Properties

Label 3120.2.l.p.1249.6
Level $3120$
Weight $2$
Character 3120.1249
Analytic conductor $24.913$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3120,2,Mod(1249,3120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3120, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3120.1249"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3120.l (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,-2,0,0,0,-10,0,-10,0,0,0,0,0,0,0,16] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.9133254306\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.13266844647424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 16x^{8} + 90x^{6} + 208x^{4} + 169x^{2} + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 195)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1249.6
Root \(-2.26036i\) of defining polynomial
Character \(\chi\) \(=\) 3120.1249
Dual form 3120.2.l.p.1249.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{3} +(-2.23266 + 0.123438i) q^{5} -4.96953i q^{7} -1.00000 q^{9} +3.21640 q^{11} -1.00000i q^{13} +(-0.123438 - 2.23266i) q^{15} -0.448809i q^{17} -7.23291 q^{19} +4.96953 q^{21} -6.26338i q^{23} +(4.96953 - 0.551191i) q^{25} -1.00000i q^{27} +2.21844 q^{29} -2.19148 q^{31} +3.21640i q^{33} +(0.613429 + 11.0953i) q^{35} +8.26338i q^{37} +1.00000 q^{39} +1.79807 q^{41} +6.21844i q^{43} +(2.23266 - 0.123438i) q^{45} -1.66521i q^{47} -17.6962 q^{49} +0.448809 q^{51} -1.16100i q^{53} +(-7.18113 + 0.397027i) q^{55} -7.23291i q^{57} -5.88365 q^{59} -1.76963 q^{61} +4.96953i q^{63} +(0.123438 + 2.23266i) q^{65} +2.73916i q^{67} +6.26338 q^{69} -4.11402 q^{71} +10.4369i q^{73} +(0.551191 + 4.96953i) q^{75} -15.9840i q^{77} +1.05336 q^{79} +1.00000 q^{81} -5.77601i q^{83} +(0.0554002 + 1.00204i) q^{85} +2.21844i q^{87} -11.1326 q^{89} -4.96953 q^{91} -2.19148i q^{93} +(16.1486 - 0.892818i) q^{95} -8.37418i q^{97} -3.21640 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 2 q^{5} - 10 q^{9} - 10 q^{11} + 16 q^{19} + 10 q^{21} + 10 q^{25} - 16 q^{29} - 24 q^{31} - 12 q^{35} + 10 q^{39} + 10 q^{41} + 2 q^{45} - 44 q^{49} + 10 q^{51} - 2 q^{55} + 16 q^{59} + 26 q^{61}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times\).

\(n\) \(1951\) \(2081\) \(2341\) \(2497\) \(2641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.00000i 0.577350i
\(4\) 0 0
\(5\) −2.23266 + 0.123438i −0.998475 + 0.0552033i
\(6\) 0 0
\(7\) 4.96953i 1.87830i −0.343501 0.939152i \(-0.611613\pi\)
