Properties

Label 3120.2.l.p.1249.7
Level $3120$
Weight $2$
Character 3120.1249
Analytic conductor $24.913$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3120,2,Mod(1249,3120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3120.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3120.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,-2,0,0,0,-10,0,-10,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.9133254306\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.13266844647424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 16x^{8} + 90x^{6} + 208x^{4} + 169x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.7
Root \(2.47948i\) of defining polynomial
Character \(\chi\) \(=\) 3120.1249
Dual form 3120.2.l.p.1249.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-1.72481 - 1.42303i) q^{5} -0.949959i q^{7} -1.00000 q^{9} -3.89611 q^{11} -1.00000i q^{13} +(1.42303 - 1.72481i) q^{15} -5.90893i q^{17} +6.35541 q^{19} +0.949959 q^{21} +3.30537i q^{23} +(0.949959 + 4.90893i) q^{25} -1.00000i q^{27} +4.29569 q^{29} -7.56253 q^{31} -3.89611i q^{33} +(-1.35182 + 1.63850i) q^{35} -1.30537i q^{37} +1.00000 q^{39} -6.75499 q^{41} +8.29569i q^{43} +(1.72481 + 1.42303i) q^{45} -0.0128228i q^{47} +6.09758 q^{49} +5.90893 q^{51} -2.51249i q^{53} +(6.72005 + 5.54428i) q^{55} +6.35541i q^{57} -6.30851 q^{59} +1.61324 q^{61} +0.949959i q^{63} +(-1.42303 + 1.72481i) q^{65} -4.66328i q^{67} -3.30537 q^{69} -7.92175 q^{71} +14.5914i q^{73} +(-4.90893 + 0.949959i) q^{75} +3.70114i q^{77} -16.6004 q^{79} +1.00000 q^{81} +12.8044i q^{83} +(-8.40860 + 10.1918i) q^{85} +4.29569i q^{87} -17.6542 q^{89} -0.949959 q^{91} -7.56253i q^{93} +(-10.9619 - 9.04395i) q^{95} +18.1226i q^{97} +3.89611 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{5} - 10 q^{9} - 10 q^{11} + 16 q^{19} + 10 q^{21} + 10 q^{25} - 16 q^{29} - 24 q^{31} - 12 q^{35} + 10 q^{39} + 10 q^{41} + 2 q^{45} - 44 q^{49} + 10 q^{51} - 2 q^{55} + 16 q^{59} + 26 q^{61}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times\).

\(n\) \(1951\) \(2081\) \(2341\) \(2497\) \(2641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −1.72481 1.42303i −0.771360 0.636399i
\(6\) 0 0
\(7\) 0.949959i 0.359051i −0.983753 0.179525i \(-0.942544\pi\)
0.983753 0.179525i \(-0.0574562\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −3.89611 −1.17472 −0.587360 0.809326i \(-0.699833\pi\)
−0.587360 + 0.809326i \(0.699833\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) 1.42303 1.72481i 0.367425 0.445345i
\(16\) 0 0
\(17\) 5.90893i 1.43313i −0.697523 0.716563i \(-0.745714\pi\)
0.697523 0.716563i \(-0.254286\pi\)
\(18\) 0 0
\(19\) 6.35541 1.45803 0.729015 0.684497i \(-0.239978\pi\)
0.729015 + 0.684497i \(0.239978\pi\)
\(20\) 0 0
\(21\) 0.949959 0.207298
\(22\) 0 0
\(23\) 3.30537i 0.689217i 0.938747 + 0.344608i \(0.111988\pi\)
−0.938747 + 0.344608i \(0.888012\pi\)
\(24\) 0 0
\(25\) 0.949959 + 4.90893i 0.189992 + 0.981786i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 4.29569 0.797690 0.398845 0.917018i \(-0.369411\pi\)
0.398845 + 0.917018i \(0.369411\pi\)
\(30\) 0 0
\(31\) −7.56253 −1.35827 −0.679135 0.734013i \(-0.737645\pi\)
−0.679135 + 0.734013i \(0.737645\pi\)
\(32\) 0 0
\(33\) 3.89611i 0.678225i
\(34\) 0 0
\(35\) −1.35182 + 1.63850i −0.228500 + 0.276957i
\(36\) 0 0
\(37\) 1.30537i 0.214601i −0.994227 0.107301i \(-0.965779\pi\)
0.994227 0.107301i \(-0.0342207\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) −6.75499 −1.05495 −0.527476 0.849570i \(-0.676862\pi\)
−0.527476 + 0.849570i \(0.676862\pi\)
\(42\) 0 0
\(43\) 8.29569i 1.26508i 0.774527 + 0.632540i \(0.217988\pi\)
−0.774527 + 0.632540i \(0.782012\pi\)
\(44\) 0 0
\(45\) 1.72481 + 1.42303i 0.257120 + 0.212133i
\(46\) 0 0
\(47\) 0.0128228i 0.00187040i −1.00000 0.000935200i \(-0.999702\pi\)
1.00000 0.000935200i \(-0.000297683\pi\)
\(48\) 0 0
\(49\) 6.09758 0.871083
\(50\) 0 0
\(51\) 5.90893 0.827415
\(52\) 0 0
\(53\) 2.51249i 0.345117i −0.984999 0.172559i \(-0.944797\pi\)
0.984999 0.172559i \(-0.0552034\pi\)
\(54\) 0 0
\(55\) 6.72005 + 5.54428i 0.906132 + 0.747591i
\(56\) 0 0
\(57\) 6.35541i 0.841794i
\(58\) 0 0
\(59\) −6.30851 −0.821298 −0.410649 0.911793i \(-0.634698\pi\)
−0.410649 + 0.911793i \(0.634698\pi\)
\(60\) 0 0
\(61\) 1.61324 0.206554 0.103277 0.994653i \(-0.467067\pi\)
0.103277 + 0.994653i \(0.467067\pi\)
\(62\) 0 0
\(63\) 0.949959i 0.119684i
\(64\) 0 0
\(65\) −1.42303 + 1.72481i −0.176505 + 0.213937i
\(66\) 0 0
\(67\) 4.66328i 0.569710i −0.958571 0.284855i \(-0.908055\pi\)
0.958571 0.284855i \(-0.0919455\pi\)
