) 0 0
\(733\) 47.2675i 1.74586i −0.487842 0.872932i \(-0.662216\pi\)
0.487842 0.872932i \(-0.337784\pi\)
\(734\) 0 0
\(735\) 11.2264 + 10.2832i 0.414091 + 0.379303i
\(736\) 0 0
\(737\) 12.5019i 0.460512i
\(738\) 0 0
\(739\) −40.6501 −1.49534 −0.747670 0.664071i \(-0.768827\pi\)
−0.747670 + 0.664071i \(0.768827\pi\)
\(740\) 0 0
\(741\) 4.77531 0.175425
\(742\) 0 0
\(743\) 1.06271i 0.0389871i −0.999810 0.0194936i \(-0.993795\pi\)
0.999810 0.0194936i \(-0.00620539\pi\)
\(744\) 0 0
\(745\) 24.7169 26.9839i 0.905558 0.988612i
\(746\) 0 0
\(747\) 5.41158i 0.197999i
\(748\) 0 0
\(749\) −0.483823 −0.0176785
\(750\) 0 0
\(751\) 10.8780 0.396945 0.198473 0.980106i \(-0.436402\pi\)
0.198473 + 0.980106i \(0.436402\pi\)
\(752\) 0 0
\(753\) 4.35992i 0.158884i
\(754\) 0 0
\(755\) −30.7772 + 33.5999i −1.12010 + 1.22283i
\(756\) 0 0
\(757\) 16.2279i 0.589812i −0.955526 0.294906i \(-0.904712\pi\)
0.955526 0.294906i \(-0.0952884\pi\)
\(758\) 0 0
\(759\) 1.93669 0.0702975
\(760\) 0 0
\(761\) 37.3880 1.35531 0.677657 0.735379i \(-0.262996\pi\)
0.677657 + 0.735379i \(0.262996\pi\)
\(762\) 0 0
\(763\) 3.46615i 0.125483i
\(764\) 0 0
\(765\) −6.56389 6.01245i −0.237318 0.217381i
\(766\) 0 0
\(767\) 11.4392i 0.413044i
\(768\) 0 0
\(769\) 12.5874 0.453914 0.226957 0.973905i \(-0.427122\pi\)
0.226957 + 0.973905i \(0.427122\pi\)
\(770\) 0 0
\(771\) 14.9965 0.540086
\(772\) 0 0
\(773\) 0.746723i 0.0268577i 0.999910 + 0.0134289i \(0.00427467\pi\)
−0.999910 + 0.0134289i \(0.995725\pi\)
\(774\) 0 0
\(775\) −3.44053 39.1574i −0.123588 1.40658i
\(776\) 0 0
\(777\) 0.727491i 0.0260986i
\(778\) 0 0
\(779\) 12.8124 0.459050
\(780\) 0 0
\(781\) −78.5579 −2.81102
\(782\) 0 0
\(783\) 1.72295i 0.0615732i
\(784\) 0 0
\(785\) −21.7505 19.9232i −0.776310 0.711091i
\(786\) 0 0
\(787\) 33.3585i 1.18910i −0.804058 0.594551i \(-0.797330\pi\)
0.804058 0.594551i \(-0.202670\pi\)
\(788\) 0 0
\(789\) 10.7029 0.381035
\(790\) 0 0
\(791\) −5.00794 −0.178062
\(792\) 0 0
\(793\) 2.25786i 0.0801790i
\(794\) 0 0
\(795\) −21.5971 + 23.5779i −0.765969 + 0.836221i
\(796\) 0 0
\(797\) 0.233988i 0.00828829i 0.999991 + 0.00414415i \(0.00131913\pi\)
−0.999991 + 0.00414415i \(0.998681\pi\)
\(798\) 0 0
\(799\) −46.6400 −1.65001
\(800\) 0 0
\(801\) −4.72448 −0.166931
\(802\) 0 0
\(803\) 14.6488i 0.516945i
\(804\) 0 0
\(805\) −0.223197 + 0.243668i −0.00786666 + 0.00858816i