0.343501 0.939152i \(-0.388387\pi\)
\(8\) 0 0
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) 3.21640 0.969782 0.484891 0.874575i \(-0.338859\pi\)
0.484891 + 0.874575i \(0.338859\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 0 0
\(15\) −0.123438 2.23266i −0.0318716 0.576470i
\(16\) 0 0
\(17\) 0.448809i 0.108852i −0.998518 0.0544261i \(-0.982667\pi\)
0.998518 0.0544261i \(-0.0173329\pi\)
\(18\) 0 0
\(19\) −7.23291 −1.65934 −0.829672 0.558252i \(-0.811472\pi\)
−0.829672 + 0.558252i \(0.811472\pi\)
\(20\) 0 0
\(21\) 4.96953 1.08444
\(22\) 0 0
\(23\) 6.26338i 1.30601i −0.757355 0.653003i \(-0.773509\pi\)
0.757355 0.653003i \(-0.226491\pi\)
\(24\) 0 0
\(25\) 4.96953 0.551191i 0.993905 0.110238i
\(26\) 0 0
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) 2.21844 0.411954 0.205977 0.978557i \(-0.433963\pi\)
0.205977 + 0.978557i \(0.433963\pi\)
\(30\) 0 0
\(31\) −2.19148 −0.393601 −0.196800 0.980444i \(-0.563055\pi\)
−0.196800 + 0.980444i \(0.563055\pi\)
\(32\) 0 0
\(33\) 3.21640i 0.559904i
\(34\) 0 0
\(35\) 0.613429 + 11.0953i 0.103689 + 1.87544i
\(36\) 0 0
\(37\) 8.26338i 1.35849i 0.733911 + 0.679246i \(0.237693\pi\)
−0.733911 + 0.679246i \(0.762307\pi\)
\(38\) 0 0
\(39\) 1.00000 0.160128
\(40\) 0 0
\(41\) 1.79807 0.280811 0.140405 0.990094i \(-0.455159\pi\)
0.140405 + 0.990094i \(0.455159\pi\)
\(42\) 0 0
\(43\) 6.21844i 0.948303i 0.880443 + 0.474152i \(0.157245\pi\)
−0.880443 + 0.474152i \(0.842755\pi\)
\(44\) 0 0
\(45\) 2.23266 0.123438i 0.332825 0.0184011i
\(46\) 0 0
\(47\) 1.66521i 0.242896i −0.992598 0.121448i \(-0.961246\pi\)
0.992598 0.121448i \(-0.0387538\pi\)
\(48\) 0 0
\(49\) −17.6962 −2.52803
\(50\) 0 0
\(51\) 0.448809 0.0628459
\(52\) 0 0
\(53\) 1.16100i 0.159476i −0.996816 0.0797380i \(-0.974592\pi\)
0.996816 0.0797380i \(-0.0254084\pi\)
\(54\) 0 0
\(55\) −7.18113 + 0.397027i −0.968303 + 0.0535351i
\(56\) 0 0
\(57\) 7.23291i 0.958022i
\(58\) 0 0
\(59\) −5.88365 −0.765986 −0.382993 0.923751i \(-0.625107\pi\)
−0.382993 + 0.923751i \(0.625107\pi\)
\(60\) 0 0
\(61\) −1.76963 −0.226578 −0.113289 0.993562i \(-0.536139\pi\)
−0.113289 + 0.993562i \(0.536139\pi\)
\(62\) 0 0
\(63\) 4.96953i 0.626101i
\(64\) 0 0
\(65\) 0.123438 + 2.23266i 0.0153106 + 0.276927i
\(66\) 0 0
\(67\) 2.73916i 0.334641i 0.985903 + 0.167321i \(0.0535115\pi\)
−0.985903 + 0.167321i \(0.946488\pi\)
\(68\) 0 0
\(69\) 6.26338 0.754023
\(70\) 0 0
\(71\) −4.11402 −0.488244 −0.244122 0.969744i \(-0.578500\pi\)
−0.244122 + 0.969744i \(0.578500\pi\)