\(68\) 0 0
\(69\) −3.30537 −0.397919
\(70\) 0 0
\(71\) −7.92175 −0.940139 −0.470069 0.882629i \(-0.655771\pi\)
−0.470069 + 0.882629i \(0.655771\pi\)
\(72\) 0 0
\(73\) 14.5914i 1.70779i 0.520444 + 0.853896i \(0.325767\pi\)
−0.520444 + 0.853896i \(0.674233\pi\)
\(74\) 0 0
\(75\) −4.90893 + 0.949959i −0.566834 + 0.109692i
\(76\) 0 0
\(77\) 3.70114i 0.421784i
\(78\) 0 0
\(79\) −16.6004 −1.86769 −0.933845 0.357678i \(-0.883569\pi\)
−0.933845 + 0.357678i \(0.883569\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 12.8044i 1.40546i 0.711456 + 0.702731i \(0.248036\pi\)
−0.711456 + 0.702731i \(0.751964\pi\)
\(84\) 0 0
\(85\) −8.40860 + 10.1918i −0.912040 + 1.10546i
\(86\) 0 0
\(87\) 4.29569i 0.460546i
\(88\) 0 0
\(89\) −17.6542 −1.87135 −0.935673 0.352868i \(-0.885206\pi\)
−0.935673 + 0.352868i \(0.885206\pi\)
\(90\) 0 0
\(91\) −0.949959 −0.0995827
\(92\) 0 0
\(93\) 7.56253i 0.784198i
\(94\) 0 0
\(95\) −10.9619 9.04395i −1.12467 0.927890i
\(96\) 0 0
\(97\) 18.1226i 1.84007i 0.391840 + 0.920033i \(0.371839\pi\)
−0.391840 + 0.920033i \(0.628161\pi\)
\(98\) 0 0
\(99\) 3.89611 0.391573
\(100\) 0 0
\(101\) 11.6921 1.16341 0.581705 0.813400i \(-0.302386\pi\)
0.581705 + 0.813400i \(0.302386\pi\)
\(102\) 0 0
\(103\) 7.52217i 0.741181i 0.928796 + 0.370591i \(0.120845\pi\)
−0.928796 + 0.370591i \(0.879155\pi\)
\(104\) 0 0
\(105\) −1.63850 1.35182i −0.159901 0.131924i
\(106\) 0 0
\(107\) 6.00901i 0.580913i −0.956888 0.290457i \(-0.906193\pi\)
0.956888 0.290457i \(-0.0938072\pi\)
\(108\) 0 0
\(109\) −1.08139 −0.103579 −0.0517894 0.998658i \(-0.516492\pi\)
−0.0517894 + 0.998658i \(0.516492\pi\)
\(110\) 0 0
\(111\) 1.30537 0.123900
\(112\) 0 0
\(113\) 7.29636i 0.686383i 0.939265 + 0.343192i \(0.111508\pi\)
−0.939265 + 0.343192i \(0.888492\pi\)
\(114\) 0 0
\(115\) 4.70364 5.70114i 0.438617 0.531634i
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) −5.61324 −0.514565
\(120\) 0 0
\(121\) 4.17964 0.379967
\(122\) 0 0
\(123\) 6.75499i 0.609077i
\(124\) 0 0
\(125\) 5.34706 9.81880i 0.478256 0.878221i
\(126\) 0 0
\(127\) 10.6915i 0.948714i −0.880333 0.474357i \(-0.842681\pi\)
0.880333 0.474357i \(-0.157319\pi\)
\(128\) 0 0
\(129\) −8.29569 −0.730395
\(130\) 0 0
\(131\) 0.225811 0.0197292 0.00986458 0.999951i \(-0.496860\pi\)
0.00986458 + 0.999951i \(0.496860\pi\)
\(132\) 0 0
\(133\) 6.03738i 0.523507i
\(134\) 0 0
\(135\) −1.42303 + 1.72481i −0.122475 + 0.148448i
\(136\) 0 0
\(137\) 6.63828i 0.567146i 0.958951 + 0.283573i \(0.0915199\pi\)
−0.958951 + 0.283573i \(0.908480\pi\)
\(138\) 0 0
\(139\) 3.09758 0.262733 0.131367 0.991334i \(-0.458064\pi\)
0.131367 + 0.991334i \(0.458064\pi\)
\(140\) 0 0
\(141\) 0.0128228 0.00107988
\(142\) 0 0
\(143\) 3.89611i 0.325809i
\(144\) 0 0
\(145\) −7.40926 6.11291i −0.615306 0.507649i
\(146\) 0 0
\(147\) 6.09758i 0.502920i
\(148\) 0 0
\(149\) −10.9808 −0.899582 −0.449791 0.893134i \(-0.648502\pi\)
−0.449791 + 0.893134i \(0.648502\pi\)
\(150\) 0 0
\(151\) 2.78901 0.226966 0.113483 0.993540i \(-0.463799\pi\)
0.113483 + 0.993540i \(0.463799\pi\)
\(152\) 0 0
\(153\) 5.90893i 0.477709i
\(154\) 0 0
\(155\) 13.0440 + 10.7617i 1.04772 + 0.864403i
\(156\) 0 0
\(157\) 11.3843i 0.908563i −0.890858 0.454281i \(-0.849896\pi\)
0.890858 0.454281i \(-0.150104\pi\)
\(158\) 0 0
\(159\) 2.51249 0.199253
\(160\) 0 0
\(161\) 3.13996 0.247464
\(162\) 0 0
\(163\) 2.13144i 0.166947i 0.996510 + 0.0834735i \(0.0266014\pi\)
−0.996510 + 0.0834735i \(0.973399\pi\)
\(164\) 0 0
\(165\) −5.54428 + 6.72005i −0.431622 + 0.523155i
\(166\) 0 0
\(167\) 3.00587i 0.232601i 0.993214 + 0.116300i \(0.0371035\pi\)
−0.993214 + 0.116300i \(0.962896\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) −6.35541 −0.486010
\(172\) 0 0
\(173\) 0.673441i 0.0512008i −0.999672 0.0256004i \(-0.991850\pi\)
0.999672 0.0256004i \(-0.00814974\pi\)
\(174\) 0 0
\(175\) 4.66328 0.902422i 0.352511 0.0682167i
\(176\) 0 0
\(177\) 6.30851i 0.474177i
\(178\) 0 0
\(179\) 7.81786 0.584334 0.292167 0.956367i \(-0.405624\pi\)
0.292167 + 0.956367i \(0.405624\pi\)
\(180\) 0 0
\(181\) −9.53118 −0.708447 −0.354223 0.935161i \(-0.615255\pi\)
−0.354223 + 0.935161i \(0.615255\pi\)
\(182\) 0 0
\(183\) 1.61324i 0.119254i
\(184\) 0 0
\(185\) −1.85758 + 2.25151i −0.136572 + 0.165535i
\(186\) 0 0
\(187\) 23.0218i 1.68352i
\(188\) 0 0
\(189\) −0.949959 −0.0690993
\(190\) 0 0
\(191\) 16.1073 1.16548 0.582740 0.812659i \(-0.301981\pi\)
0.582740 + 0.812659i \(0.301981\pi\)
\(192\) 0 0
\(193\) 13.8967i 1.00031i 0.865936 + 0.500155i \(0.166724\pi\)
−0.865936 + 0.500155i \(0.833276\pi\)
\(194\) 0 0