\(806\) 0 0
\(807\) 15.0076i 0.528292i
\(808\) 0 0
\(809\) 22.2003 0.780521 0.390260 0.920705i \(-0.372385\pi\)
0.390260 + 0.920705i \(0.372385\pi\)
\(810\) 0 0
\(811\) 43.4456 1.52558 0.762791 0.646645i \(-0.223829\pi\)
0.762791 + 0.646645i \(0.223829\pi\)
\(812\) 0 0
\(813\) 1.71386i 0.0601076i
\(814\) 0 0
\(815\) 17.0788 + 15.6440i 0.598246 + 0.547986i
\(816\) 0 0
\(817\) 10.8736i 0.380420i
\(818\) 0 0
\(819\) −0.437634 −0.0152922
\(820\) 0 0
\(821\) −6.76172 −0.235986 −0.117993 0.993014i \(-0.537646\pi\)
−0.117993 + 0.993014i \(0.537646\pi\)
\(822\) 0 0
\(823\) 28.6208i 0.997659i −0.866700 0.498829i \(-0.833763\pi\)
0.866700 0.498829i \(-0.166237\pi\)
\(824\) 0 0
\(825\) −28.5669 + 2.51001i −0.994574 + 0.0873873i
\(826\) 0 0
\(827\) 8.19215i 0.284869i −0.989804 0.142435i \(-0.954507\pi\)
0.989804 0.142435i \(-0.0454930\pi\)
\(828\) 0 0
\(829\) 3.60208 0.125105 0.0625526 0.998042i \(-0.480076\pi\)
0.0625526 + 0.998042i \(0.480076\pi\)
\(830\) 0 0
\(831\) −21.1527 −0.733779
\(832\) 0 0
\(833\) 27.1033i 0.939072i
\(834\) 0 0
\(835\) 17.5957 + 16.1175i 0.608925 + 0.557768i
\(836\) 0 0
\(837\) 7.86166i 0.271739i
\(838\) 0 0
\(839\) 1.50713 0.0520318 0.0260159 0.999662i \(-0.491718\pi\)
0.0260159 + 0.999662i \(0.491718\pi\)
\(840\) 0 0
\(841\) −26.0314 −0.897636
\(842\) 0 0
\(843\) 18.7440i 0.645579i
\(844\) 0 0
\(845\) −1.51036 + 1.64888i −0.0519579 + 0.0567233i
\(846\) 0 0
\(847\) 9.58193i 0.329239i
\(848\) 0 0
\(849\) 9.29744 0.319087
\(850\) 0 0
\(851\) −0.561324 −0.0192419
\(852\) 0 0
\(853\) 8.35952i 0.286225i −0.989706 0.143112i \(-0.954289\pi\)
0.989706 0.143112i \(-0.0457110\pi\)
\(854\) 0 0
\(855\) −7.21243 + 7.87393i −0.246660 + 0.269283i
\(856\) 0 0
\(857\) 12.8565i 0.439168i −0.975594 0.219584i \(-0.929530\pi\)
0.975594 0.219584i \(-0.0704700\pi\)
\(858\) 0 0
\(859\) −16.3734 −0.558652 −0.279326 0.960196i \(-0.590111\pi\)
−0.279326 + 0.960196i \(0.590111\pi\)
\(860\) 0 0
\(861\) −1.17419 −0.0400163
\(862\) 0 0
\(863\) 50.0600i 1.70406i −0.523492 0.852031i \(-0.675371\pi\)
0.523492 0.852031i \(-0.324629\pi\)
\(864\) 0 0
\(865\) −9.30045 8.51911i −0.316225 0.289658i
\(866\) 0 0
\(867\) 1.15315i 0.0391629i
\(868\) 0 0
\(869\) −14.6335 −0.496409
\(870\) 0 0
\(871\) −2.17977 −0.0738588
\(872\) 0 0
\(873\) 14.7901i 0.500570i
\(874\) 0 0
\(875\) 2.97644 3.88346i 0.100622 0.131285i
\(876\) 0 0