\(72\) 0 0
\(73\) 10.4369i 1.22154i 0.791806 + 0.610772i \(0.209141\pi\)
−0.791806 + 0.610772i \(0.790859\pi\)
\(74\) 0 0
\(75\) 0.551191 + 4.96953i 0.0636460 + 0.573831i
\(76\) 0 0
\(77\) 15.9840i 1.82155i
\(78\) 0 0
\(79\) 1.05336 0.118513 0.0592563 0.998243i \(-0.481127\pi\)
0.0592563 + 0.998243i \(0.481127\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) 5.77601i 0.634000i −0.948426 0.317000i \(-0.897325\pi\)
0.948426 0.317000i \(-0.102675\pi\)
\(84\) 0 0
\(85\) 0.0554002 + 1.00204i 0.00600900 + 0.108686i
\(86\) 0 0
\(87\) 2.21844i 0.237842i
\(88\) 0 0
\(89\) −11.1326 −1.18005 −0.590025 0.807385i \(-0.700882\pi\)
−0.590025 + 0.807385i \(0.700882\pi\)
\(90\) 0 0
\(91\) −4.96953 −0.520948
\(92\) 0 0
\(93\) 2.19148i 0.227246i
\(94\) 0 0
\(95\) 16.1486 0.892818i 1.65681 0.0916012i
\(96\) 0 0
\(97\) 8.37418i 0.850270i −0.905130 0.425135i \(-0.860227\pi\)
0.905130 0.425135i \(-0.139773\pi\)
\(98\) 0 0
\(99\) −3.21640 −0.323261
\(100\) 0 0
\(101\) 5.50625 0.547892 0.273946 0.961745i \(-0.411671\pi\)
0.273946 + 0.961745i \(0.411671\pi\)
\(102\) 0 0
\(103\) 1.32082i 0.130144i −0.997881 0.0650722i \(-0.979272\pi\)
0.997881 0.0650722i \(-0.0207278\pi\)
\(104\) 0 0
\(105\) −11.0953 + 0.613429i −1.08279 + 0.0598646i
\(106\) 0 0
\(107\) 7.49024i 0.724109i 0.932157 + 0.362055i \(0.117925\pi\)
−0.932157 + 0.362055i \(0.882075\pi\)
\(108\) 0 0
\(109\) −14.0330 −1.34412 −0.672060 0.740497i \(-0.734590\pi\)
−0.672060 + 0.740497i \(0.734590\pi\)
\(110\) 0 0
\(111\) −8.26338 −0.784326
\(112\) 0 0
\(113\) 11.2269i 1.05613i 0.849203 + 0.528067i \(0.177083\pi\)
−0.849203 + 0.528067i \(0.822917\pi\)
\(114\) 0 0
\(115\) 0.773141 + 13.9840i 0.0720958 + 1.30401i
\(116\) 0 0
\(117\) 1.00000i 0.0924500i
\(118\) 0 0
\(119\) −2.23037 −0.204458
\(120\) 0 0
\(121\) −0.654755 −0.0595232
\(122\) 0 0
\(123\) 1.79807i 0.162126i
\(124\) 0 0
\(125\) −11.0272 + 1.84405i −0.986304 + 0.164937i
\(126\) 0 0
\(127\) 1.50217i 0.133296i 0.997777 + 0.0666481i \(0.0212305\pi\)
−0.997777 + 0.0666481i \(0.978770\pi\)
\(128\) 0 0
\(129\) −6.21844 −0.547503
\(130\) 0 0
\(131\) −12.5477 −1.09630 −0.548148 0.836381i \(-0.684667\pi\)
−0.548148 + 0.836381i \(0.684667\pi\)
\(132\) 0 0
\(133\) 35.9441i 3.11675i
\(134\) 0 0
\(135\) 0.123438 + 2.23266i 0.0106239 + 0.192157i
\(136\) 0 0
\(137\) 10.6797i 0.912427i −0.889870 0.456213i \(-0.849205\pi\)
0.889870 0.456213i \(-0.150795\pi\)
\(138\) 0 0
\(139\) −20.6962 −1.75543 −0.877714 0.479185i \(-0.840932\pi\)