\(195\) −1.72481 1.42303i −0.123516 0.101905i
\(196\) 0 0
\(197\) 11.7647i 0.838198i 0.907941 + 0.419099i \(0.137654\pi\)
−0.907941 + 0.419099i \(0.862346\pi\)
\(198\) 0 0
\(199\) −8.41513 −0.596533 −0.298266 0.954483i \(-0.596408\pi\)
−0.298266 + 0.954483i \(0.596408\pi\)
\(200\) 0 0
\(201\) 4.66328 0.328922
\(202\) 0 0
\(203\) 4.08073i 0.286411i
\(204\) 0 0
\(205\) 11.6511 + 9.61257i 0.813748 + 0.671371i
\(206\) 0 0
\(207\) 3.30537i 0.229739i
\(208\) 0 0
\(209\) −24.7613 −1.71278
\(210\) 0 0
\(211\) −11.5402 −0.794459 −0.397230 0.917719i \(-0.630028\pi\)
−0.397230 + 0.917719i \(0.630028\pi\)
\(212\) 0 0
\(213\) 7.92175i 0.542789i
\(214\) 0 0
\(215\) 11.8050 14.3085i 0.805097 0.975832i
\(216\) 0 0
\(217\) 7.18409i 0.487688i
\(218\) 0 0
\(219\) −14.5914 −0.985994
\(220\) 0 0
\(221\) −5.90893 −0.397478
\(222\) 0 0
\(223\) 7.82173i 0.523782i 0.965098 + 0.261891i \(0.0843460\pi\)
−0.965098 + 0.261891i \(0.915654\pi\)
\(224\) 0 0
\(225\) −0.949959 4.90893i −0.0633306 0.327262i
\(226\) 0 0
\(227\) 21.1316i 1.40255i 0.712889 + 0.701277i \(0.247386\pi\)
−0.712889 + 0.701277i \(0.752614\pi\)
\(228\) 0 0
\(229\) 23.5280 1.55477 0.777387 0.629022i \(-0.216545\pi\)
0.777387 + 0.629022i \(0.216545\pi\)
\(230\) 0 0
\(231\) −3.70114 −0.243517
\(232\) 0 0
\(233\) 6.40612i 0.419679i 0.977736 + 0.209839i \(0.0672941\pi\)
−0.977736 + 0.209839i \(0.932706\pi\)
\(234\) 0 0
\(235\) −0.0182473 + 0.0221169i −0.00119032 + 0.00144275i
\(236\) 0 0
\(237\) 16.6004i 1.07831i
\(238\) 0 0
\(239\) −12.6696 −0.819530 −0.409765 0.912191i \(-0.634389\pi\)
−0.409765 + 0.912191i \(0.634389\pi\)
\(240\) 0 0
\(241\) −0.206457 −0.0132990 −0.00664952 0.999978i \(-0.502117\pi\)
−0.00664952 + 0.999978i \(0.502117\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) −10.5172 8.67705i −0.671918 0.554356i
\(246\) 0 0
\(247\) 6.35541i 0.404385i
\(248\) 0 0
\(249\) −12.8044 −0.811444
\(250\) 0 0
\(251\) −15.5028 −0.978529 −0.489264 0.872135i \(-0.662735\pi\)
−0.489264 + 0.872135i \(0.662735\pi\)
\(252\) 0 0
\(253\) 12.8781i 0.809637i
\(254\) 0 0
\(255\) −10.1918 8.40860i −0.638235 0.526567i
\(256\) 0 0
\(257\) 6.11944i 0.381720i −0.981617 0.190860i \(-0.938872\pi\)
0.981617 0.190860i \(-0.0611276\pi\)
\(258\) 0 0
\(259\) −1.24004 −0.0770526
\(260\) 0 0
\(261\) −4.29569 −0.265897
\(262\) 0 0
\(263\) 17.1066i 1.05484i −0.849605 0.527419i \(-0.823160\pi\)
0.849605 0.527419i \(-0.176840\pi\)
\(264\) 0 0
\(265\) −3.57535 + 4.33357i −0.219632 + 0.266209i
\(266\) 0 0
\(267\) 17.6542i 1.08042i
\(268\) 0 0
\(269\) −27.8981 −1.70098 −0.850490 0.525992i \(-0.823694\pi\)
−0.850490 + 0.525992i \(0.823694\pi\)
\(270\) 0 0
\(271\) 28.6569 1.74079 0.870393 0.492358i \(-0.163865\pi\)
0.870393 + 0.492358i \(0.163865\pi\)
\(272\) 0 0
\(273\) 0.949959i 0.0574941i
\(274\) 0 0
\(275\) −3.70114 19.1257i −0.223187 1.15332i
\(276\) 0 0
\(277\) 0.433599i 0.0260525i −0.999915 0.0130262i \(-0.995854\pi\)
0.999915 0.0130262i \(-0.00414649\pi\)
\(278\) 0 0
\(279\) 7.56253 0.452757
\(280\) 0 0
\(281\) −18.5747 −1.10807 −0.554036 0.832492i \(-0.686913\pi\)
−0.554036 + 0.832492i \(0.686913\pi\)
\(282\) 0 0
\(283\) 21.9360i 1.30396i 0.758237 + 0.651979i \(0.226061\pi\)
−0.758237 + 0.651979i \(0.773939\pi\)
\(284\) 0 0
\(285\) 9.04395 10.9619i 0.535717 0.649326i
\(286\) 0 0
\(287\) 6.41696i 0.378781i
\(288\) 0 0
\(289\) −17.9154 −1.05385
\(290\) 0 0
\(291\) −18.1226 −1.06236
\(292\) 0 0
\(293\) 9.26031i 0.540993i 0.962721 + 0.270497i \(0.0871879\pi\)
−0.962721 + 0.270497i \(0.912812\pi\)
\(294\) 0 0
\(295\) 10.8810 + 8.97722i 0.633517 + 0.522674i
\(296\) 0 0
\(297\) 3.89611i 0.226075i
\(298\) 0 0
\(299\) 3.30537 0.191154
\(300\) 0 0
\(301\) 7.88056 0.454228
\(302\) 0 0
\(303\) 11.6921i 0.671695i
\(304\) 0 0
\(305\) −2.78253 2.29569i −0.159327 0.131451i
\(306\) 0 0
\(307\) 9.15012i 0.522225i −0.965308 0.261113i \(-0.915911\pi\)
0.965308 0.261113i \(-0.0840894\pi\)
\(308\) 0 0
\(309\) −7.52217 −0.427921
\(310\) 0 0
\(311\) −8.11488 −0.460153 −0.230076 0.973173i \(-0.573898\pi\)
−0.230076 + 0.973173i \(0.573898\pi\)
\(312\) 0 0
\(313\) 4.21952i 0.238501i 0.992864 + 0.119251i \(0.0380492\pi\)
−0.992864 + 0.119251i \(0.961951\pi\)
\(314\) 0 0
\(315\) 1.35182 1.63850i 0.0761665 0.0923191i
\(316\) 0 0
\(317\) 15.4374i 0.867053i −0.901141 0.433527i \(-0.857269\pi\)
0.901141 0.433527i \(-0.142731\pi\)
\(318\) 0 0
\(319\) −16.7365 −0.937062
\(320\) 0 0
\(321\) 6.00901 0.335390
\(322\) 0 0
\(323\) 37.5537i 2.08954i
\(324\) 0 0
\(325\) 4.90893 0.949959i 0.272298 0.0526942i
\(326\) 0 0
\(327\) 1.08139i 0.0598013i
\(328\) 0 0