\(877\) 48.1027i 1.62431i 0.583439 + 0.812157i \(0.301707\pi\)
−0.583439 + 0.812157i \(0.698293\pi\)
\(878\) 0 0
\(879\) 17.9762 0.606321
\(880\) 0 0
\(881\) −41.2109 −1.38843 −0.694216 0.719767i \(-0.744249\pi\)
−0.694216 + 0.719767i \(0.744249\pi\)
\(882\) 0 0
\(883\) 13.9344i 0.468930i −0.972125 0.234465i \(-0.924666\pi\)
0.972125 0.234465i \(-0.0753338\pi\)
\(884\) 0 0
\(885\) 18.8618 + 17.2772i 0.634034 + 0.580768i
\(886\) 0 0
\(887\) 47.8092i 1.60528i −0.596466 0.802638i \(-0.703429\pi\)
0.596466 0.802638i \(-0.296571\pi\)
\(888\) 0 0
\(889\) 0.625541 0.0209800
\(890\) 0 0
\(891\) −5.73540 −0.192143
\(892\) 0 0
\(893\) 55.9485i 1.87225i
\(894\) 0 0
\(895\) −18.0663 + 19.7233i −0.603891 + 0.659278i
\(896\) 0 0
\(897\) 0.337673i 0.0112746i
\(898\) 0 0
\(899\) −13.5452 −0.451759
\(900\) 0 0
\(901\) −56.9228 −1.89637
\(902\) 0 0
\(903\) 0.996515i 0.0331619i
\(904\) 0 0
\(905\) 17.1338 18.7053i 0.569548 0.621785i
\(906\) 0 0
\(907\) 8.74334i 0.290318i 0.989408 + 0.145159i \(0.0463693\pi\)
−0.989408 + 0.145159i \(0.953631\pi\)
\(908\) 0 0
\(909\) −12.5955 −0.417768
\(910\) 0 0
\(911\) 2.67266 0.0885493 0.0442746 0.999019i \(-0.485902\pi\)
0.0442746 + 0.999019i \(0.485902\pi\)
\(912\) 0 0
\(913\) 31.0376i 1.02719i
\(914\) 0 0
\(915\) −3.72295 3.41018i −0.123077 0.112737i
\(916\) 0 0
\(917\) 7.73820i 0.255538i
\(918\) 0 0
\(919\) −15.4118 −0.508389 −0.254195 0.967153i \(-0.581810\pi\)
−0.254195 + 0.967153i \(0.581810\pi\)
\(920\) 0 0
\(921\) 13.3129 0.438675
\(922\) 0 0
\(923\) 13.6970i 0.450843i
\(924\) 0 0
\(925\) 8.27973 0.727491i 0.272236 0.0239198i
\(926\) 0 0
\(927\) 6.23867i 0.204905i
\(928\) 0 0
\(929\) −16.7575 −0.549795 −0.274898 0.961473i \(-0.588644\pi\)
−0.274898 + 0.961473i \(0.588644\pi\)
\(930\) 0 0
\(931\) 32.5126 1.06556
\(932\) 0 0
\(933\) 2.64776i 0.0866838i
\(934\) 0 0
\(935\) −37.6466 34.4838i −1.23117 1.12774i
\(936\) 0 0
\(937\) 34.3945i 1.12362i −0.827267 0.561809i \(-0.810105\pi\)
0.827267 0.561809i \(-0.189895\pi\)
\(938\) 0 0
\(939\) −15.8718 −0.517956
\(940\) 0 0
\(941\) 3.90298 0.127234 0.0636168 0.997974i \(-0.479736\pi\)
0.0636168 + 0.997974i \(0.479736\pi\)
\(942\) 0 0
\(943\) 0.905993i 0.0295032i
\(944\) 0 0
\(945\) 0.660985 0.721608i 0.0215018 0.0234739i
\(946\) 0 0
\(947\) 32.7611i 1.06459i 0.846558 + 0.532297i \(0.178671\pi\)
−0.846558 + 0.532297i \(0.821329\pi\)
\(948\) 0 0