−0.877714 + 0.479185i \(0.840932\pi\)
\(140\) 0 0
\(141\) 1.66521 0.140236
\(142\) 0 0
\(143\) 3.21640i 0.268969i
\(144\) 0 0
\(145\) −4.95302 + 0.273840i −0.411326 + 0.0227412i
\(146\) 0 0
\(147\) 17.6962i 1.45956i
\(148\) 0 0
\(149\) 10.3457 0.847557 0.423778 0.905766i \(-0.360704\pi\)
0.423778 + 0.905766i \(0.360704\pi\)
\(150\) 0 0
\(151\) −9.34779 −0.760712 −0.380356 0.924840i \(-0.624199\pi\)
−0.380356 + 0.924840i \(0.624199\pi\)
\(152\) 0 0
\(153\) 0.448809i 0.0362841i
\(154\) 0 0
\(155\) 4.89282 0.270512i 0.393001 0.0217280i
\(156\) 0 0
\(157\) 0.987506i 0.0788115i 0.999223 + 0.0394058i \(0.0125465\pi\)
−0.999223 + 0.0394058i \(0.987454\pi\)
\(158\) 0 0
\(159\) 1.16100 0.0920735
\(160\) 0 0
\(161\) −31.1260 −2.45308
\(162\) 0 0
\(163\) 11.0635i 0.866559i 0.901260 + 0.433280i \(0.142644\pi\)
−0.901260 + 0.433280i \(0.857356\pi\)
\(164\) 0 0
\(165\) −0.397027 7.18113i −0.0309085 0.559050i
\(166\) 0 0
\(167\) 19.6373i 1.51958i −0.650170 0.759789i \(-0.725302\pi\)
0.650170 0.759789i \(-0.274698\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) 0 0
\(171\) 7.23291 0.553114
\(172\) 0 0
\(173\) 15.4783i 1.17679i −0.808572 0.588397i \(-0.799759\pi\)
0.808572 0.588397i \(-0.200241\pi\)
\(174\) 0 0
\(175\) −2.73916 24.6962i −0.207061 1.86686i
\(176\) 0 0
\(177\) 5.88365i 0.442242i
\(178\) 0 0
\(179\) −3.10238 −0.231883 −0.115941 0.993256i \(-0.536988\pi\)
−0.115941 + 0.993256i \(0.536988\pi\)
\(180\) 0 0
\(181\) 12.8111 0.952239 0.476119 0.879381i \(-0.342043\pi\)
0.476119 + 0.879381i \(0.342043\pi\)
\(182\) 0 0
\(183\) 1.76963i 0.130815i
\(184\) 0 0
\(185\) −1.02002 18.4493i −0.0749932 1.35642i
\(186\) 0 0
\(187\) 1.44355i 0.105563i
\(188\) 0 0
\(189\) −4.96953 −0.361480
\(190\) 0 0
\(191\) −15.1780 −1.09824 −0.549121 0.835743i \(-0.685037\pi\)
−0.549121 + 0.835743i \(0.685037\pi\)
\(192\) 0 0
\(193\) 0.173496i 0.0124885i 0.999981 + 0.00624427i \(0.00198763\pi\)
−0.999981 + 0.00624427i \(0.998012\pi\)
\(194\) 0 0
\(195\) −2.23266 + 0.123438i −0.159884 + 0.00883960i
\(196\) 0 0
\(197\) 4.27989i 0.304930i −0.988309 0.152465i \(-0.951279\pi\)
0.988309 0.152465i \(-0.0487211\pi\)
\(198\) 0 0
\(199\) 16.6843 1.18272 0.591358 0.806409i \(-0.298592\pi\)
0.591358 + 0.806409i \(0.298592\pi\)
\(200\) 0 0
\(201\) −2.73916 −0.193205
\(202\) 0 0
\(203\) 11.0246i 0.773775i
\(204\) 0 0
\(205\) −4.01447 + 0.221950i −0.280383 + 0.0155017i
\(206\) 0 0
\(207\) 6.26338i 0.435335i
\(208\) 0 0
\(209\) −23.2639 −1.60920
\(210\) 0 0