\(329\) −0.0121811 −0.000671568
\(330\) 0 0
\(331\) −14.6619 −0.805894 −0.402947 0.915223i \(-0.632014\pi\)
−0.402947 + 0.915223i \(0.632014\pi\)
\(332\) 0 0
\(333\) 1.30537i 0.0715337i
\(334\) 0 0
\(335\) −6.63600 + 8.04328i −0.362563 + 0.439452i
\(336\) 0 0
\(337\) 26.6094i 1.44951i −0.689009 0.724753i \(-0.741954\pi\)
0.689009 0.724753i \(-0.258046\pi\)
\(338\) 0 0
\(339\) −7.29636 −0.396284
\(340\) 0 0
\(341\) 29.4644 1.59559
\(342\) 0 0
\(343\) 12.4422i 0.671813i
\(344\) 0 0
\(345\) 5.70114 + 4.70364i 0.306939 + 0.253236i
\(346\) 0 0
\(347\) 3.06153i 0.164352i 0.996618 + 0.0821759i \(0.0261869\pi\)
−0.996618 + 0.0821759i \(0.973813\pi\)
\(348\) 0 0
\(349\) 22.4273 1.20050 0.600252 0.799811i \(-0.295067\pi\)
0.600252 + 0.799811i \(0.295067\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 23.7147i 1.26220i 0.775700 + 0.631102i \(0.217397\pi\)
−0.775700 + 0.631102i \(0.782603\pi\)
\(354\) 0 0
\(355\) 13.6635 + 11.2729i 0.725185 + 0.598304i
\(356\) 0 0
\(357\) 5.61324i 0.297084i
\(358\) 0 0
\(359\) −18.6484 −0.984227 −0.492113 0.870531i \(-0.663775\pi\)
−0.492113 + 0.870531i \(0.663775\pi\)
\(360\) 0 0
\(361\) 21.3912 1.12585
\(362\) 0 0
\(363\) 4.17964i 0.219374i
\(364\) 0 0
\(365\) 20.7640 25.1674i 1.08684 1.31732i
\(366\) 0 0
\(367\) 10.7870i 0.563076i 0.959550 + 0.281538i \(0.0908446\pi\)
−0.959550 + 0.281538i \(0.909155\pi\)
\(368\) 0 0
\(369\) 6.75499 0.351651
\(370\) 0 0
\(371\) −2.38676 −0.123914
\(372\) 0 0
\(373\) 19.0430i 0.986009i 0.870027 + 0.493005i \(0.164101\pi\)
−0.870027 + 0.493005i \(0.835899\pi\)
\(374\) 0 0
\(375\) 9.81880 + 5.34706i 0.507041 + 0.276121i
\(376\) 0 0
\(377\) 4.29569i 0.221239i
\(378\) 0 0
\(379\) −15.9537 −0.819489 −0.409744 0.912200i \(-0.634382\pi\)
−0.409744 + 0.912200i \(0.634382\pi\)
\(380\) 0 0
\(381\) 10.6915 0.547740
\(382\) 0 0
\(383\) 24.8044i 1.26744i −0.773561 0.633722i \(-0.781526\pi\)
0.773561 0.633722i \(-0.218474\pi\)
\(384\) 0 0
\(385\) 5.26684 6.38377i 0.268423 0.325347i
\(386\) 0 0
\(387\) 8.29569i 0.421694i
\(388\) 0 0
\(389\) 36.2379 1.83734 0.918668 0.395030i \(-0.129266\pi\)
0.918668 + 0.395030i \(0.129266\pi\)
\(390\) 0 0
\(391\) 19.5312 0.987734
\(392\) 0 0
\(393\) 0.225811i 0.0113906i
\(394\) 0 0
\(395\) 28.6326 + 23.6229i 1.44066 + 1.18860i
\(396\) 0 0
\(397\) 18.4111i 0.924025i 0.886873 + 0.462013i \(0.152873\pi\)
−0.886873 + 0.462013i \(0.847127\pi\)
\(398\) 0 0
\(399\) 6.03738 0.302247
\(400\) 0 0
\(401\) 24.0667 1.20183 0.600916 0.799312i \(-0.294803\pi\)
0.600916 + 0.799312i \(0.294803\pi\)
\(402\) 0 0
\(403\) 7.56253i 0.376717i
\(404\) 0 0
\(405\) −1.72481 1.42303i −0.0857066 0.0707110i
\(406\) 0 0
\(407\) 5.08585i 0.252096i
\(408\) 0 0
\(409\) −35.7102 −1.76575 −0.882877 0.469605i \(-0.844396\pi\)
−0.882877 + 0.469605i \(0.844396\pi\)
\(410\) 0 0
\(411\) −6.63828 −0.327442
\(412\) 0 0
\(413\) 5.99283i 0.294888i
\(414\) 0 0
\(415\) 18.2210 22.0851i 0.894435 1.08412i
\(416\) 0 0
\(417\) 3.09758i 0.151689i
\(418\) 0 0
\(419\) 21.8241 1.06618 0.533090 0.846059i \(-0.321031\pi\)
0.533090 + 0.846059i \(0.321031\pi\)
\(420\) 0 0
\(421\) −0.107706 −0.00524928 −0.00262464 0.999997i \(-0.500835\pi\)
−0.00262464 + 0.999997i \(0.500835\pi\)
\(422\) 0 0
\(423\) 0.0128228i 0.000623466i
\(424\) 0 0
\(425\) 29.0065 5.61324i 1.40702 0.272282i
\(426\) 0 0
\(427\) 1.53251i 0.0741634i
\(428\) 0 0
\(429\) −3.89611 −0.188106
\(430\) 0 0
\(431\) −32.3215 −1.55687 −0.778437 0.627723i \(-0.783987\pi\)
−0.778437 + 0.627723i \(0.783987\pi\)
\(432\) 0 0
\(433\) 14.5914i 0.701217i 0.936522 + 0.350608i \(0.114025\pi\)
−0.936522 + 0.350608i \(0.885975\pi\)
\(434\) 0 0
\(435\) 6.11291 7.40926i 0.293091 0.355247i
\(436\) 0 0
\(437\) 21.0070i 1.00490i
\(438\) 0 0
\(439\) −27.4117 −1.30829 −0.654146 0.756369i \(-0.726972\pi\)
−0.654146 + 0.756369i \(0.726972\pi\)
\(440\) 0 0
\(441\) −6.09758 −0.290361
\(442\) 0 0
\(443\) 7.19811i 0.341993i −0.985272 0.170996i \(-0.945301\pi\)
0.985272 0.170996i \(-0.0546986\pi\)
\(444\) 0 0
\(445\) 30.4503 + 25.1226i 1.44348 + 1.19092i
\(446\) 0 0
\(447\) 10.9808i 0.519374i
\(448\) 0 0
\(449\) −18.9884 −0.896119 −0.448060 0.894004i \(-0.647885\pi\)
−0.448060 + 0.894004i \(0.647885\pi\)
\(450\) 0 0
\(451\) 26.3182 1.23927
\(452\) 0 0
\(453\) 2.78901i 0.131039i
\(454\) 0 0
\(455\) 1.63850 + 1.35182i 0.0768141 + 0.0633744i
\(456\) 0 0
\(457\) 26.3998i 1.23493i −0.786599 0.617465i \(-0.788160\pi\)
0.786599 0.617465i \(-0.211840\pi\)
\(458\) 0 0
\(459\) −5.90893 −0.275805
\(460\) 0 0
\(461\) −22.0585 −1.02737 −0.513684 0.857980i \(-0.671720\pi\)
−0.513684 + 0.857980i \(0.671720\pi\)