\(949\) 2.55410 0.0829096
\(950\) 0 0
\(951\) 3.85187 0.124905
\(952\) 0 0
\(953\) 3.05611i 0.0989970i −0.998774 0.0494985i \(-0.984238\pi\)
0.998774 0.0494985i \(-0.0157623\pi\)
\(954\) 0 0
\(955\) 30.0095 32.7618i 0.971083 1.06015i
\(956\) 0 0
\(957\) 9.88181i 0.319434i
\(958\) 0 0
\(959\) −4.71269 −0.152181
\(960\) 0 0
\(961\) 30.8057 0.993733
\(962\) 0 0
\(963\) 1.10554i 0.0356256i
\(964\) 0 0
\(965\) −1.82734 1.67382i −0.0588240 0.0538821i
\(966\) 0 0
\(967\) 20.5538i 0.660966i 0.943812 + 0.330483i \(0.107212\pi\)
−0.943812 + 0.330483i \(0.892788\pi\)
\(968\) 0 0
\(969\) −19.0096 −0.610676
\(970\) 0 0
\(971\) 49.3281 1.58301 0.791507 0.611160i \(-0.209297\pi\)
0.791507 + 0.611160i \(0.209297\pi\)
\(972\) 0 0
\(973\) 1.66672i 0.0534326i
\(974\) 0 0
\(975\) −0.437634 4.98081i −0.0140155 0.159514i
\(976\) 0 0
\(977\) 19.0164i 0.608390i 0.952610 + 0.304195i \(0.0983874\pi\)
−0.952610 + 0.304195i \(0.901613\pi\)
\(978\) 0 0
\(979\) −27.0968 −0.866017
\(980\) 0 0
\(981\) 7.92019 0.252872
\(982\) 0 0
\(983\) 20.8696i 0.665636i 0.942991 + 0.332818i \(0.107999\pi\)
−0.942991 + 0.332818i \(0.892001\pi\)
\(984\) 0 0
\(985\) 8.86700 + 8.12207i 0.282526 + 0.258791i
\(986\) 0 0
\(987\) 5.12742i 0.163207i
\(988\) 0 0
\(989\) −0.768899 −0.0244496
\(990\) 0 0
\(991\) −15.6435 −0.496932 −0.248466 0.968641i \(-0.579926\pi\)
−0.248466 + 0.968641i \(0.579926\pi\)
\(992\) 0 0
\(993\) 8.15256i 0.258714i
\(994\) 0 0
\(995\) −17.0271 + 18.5888i −0.539796 + 0.589304i
\(996\) 0 0
\(997\) 6.21108i 0.196707i 0.995152 + 0.0983535i \(0.0313576\pi\)
−0.995152 + 0.0983535i \(0.968642\pi\)
\(998\) 0 0
\(999\) 1.66233 0.0525937
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3120.2.l.p.1249.9 10
4.3 odd 2 195.2.c.b.79.8 yes 10
5.4 even 2 inner 3120.2.l.p.1249.4 10
12.11 even 2 585.2.c.c.469.3 10
20.3 even 4 975.2.a.s.1.4 5
20.7 even 4 975.2.a.r.1.2 5
20.19 odd 2 195.2.c.b.79.3 10
60.23 odd 4 2925.2.a.bm.1.2 5
60.47 odd 4 2925.2.a.bl.1.4 5
60.59 even 2 585.2.c.c.469.8 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.c.b.79.3 10 20.19 odd 2
195.2.c.b.79.8 yes 10 4.3 odd 2
585.2.c.c.469.3 10 12.11 even 2
585.2.c.c.469.8 10 60.59 even 2
975.2.a.r.1.2 5 20.7 even 4
975.2.a.s.1.4 5 20.3 even 4
2925.2.a.bl.1.4 5 60.47 odd 4
2925.2.a.bm.1.2 5 60.23 odd 4
3120.2.l.p.1249.4 10 5.4 even 2 inner
3120.2.l.p.1249.9 10 1.1 even 1 trivial