\(211\) 24.3013 1.67297 0.836485 0.547989i \(-0.184606\pi\)
0.836485 + 0.547989i \(0.184606\pi\)
\(212\) 0 0
\(213\) 4.11402i 0.281888i
\(214\) 0 0
\(215\) −0.767593 13.8837i −0.0523494 0.946857i
\(216\) 0 0
\(217\) 10.8906i 0.739302i
\(218\) 0 0
\(219\) −10.4369 −0.705259
\(220\) 0 0
\(221\) −0.448809 −0.0301902
\(222\) 0 0
\(223\) 0.821018i 0.0549794i 0.999622 + 0.0274897i \(0.00875135\pi\)
−0.999622 + 0.0274897i \(0.991249\pi\)
\(224\) 0 0
\(225\) −4.96953 + 0.551191i −0.331302 + 0.0367461i
\(226\) 0 0
\(227\) 6.24591i 0.414555i −0.978282 0.207278i \(-0.933540\pi\)
0.978282 0.207278i \(-0.0664604\pi\)
\(228\) 0 0
\(229\) −20.5766 −1.35974 −0.679871 0.733332i \(-0.737964\pi\)
−0.679871 + 0.733332i \(0.737964\pi\)
\(230\) 0 0
\(231\) 15.9840 1.05167
\(232\) 0 0
\(233\) 5.19402i 0.340271i −0.985421 0.170136i \(-0.945579\pi\)
0.985421 0.170136i \(-0.0544206\pi\)
\(234\) 0 0
\(235\) 0.205551 + 3.71785i 0.0134087 + 0.242526i
\(236\) 0 0
\(237\) 1.05336i 0.0684233i
\(238\) 0 0
\(239\) −12.3229 −0.797100 −0.398550 0.917147i \(-0.630486\pi\)
−0.398550 + 0.917147i \(0.630486\pi\)
\(240\) 0 0
\(241\) −2.41597 −0.155626 −0.0778131 0.996968i \(-0.524794\pi\)
−0.0778131 + 0.996968i \(0.524794\pi\)
\(242\) 0 0
\(243\) 1.00000i 0.0641500i
\(244\) 0 0
\(245\) 39.5095 2.18439i 2.52417 0.139555i
\(246\) 0 0
\(247\) 7.23291i 0.460219i
\(248\) 0 0
\(249\) 5.77601 0.366040
\(250\) 0 0
\(251\) −21.6428 −1.36608 −0.683042 0.730380i \(-0.739343\pi\)
−0.683042 + 0.730380i \(0.739343\pi\)
\(252\) 0 0
\(253\) 20.1456i 1.26654i
\(254\) 0 0
\(255\) −1.00204 + 0.0554002i −0.0627500 + 0.00346930i
\(256\) 0 0
\(257\) 16.9027i 1.05436i 0.849753 + 0.527181i \(0.176751\pi\)
−0.849753 + 0.527181i \(0.823249\pi\)
\(258\) 0 0
\(259\) 41.0651 2.55166
\(260\) 0 0
\(261\) −2.21844 −0.137318
\(262\) 0 0
\(263\) 20.1864i 1.24475i 0.782720 + 0.622374i \(0.213832\pi\)
−0.782720 + 0.622374i \(0.786168\pi\)
\(264\) 0 0
\(265\) 0.143312 + 2.59212i 0.00880359 + 0.159233i
\(266\) 0 0
\(267\) 11.1326i 0.681302i
\(268\) 0 0
\(269\) 29.6277 1.80643 0.903215 0.429188i \(-0.141200\pi\)
0.903215 + 0.429188i \(0.141200\pi\)
\(270\) 0 0
\(271\) −22.2703 −1.35282 −0.676411 0.736524i \(-0.736466\pi\)
−0.676411 + 0.736524i \(0.736466\pi\)
\(272\) 0 0
\(273\) 4.96953i 0.300769i
\(274\) 0 0
\(275\) 15.9840 1.77285i 0.963871 0.106907i
\(276\) 0 0
\(277\) 1.88512i 0.113266i −0.998395 0.0566331i \(-0.981963\pi\)
0.998395 0.0566331i \(-0.0180365\pi\)
\(278\) 0 0
\(279\) 2.19148 0.131200