\(462\) 0 0
\(463\) 1.31425i 0.0610781i 0.999534 + 0.0305391i \(0.00972240\pi\)
−0.999534 + 0.0305391i \(0.990278\pi\)
\(464\) 0 0
\(465\) −10.7617 + 13.0440i −0.499063 + 0.604899i
\(466\) 0 0
\(467\) 14.8898i 0.689017i −0.938783 0.344509i \(-0.888046\pi\)
0.938783 0.344509i \(-0.111954\pi\)
\(468\) 0 0
\(469\) −4.42992 −0.204555
\(470\) 0 0
\(471\) 11.3843 0.524559
\(472\) 0 0
\(473\) 32.3209i 1.48612i
\(474\) 0 0
\(475\) 6.03738 + 31.1982i 0.277014 + 1.43147i
\(476\) 0 0
\(477\) 2.51249i 0.115039i
\(478\) 0 0
\(479\) 3.03653 0.138743 0.0693713 0.997591i \(-0.477901\pi\)
0.0693713 + 0.997591i \(0.477901\pi\)
\(480\) 0 0
\(481\) −1.30537 −0.0595196
\(482\) 0 0
\(483\) 3.13996i 0.142873i
\(484\) 0 0
\(485\) 25.7890 31.2580i 1.17102 1.41935i
\(486\) 0 0
\(487\) 16.2584i 0.736741i −0.929679 0.368370i \(-0.879916\pi\)
0.929679 0.368370i \(-0.120084\pi\)
\(488\) 0 0
\(489\) −2.13144 −0.0963869
\(490\) 0 0
\(491\) 12.5098 0.564558 0.282279 0.959332i \(-0.408910\pi\)
0.282279 + 0.959332i \(0.408910\pi\)
\(492\) 0 0
\(493\) 25.3829i 1.14319i
\(494\) 0 0
\(495\) −6.72005 5.54428i −0.302044 0.249197i
\(496\) 0 0
\(497\) 7.52534i 0.337557i
\(498\) 0 0
\(499\) −0.977442 −0.0437563 −0.0218782 0.999761i \(-0.506965\pi\)
−0.0218782 + 0.999761i \(0.506965\pi\)
\(500\) 0 0
\(501\) −3.00587 −0.134292
\(502\) 0 0
\(503\) 22.9051i 1.02129i 0.859792 + 0.510644i \(0.170593\pi\)
−0.859792 + 0.510644i \(0.829407\pi\)
\(504\) 0 0
\(505\) −20.1667 16.6383i −0.897408 0.740394i
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) 13.2463 0.587132 0.293566 0.955939i \(-0.405158\pi\)
0.293566 + 0.955939i \(0.405158\pi\)
\(510\) 0 0
\(511\) 13.8612 0.613184
\(512\) 0 0
\(513\) 6.35541i 0.280598i
\(514\) 0 0
\(515\) 10.7043 12.9743i 0.471687 0.571717i
\(516\) 0 0
\(517\) 0.0499590i 0.00219720i
\(518\) 0 0
\(519\) 0.673441 0.0295608
\(520\) 0 0
\(521\) −8.70493 −0.381370 −0.190685 0.981651i \(-0.561071\pi\)
−0.190685 + 0.981651i \(0.561071\pi\)
\(522\) 0 0
\(523\) 29.4014i 1.28563i 0.766020 + 0.642817i \(0.222234\pi\)
−0.766020 + 0.642817i \(0.777766\pi\)
\(524\) 0 0
\(525\) 0.902422 + 4.66328i 0.0393849 + 0.203522i
\(526\) 0 0
\(527\) 44.6865i 1.94657i
\(528\) 0 0
\(529\) 12.0745 0.524980
\(530\) 0 0
\(531\) 6.30851 0.273766
\(532\) 0 0
\(533\) 6.75499i 0.292591i
\(534\) 0 0
\(535\) −8.55102 + 10.3644i −0.369693 + 0.448093i
\(536\) 0 0
\(537\) 7.81786i 0.337365i
\(538\) 0 0
\(539\) −23.7568 −1.02328
\(540\) 0 0
\(541\) −1.40100 −0.0602335 −0.0301168 0.999546i \(-0.509588\pi\)
−0.0301168 + 0.999546i \(0.509588\pi\)
\(542\) 0 0
\(543\) 9.53118i 0.409022i
\(544\) 0 0
\(545\) 1.86520 + 1.53886i 0.0798965 + 0.0659175i
\(546\) 0 0
\(547\) 2.42904i 0.103858i 0.998651 + 0.0519292i \(0.0165370\pi\)
−0.998651 + 0.0519292i \(0.983463\pi\)
\(548\) 0 0
\(549\) −1.61324 −0.0688513
\(550\) 0 0
\(551\) 27.3009 1.16306
\(552\) 0 0
\(553\) 15.7697i 0.670595i
\(554\) 0 0
\(555\) −2.25151 1.85758i −0.0955714 0.0788499i
\(556\) 0 0
\(557\) 14.2429i 0.603491i −0.953388 0.301746i \(-0.902431\pi\)
0.953388 0.301746i \(-0.0975693\pi\)
\(558\) 0 0
\(559\) 8.29569 0.350870
\(560\) 0 0
\(561\) −23.0218 −0.971982
\(562\) 0 0
\(563\) 38.1924i 1.60962i −0.593533 0.804810i \(-0.702267\pi\)
0.593533 0.804810i \(-0.297733\pi\)
\(564\) 0 0
\(565\) 10.3829 12.5848i 0.436814 0.529449i
\(566\) 0 0
\(567\) 0.949959i 0.0398945i
\(568\) 0 0
\(569\) 22.1387 0.928104 0.464052 0.885808i \(-0.346395\pi\)
0.464052 + 0.885808i \(0.346395\pi\)
\(570\) 0 0
\(571\) 44.8956 1.87882 0.939412 0.342791i \(-0.111372\pi\)
0.939412 + 0.342791i \(0.111372\pi\)
\(572\) 0 0
\(573\) 16.1073i 0.672890i
\(574\) 0 0
\(575\) −16.2258 + 3.13996i −0.676663 + 0.130945i
\(576\) 0 0
\(577\) 4.07248i 0.169540i −0.996401 0.0847698i \(-0.972984\pi\)
0.996401 0.0847698i \(-0.0270155\pi\)
\(578\) 0 0
\(579\) −13.8967 −0.577529
\(580\) 0 0
\(581\) 12.1636 0.504632
\(582\) 0 0
\(583\) 9.78893i 0.405416i
\(584\) 0 0
\(585\) 1.42303 1.72481i 0.0588351 0.0713122i
\(586\) 0 0
\(587\) 24.5786i 1.01447i −0.861809 0.507233i \(-0.830668\pi\)
0.861809 0.507233i \(-0.169332\pi\)
\(588\) 0 0
\(589\) −48.0630 −1.98040
\(590\) 0 0
\(591\) −11.7647 −0.483934
\(592\) 0 0
\(593\) 0.191663i 0.00787065i −0.999992 0.00393532i \(-0.998747\pi\)
0.999992 0.00393532i \(-0.00125266\pi\)
\(594\) 0 0
\(595\) 9.68179 + 7.98782i 0.396915 + 0.327469i
\(596\) 0 0
\(597\) 8.41513i 0.344408i
\(598\) 0 0
\(599\) 22.5977 0.923316 0.461658 0.887058i \(-0.347255\pi\)
0.461658 + 0.887058i \(0.347255\pi\)
\(600\) 0 0
\(601\) 17.0155 0.694077 0.347039 0.937851i \(-0.387187\pi\)
0.347039 + 0.937851i \(0.387187\pi\)
\(602\) 0 0
\(603\) 4.66328i 0.189903i
\(604\) 0 0
\(605\) −7.20910 5.94776i −0.293091 0.241811i
\(606\) 0 0
\(607\) 34.4651i 1.39889i 0.714684 + 0.699447i \(0.246570\pi\)
−0.714684 + 0.699447i \(0.753430\pi\)
\(608\) 0 0
\(609\) 4.08073 0.165359
\(610\) 0 0
\(611\) −0.0128228 −0.000518755
\(612\) 0 0
\(613\) 7.02682i 0.283810i 0.989880 + 0.141905i \(0.0453228\pi\)
−0.989880 + 0.141905i \(0.954677\pi\)
\(614\) 0 0
\(615\) −9.61257 + 11.6511i −0.387616 + 0.469818i
\(616\) 0 0
\(617\) 12.1122i 0.487620i 0.969823 + 0.243810i \(0.0783973\pi\)
−0.969823 + 0.243810i \(0.921603\pi\)
\(618\) 0 0
\(619\) 30.8710 1.24081 0.620406 0.784281i \(-0.286968\pi\)
0.620406 + 0.784281i \(0.286968\pi\)
\(620\) 0 0
\(621\) 3.30537 0.132640
\(622\) 0 0
\(623\) 16.7708i 0.671908i
\(624\) 0 0
\(625\) −23.1952 + 9.32656i −0.927806 + 0.373062i
\(626\) 0 0
\(627\) 24.7613i 0.988873i
\(628\) 0 0
\(629\) −7.71332 −0.307550
\(630\) 0 0
\(631\) −9.48047 −0.377412 −0.188706 0.982034i \(-0.560429\pi\)
−0.188706 + 0.982034i \(0.560429\pi\)
\(632\) 0 0
\(633\) 11.5402i 0.458681i
\(634\) 0 0
\(635\) −15.2143 + 18.4408i −0.603761 + 0.731800i
\(636\) 0 0
\(637\) 6.09758i 0.241595i
\(638\) 0 0
\(639\) 7.92175 0.313380
\(640\) 0 0
\(641\) 17.3964 0.687118 0.343559 0.939131i \(-0.388367\pi\)
0.343559 + 0.939131i \(0.388367\pi\)
\(642\) 0 0
\(643\) 33.9506i 1.33888i −0.742866 0.669440i \(-0.766534\pi\)
0.742866 0.669440i \(-0.233466\pi\)
\(644\) 0 0
\(645\) 14.3085 + 11.8050i 0.563397 + 0.464823i
\(646\) 0 0
\(647\) 9.18548i 0.361118i −0.983564 0.180559i \(-0.942209\pi\)
0.983564 0.180559i \(-0.0577908\pi\)
\(648\) 0 0
\(649\) 24.5786 0.964796
\(650\) 0 0
\(651\) −7.18409 −0.281567
\(652\) 0 0
\(653\) 3.54781i 0.138837i 0.997588 + 0.0694183i \(0.0221143\pi\)
−0.997588 + 0.0694183i \(0.977886\pi\)
\(654\) 0 0
\(655\) −0.389481 0.321336i −0.0152183 0.0125556i
\(656\) 0 0
\(657\) 14.5914i 0.569264i
\(658\) 0 0
\(659\) −15.5339 −0.605115 −0.302557 0.953131i \(-0.597840\pi\)
−0.302557 + 0.953131i \(0.597840\pi\)
\(660\) 0 0
\(661\) 1.60878 0.0625745 0.0312872 0.999510i \(-0.490039\pi\)
0.0312872 + 0.999510i \(0.490039\pi\)
\(662\) 0 0
\(663\) 5.90893i 0.229484i
\(664\) 0 0
\(665\) −8.59138 + 10.4133i −0.333159 + 0.403812i
\(666\) 0 0
\(667\) 14.1988i 0.549781i
\(668\) 0 0
\(669\) −7.82173 −0.302405
\(670\) 0 0
\(671\) −6.28535 −0.242643
\(672\) 0 0
\(673\) 8.18214i 0.315398i 0.987487 + 0.157699i \(0.0504076\pi\)
−0.987487 + 0.157699i \(0.949592\pi\)
\(674\) 0 0
\(675\) 4.90893 0.949959i 0.188945 0.0365639i
\(676\) 0 0
\(677\) 42.7063i 1.64134i −0.571405 0.820668i \(-0.693601\pi\)
0.571405 0.820668i \(-0.306399\pi\)
\(678\) 0 0
\(679\) 17.2157 0.660677
\(680\) 0 0
\(681\) −21.1316 −0.809764
\(682\) 0 0
\(683\) 9.14962i 0.350100i 0.984560 + 0.175050i \(0.0560088\pi\)
−0.984560 + 0.175050i \(0.943991\pi\)
\(684\) 0 0
\(685\) 9.44648 11.4498i 0.360931 0.437474i
\(686\) 0 0
\(687\) 23.5280i 0.897649i
\(688\) 0 0
\(689\) −2.51249 −0.0957182
\(690\) 0 0
\(691\) 16.9918 0.646398 0.323199 0.946331i \(-0.395242\pi\)
0.323199 + 0.946331i \(0.395242\pi\)
\(692\) 0 0
\(693\) 3.70114i 0.140595i
\(694\) 0 0
\(695\) −5.34274 4.40795i −0.202662 0.167203i
\(696\) 0 0
\(697\) 39.9148i 1.51188i
\(698\) 0 0
\(699\) −6.40612 −0.242302
\(700\) 0 0
\(701\) −40.8320 −1.54220 −0.771101 0.636712i \(-0.780294\pi\)
−0.771101 + 0.636712i \(0.780294\pi\)
\(702\) 0 0
\(703\) 8.29614i 0.312895i
\(704\) 0 0
\(705\) −0.0221169 0.0182473i −0.000832972 0.000687232i
\(706\) 0 0
\(707\) 11.1070i 0.417723i
\(708\) 0 0
\(709\) 38.0193 1.42784 0.713922 0.700225i \(-0.246917\pi\)
0.713922 + 0.700225i \(0.246917\pi\)
\(710\) 0 0
\(711\) 16.6004 0.622563
\(712\) 0 0
\(713\) 24.9969i 0.936143i
\(714\) 0 0
\(715\) 5.54428 6.72005i 0.207344 0.251316i
\(716\) 0 0
\(717\) 12.6696i 0.473156i
\(718\) 0 0
\(719\) 27.9175 1.04115 0.520573 0.853817i \(-0.325718\pi\)
0.520573 + 0.853817i \(0.325718\pi\)
\(720\) 0 0
\(721\) 7.14575 0.266122
\(722\) 0 0
\(723\) 0.206457i 0.00767820i
\(724\) 0 0
\(725\) 4.08073 + 21.0872i 0.151554 + 0.783160i
\(726\) 0 0
\(727\) 4.31960i 0.160205i 0.996787 + 0.0801026i \(0.0255248\pi\)
−0.996787 + 0.0801026i \(0.974475\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 49.0186 1.81302
\(732\) 0 0
\(733\) 13.1669i 0.486330i 0.969985 + 0.243165i \(0.0781857\pi\)
−0.969985 + 0.243165i \(0.921814\pi\)
\(734\) 0 0
\(735\) 8.67705 10.5172i 0.320058 0.387932i
\(736\) 0 0
\(737\) 18.1686i 0.669250i
\(738\) 0 0
\(739\) 2.14218 0.0788014 0.0394007 0.999223i \(-0.487455\pi\)