\(280\) 0 0
\(281\) −8.84827 −0.527843 −0.263922 0.964544i \(-0.585016\pi\)
−0.263922 + 0.964544i \(0.585016\pi\)
\(282\) 0 0
\(283\) 24.0219i 1.42795i −0.700169 0.713977i \(-0.746892\pi\)
0.700169 0.713977i \(-0.253108\pi\)
\(284\) 0 0
\(285\) 0.892818 + 16.1486i 0.0528859 + 0.956561i
\(286\) 0 0
\(287\) 8.93554i 0.527448i
\(288\) 0 0
\(289\) 16.7986 0.988151
\(290\) 0 0
\(291\) 8.37418 0.490903
\(292\) 0 0
\(293\) 22.6019i 1.32042i 0.751082 + 0.660208i \(0.229532\pi\)
−0.751082 + 0.660208i \(0.770468\pi\)
\(294\) 0 0
\(295\) 13.1362 0.726268i 0.764818 0.0422849i
\(296\) 0 0
\(297\) 3.21640i 0.186635i
\(298\) 0 0
\(299\) −6.26338 −0.362221
\(300\) 0 0
\(301\) 30.9027 1.78120
\(302\) 0 0
\(303\) 5.50625i 0.316326i
\(304\) 0 0
\(305\) 3.95098 0.218440i 0.226233 0.0125078i
\(306\) 0 0
\(307\) 2.90858i 0.166001i 0.996549 + 0.0830007i \(0.0264504\pi\)
−0.996549 + 0.0830007i \(0.973550\pi\)
\(308\) 0 0
\(309\) 1.32082 0.0751389
\(310\) 0 0
\(311\) −7.13290 −0.404469 −0.202235 0.979337i \(-0.564820\pi\)
−0.202235 + 0.979337i \(0.564820\pi\)
\(312\) 0 0
\(313\) 26.8418i 1.51719i −0.651565 0.758593i \(-0.725887\pi\)
0.651565 0.758593i \(-0.274113\pi\)
\(314\) 0 0
\(315\) −0.613429 11.0953i −0.0345628 0.625147i
\(316\) 0 0
\(317\) 8.19000i 0.459996i −0.973191 0.229998i \(-0.926128\pi\)
0.973191 0.229998i \(-0.0738720\pi\)
\(318\) 0 0
\(319\) 7.13540 0.399505
\(320\) 0 0
\(321\) −7.49024 −0.418065
\(322\) 0 0
\(323\) 3.24620i 0.180623i
\(324\) 0 0
\(325\) −0.551191 4.96953i −0.0305746 0.275660i
\(326\) 0 0
\(327\) 14.0330i 0.776027i
\(328\) 0 0
\(329\) −8.27531 −0.456233
\(330\) 0 0
\(331\) 4.75599 0.261413 0.130707 0.991421i \(-0.458275\pi\)
0.130707 + 0.991421i \(0.458275\pi\)
\(332\) 0 0
\(333\) 8.26338i 0.452831i
\(334\) 0 0
\(335\) −0.338117 6.11560i −0.0184733 0.334131i
\(336\) 0 0
\(337\) 4.54361i 0.247506i 0.992313 + 0.123753i \(0.0394930\pi\)
−0.992313 + 0.123753i \(0.960507\pi\)
\(338\) 0 0
\(339\) −11.2269 −0.609759
\(340\) 0 0
\(341\) −7.04867 −0.381707
\(342\) 0 0
\(343\) 53.1550i 2.87010i
\(344\) 0 0
\(345\) −13.9840 + 0.773141i −0.752873 + 0.0416245i
\(346\) 0 0
\(347\) 33.2648i 1.78575i 0.450307 + 0.892874i \(0.351314\pi\)
−0.450307 + 0.892874i \(0.648686\pi\)
\(348\) 0 0
\(349\) −19.6460 −1.05163 −0.525813 0.850600i \(-0.676239\pi\)
−0.525813 + 0.850600i \(0.676239\pi\)
\(350\) 0 0
\(351\) −1.00000 −0.0533761
\(352\) 0 0
\(353\) 12.1609i 0.647262i −0.946183 0.323631i \(-0.895096\pi\)