0.0394007 + 0.999223i \(0.487455\pi\)
\(740\) 0 0
\(741\) 6.35541 0.233472
\(742\) 0 0
\(743\) 24.4771i 0.897979i −0.893537 0.448990i \(-0.851784\pi\)
0.893537 0.448990i \(-0.148216\pi\)
\(744\) 0 0
\(745\) 18.9398 + 15.6260i 0.693902 + 0.572494i
\(746\) 0 0
\(747\) 12.8044i 0.468487i
\(748\) 0 0
\(749\) −5.70831 −0.208577
\(750\) 0 0
\(751\) 12.0058 0.438097 0.219049 0.975714i \(-0.429705\pi\)
0.219049 + 0.975714i \(0.429705\pi\)
\(752\) 0 0
\(753\) 15.5028i 0.564954i
\(754\) 0 0
\(755\) −4.81052 3.96885i −0.175073 0.144441i
\(756\) 0 0
\(757\) 16.8442i 0.612212i 0.951997 + 0.306106i \(0.0990262\pi\)
−0.951997 + 0.306106i \(0.900974\pi\)
\(758\) 0 0
\(759\) 12.8781 0.467444
\(760\) 0 0
\(761\) 3.97932 0.144250 0.0721251 0.997396i \(-0.477022\pi\)
0.0721251 + 0.997396i \(0.477022\pi\)
\(762\) 0 0
\(763\) 1.02728i 0.0371900i
\(764\) 0 0
\(765\) 8.40860 10.1918i 0.304013 0.368485i
\(766\) 0 0
\(767\) 6.30851i 0.227787i
\(768\) 0 0
\(769\) −15.5176 −0.559579 −0.279790 0.960061i \(-0.590265\pi\)
−0.279790 + 0.960061i \(0.590265\pi\)
\(770\) 0 0
\(771\) 6.11944 0.220386
\(772\) 0 0
\(773\) 44.4624i 1.59920i −0.600531 0.799601i \(-0.705044\pi\)
0.600531 0.799601i \(-0.294956\pi\)
\(774\) 0 0
\(775\) −7.18409 37.1239i −0.258060 1.33353i
\(776\) 0 0
\(777\) 1.24004i 0.0444864i
\(778\) 0 0
\(779\) −42.9307 −1.53815
\(780\) 0 0
\(781\) 30.8640 1.10440
\(782\) 0 0
\(783\) 4.29569i 0.153515i
\(784\) 0 0
\(785\) −16.2002 + 19.6357i −0.578209 + 0.700829i
\(786\) 0 0
\(787\) 32.0619i 1.14288i −0.820643 0.571441i \(-0.806384\pi\)
0.820643 0.571441i \(-0.193616\pi\)
\(788\) 0 0
\(789\) 17.1066 0.609011
\(790\) 0 0
\(791\) 6.93124 0.246446
\(792\) 0 0
\(793\) 1.61324i 0.0572878i
\(794\) 0 0
\(795\) −4.33357 3.57535i −0.153696 0.126805i
\(796\) 0 0
\(797\) 24.7378i 0.876260i 0.898912 + 0.438130i \(0.144359\pi\)
−0.898912 + 0.438130i \(0.855641\pi\)
\(798\) 0 0
\(799\) −0.0757691 −0.00268052
\(800\) 0 0
\(801\) 17.6542 0.623782
\(802\) 0 0
\(803\) 56.8496i 2.00618i
\(804\) 0 0
\(805\) −5.41585 4.46827i −0.190884 0.157486i
\(806\) 0 0
\(807\) 27.8981i 0.982061i
\(808\) 0 0
\(809\) −11.3400 −0.398694 −0.199347 0.979929i \(-0.563882\pi\)
−0.199347 + 0.979929i \(0.563882\pi\)
\(810\) 0 0
\(811\) −8.96070 −0.314653 −0.157326 0.987547i \(-0.550287\pi\)
−0.157326 + 0.987547i \(0.550287\pi\)
\(812\) 0 0
\(813\) 28.6569i 1.00504i
\(814\) 0 0
\(815\) 3.03310 3.67633i 0.106245 0.128776i
\(816\) 0 0
\(817\) 52.7225i 1.84453i
\(818\) 0 0
\(819\) 0.949959 0.0331942
\(820\) 0 0
\(821\) 5.28500 0.184448 0.0922239 0.995738i \(-0.470602\pi\)
0.0922239 + 0.995738i \(0.470602\pi\)
\(822\) 0 0
\(823\) 11.2463i 0.392023i −0.980602 0.196012i \(-0.937201\pi\)
0.980602 0.196012i \(-0.0627990\pi\)
\(824\) 0 0
\(825\) 19.1257 3.70114i 0.665872 0.128857i
\(826\) 0 0
\(827\) 42.9625i 1.49395i 0.664851 + 0.746976i \(0.268495\pi\)
−0.664851 + 0.746976i \(0.731505\pi\)
\(828\) 0 0
\(829\) −21.1444 −0.734376 −0.367188 0.930147i \(-0.619679\pi\)
−0.367188 + 0.930147i \(0.619679\pi\)
\(830\) 0 0
\(831\) 0.433599 0.0150414
\(832\) 0 0
\(833\) 36.0302i 1.24837i
\(834\) 0 0
\(835\) 4.27744 5.18455i 0.148027 0.179419i
\(836\) 0 0
\(837\) 7.56253i 0.261399i
\(838\) 0 0
\(839\) −26.3671 −0.910293 −0.455146 0.890417i \(-0.650413\pi\)
−0.455146 + 0.890417i \(0.650413\pi\)
\(840\) 0 0
\(841\) −10.5470 −0.363691
\(842\) 0 0
\(843\) 18.5747i 0.639746i
\(844\) 0 0
\(845\) 1.72481 + 1.42303i 0.0593354 + 0.0489538i
\(846\) 0 0
\(847\) 3.97048i 0.136427i
\(848\) 0 0
\(849\) −21.9360 −0.752840
\(850\) 0 0
\(851\) 4.31472 0.147907
\(852\) 0 0
\(853\) 52.4061i 1.79435i −0.441676 0.897175i \(-0.645616\pi\)
0.441676 0.897175i \(-0.354384\pi\)
\(854\) 0 0
\(855\) 10.9619 + 9.04395i 0.374889 + 0.309297i
\(856\) 0 0
\(857\) 24.6382i 0.841625i 0.907148 + 0.420813i \(0.138255\pi\)
−0.907148 + 0.420813i \(0.861745\pi\)
\(858\) 0 0
\(859\) −47.0110 −1.60399 −0.801997 0.597329i \(-0.796229\pi\)
−0.801997 + 0.597329i \(0.796229\pi\)
\(860\) 0 0
\(861\) −6.41696 −0.218690
\(862\) 0 0
\(863\) 14.9378i 0.508490i −0.967140 0.254245i \(-0.918173\pi\)
0.967140 0.254245i \(-0.0818269\pi\)
\(864\) 0 0
\(865\) −0.958328 + 1.16156i −0.0325841 + 0.0394942i
\(866\) 0 0
\(867\) 17.9154i 0.608440i
\(868\) 0 0
\(869\) 64.6769 2.19401
\(870\) 0 0
\(871\) −4.66328 −0.158009
\(872\) 0 0
\(873\) 18.1226i 0.613356i
\(874\) 0 0
\(875\) −9.32746 5.07949i −0.315326 0.171718i
\(876\) 0 0
\(877\) 29.3418i 0.990801i −0.868665 0.495400i \(-0.835021\pi\)
0.868665 0.495400i \(-0.164979\pi\)
\(878\) 0 0
\(879\) −9.26031 −0.312342
\(880\) 0 0
\(881\) 12.1590 0.409647 0.204824 0.978799i \(-0.434338\pi\)
0.204824 + 0.978799i \(0.434338\pi\)
\(882\) 0 0
\(883\) 31.1431i 1.04805i 0.851703 + 0.524024i \(0.175570\pi\)
−0.851703 + 0.524024i \(0.824430\pi\)
\(884\) 0 0
\(885\) −8.97722 + 10.8810i −0.301766 + 0.365761i
\(886\) 0 0
\(887\) 2.56117i 0.0859955i 0.999075 + 0.0429978i \(0.0136908\pi\)
−0.999075 + 0.0429978i \(0.986309\pi\)
\(888\) 0 0
\(889\) −10.1564 −0.340636
\(890\) 0 0
\(891\) −3.89611 −0.130524
\(892\) 0 0
\(893\) 0.0814942i 0.00272710i
\(894\) 0 0
\(895\) −13.4843 11.1251i −0.450732 0.371870i
\(896\) 0 0
\(897\) 3.30537i 0.110363i
\(898\) 0 0
\(899\) −32.4863 −1.08348
\(900\) 0 0
\(901\) −14.8461 −0.494596
\(902\) 0 0
\(903\) 7.88056i 0.262249i
\(904\) 0 0
\(905\) 16.4395 + 13.5632i 0.546467 + 0.450855i
\(906\) 0 0
\(907\) 34.5273i 1.14646i −0.819394 0.573231i \(-0.805690\pi\)
0.819394 0.573231i \(-0.194310\pi\)
\(908\) 0 0
\(909\) −11.6921 −0.387803
\(910\) 0 0
\(911\) 16.4985 0.546619 0.273309 0.961926i \(-0.411882\pi\)
0.273309 + 0.961926i \(0.411882\pi\)
\(912\) 0 0
\(913\) 49.8872i 1.65102i
\(914\) 0 0
\(915\) 2.29569 2.78253i 0.0758932 0.0919877i
\(916\) 0 0
\(917\) 0.214511i 0.00708377i
\(918\) 0 0
\(919\) 29.8399 0.984327 0.492163 0.870503i \(-0.336206\pi\)
0.492163 + 0.870503i \(0.336206\pi\)
\(920\) 0 0
\(921\) 9.15012 0.301507
\(922\) 0 0
\(923\) 7.92175i 0.260748i
\(924\) 0 0
\(925\) 6.40795 1.24004i 0.210692 0.0407724i
\(926\) 0 0
\(927\) 7.52217i 0.247060i
\(928\) 0 0
\(929\) −29.9391 −0.982270 −0.491135 0.871084i \(-0.663418\pi\)
−0.491135 + 0.871084i \(0.663418\pi\)
\(930\) 0 0
\(931\) 38.7526 1.27007
\(932\) 0 0
\(933\) 8.11488i 0.265669i
\(934\) 0 0
\(935\) 32.7608 39.7083i 1.07139 1.29860i
\(936\) 0 0
\(937\) 32.7542i 1.07003i −0.844842 0.535016i \(-0.820306\pi\)
0.844842 0.535016i \(-0.179694\pi\)
\(938\) 0 0
\(939\) −4.21952 −0.137699
\(940\) 0 0
\(941\) −26.6679 −0.869349 −0.434675 0.900588i \(-0.643137\pi\)
−0.434675 + 0.900588i \(0.643137\pi\)
\(942\) 0 0
\(943\) 22.3277i 0.727091i
\(944\) 0 0
\(945\) 1.63850 + 1.35182i 0.0533004 + 0.0439748i
\(946\) 0 0
\(947\) 16.9685i 0.551402i 0.961243 + 0.275701i \(0.0889099\pi\)
−0.961243 + 0.275701i \(0.911090\pi\)
\(948\) 0 0
\(949\) 14.5914 0.473656
\(950\) 0 0
\(951\) 15.4374 0.500593
\(952\) 0 0
\(953\) 45.6056i 1.47731i 0.674084 + 0.738655i \(0.264539\pi\)
−0.674084 + 0.738655i \(0.735461\pi\)
\(954\) 0 0
\(955\) −27.7820 22.9211i −0.899004 0.741711i
\(956\) 0 0
\(957\) 16.7365i 0.541013i
\(958\) 0 0
\(959\) 6.30609 0.203634
\(960\) 0 0
\(961\) 26.1919 0.844899
\(962\) 0 0
\(963\) 6.00901i 0.193638i
\(964\) 0 0
\(965\) 19.7755 23.9693i 0.636596 0.771599i
\(966\) 0 0
\(967\) 7.77794i 0.250122i −0.992149 0.125061i \(-0.960087\pi\)
0.992149 0.125061i \(-0.0399126\pi\)
\(968\) 0 0
\(969\) 37.5537 1.20640
\(970\) 0 0
\(971\) −14.1572 −0.454327 −0.227163 0.973857i \(-0.572945\pi\)
−0.227163 + 0.973857i \(0.572945\pi\)
\(972\) 0 0
\(973\) 2.94257i 0.0943345i
\(974\) 0 0
\(975\) 0.949959 + 4.90893i 0.0304230 + 0.157212i
\(976\) 0 0
\(977\) 13.0985i 0.419058i −0.977802 0.209529i \(-0.932807\pi\)
0.977802 0.209529i \(-0.0671930\pi\)
\(978\) 0 0
\(979\) 68.7828 2.19831
\(980\) 0 0
\(981\) 1.08139 0.0345263
\(982\) 0 0
\(983\) 49.1176i 1.56661i 0.621638 + 0.783305i \(0.286467\pi\)
−0.621638 + 0.783305i \(0.713533\pi\)
\(984\) 0 0
\(985\) 16.7415 20.2919i 0.533429 0.646552i
\(986\) 0 0
\(987\) 0.0121811i 0.000387730i
\(988\) 0 0
\(989\) −27.4203 −0.871915
\(990\) 0 0
\(991\) −17.0358 −0.541161 −0.270581 0.962697i \(-0.587216\pi\)
−0.270581 + 0.962697i \(0.587216\pi\)
\(992\) 0 0
\(993\) 14.6619i 0.465283i
\(994\) 0 0
\(995\) 14.5145 + 11.9750i 0.460141 + 0.379633i
\(996\) 0 0
\(997\) 8.01802i 0.253933i −0.991907 0.126967i \(-0.959476\pi\)
0.991907 0.126967i \(-0.0405241\pi\)
\(998\) 0 0
\(999\) −1.30537 −0.0413000
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3120.2.l.p.1249.7 10
4.3 odd 2 195.2.c.b.79.1 10
5.4 even 2 inner 3120.2.l.p.1249.2 10
12.11 even 2 585.2.c.c.469.10 10
20.3 even 4 975.2.a.s.1.1 5
20.7 even 4 975.2.a.r.1.5 5
20.19 odd 2 195.2.c.b.79.10 yes 10
60.23 odd 4 2925.2.a.bm.1.5 5
60.47 odd 4 2925.2.a.bl.1.1 5
60.59 even 2 585.2.c.c.469.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.c.b.79.1 10 4.3 odd 2
195.2.c.b.79.10 yes 10 20.19 odd 2
585.2.c.c.469.1 10 60.59 even 2
585.2.c.c.469.10 10 12.11 even 2
975.2.a.r.1.5 5 20.7 even 4
975.2.a.s.1.1 5 20.3 even 4
2925.2.a.bl.1.1 5 60.47 odd 4
2925.2.a.bm.1.5 5 60.23 odd 4
3120.2.l.p.1249.2 10 5.4 even 2 inner
3120.2.l.p.1249.7 10 1.1 even 1 trivial