0.946183 0.323631i \(-0.104904\pi\)
\(354\) 0 0
\(355\) 9.18520 0.507827i 0.487500 0.0269527i
\(356\) 0 0
\(357\) 2.23037i 0.118044i
\(358\) 0 0
\(359\) −23.5378 −1.24228 −0.621139 0.783701i \(-0.713330\pi\)
−0.621139 + 0.783701i \(0.713330\pi\)
\(360\) 0 0
\(361\) 33.3150 1.75342
\(362\) 0 0
\(363\) 0.654755i 0.0343657i
\(364\) 0 0
\(365\) −1.28831 23.3020i −0.0674332 1.21968i
\(366\) 0 0
\(367\) 12.5944i 0.657421i 0.944431 + 0.328710i \(0.106614\pi\)
−0.944431 + 0.328710i \(0.893386\pi\)
\(368\) 0 0
\(369\) −1.79807 −0.0936036
\(370\) 0 0
\(371\) −5.76963 −0.299544
\(372\) 0 0
\(373\) 10.6585i 0.551875i −0.961176 0.275938i \(-0.911012\pi\)
0.961176 0.275938i \(-0.0889883\pi\)
\(374\) 0 0
\(375\) −1.84405 11.0272i −0.0952263 0.569443i
\(376\) 0 0
\(377\) 2.21844i 0.114255i
\(378\) 0 0
\(379\) −22.5065 −1.15608 −0.578040 0.816009i \(-0.696182\pi\)
−0.578040 + 0.816009i \(0.696182\pi\)
\(380\) 0 0
\(381\) −1.50217 −0.0769586
\(382\) 0 0
\(383\) 6.22399i 0.318031i −0.987276 0.159015i \(-0.949168\pi\)
0.987276 0.159015i \(-0.0508320\pi\)
\(384\) 0 0
\(385\) 1.97304 + 35.6868i 0.100555 + 1.81877i
\(386\) 0 0
\(387\) 6.21844i 0.316101i
\(388\) 0 0
\(389\) 6.49059 0.329086 0.164543 0.986370i \(-0.447385\pi\)
0.164543 + 0.986370i \(0.447385\pi\)
\(390\) 0 0
\(391\) −2.81106 −0.142162
\(392\) 0 0
\(393\) 12.5477i 0.632947i
\(394\) 0 0
\(395\) −2.35180 + 0.130025i −0.118332 + 0.00654228i
\(396\) 0 0
\(397\) 13.0832i 0.656628i 0.944569 + 0.328314i \(0.106480\pi\)
−0.944569 + 0.328314i \(0.893520\pi\)
\(398\) 0 0
\(399\) −35.9441 −1.79946
\(400\) 0 0
\(401\) 24.2326 1.21012 0.605060 0.796180i \(-0.293149\pi\)
0.605060 + 0.796180i \(0.293149\pi\)
\(402\) 0 0
\(403\) 2.19148i 0.109165i
\(404\) 0 0
\(405\) −2.23266 + 0.123438i −0.110942 + 0.00613369i
\(406\) 0 0
\(407\) 26.5784i 1.31744i
\(408\) 0 0
\(409\) −2.52576 −0.124891 −0.0624454 0.998048i \(-0.519890\pi\)
−0.0624454 + 0.998048i \(0.519890\pi\)
\(410\) 0 0
\(411\) 10.6797 0.526790
\(412\) 0 0
\(413\) 29.2390i 1.43876i
\(414\) 0 0
\(415\) 0.712981 + 12.8959i 0.0349988 + 0.633033i
\(416\) 0 0
\(417\) 20.6962i 1.01350i
\(418\) 0 0
\(419\) 29.1917 1.42611 0.713054 0.701109i \(-0.247312\pi\)
0.713054 + 0.701109i \(0.247312\pi\)
\(420\) 0 0
\(421\) −22.3719 −1.09034 −0.545169 0.838326i \(-0.683534\pi\)
−0.545169 + 0.838326i \(0.683534\pi\)
\(422\) 0 0
\(423\) 1.66521i 0.0809654i
\(424\) 0 0
\(425\) −0.247380 2.23037i −0.0119997 0.108189i
\(426\) 0 0
\(427\) 8.79423i 0.425582i
\(428\) 0 0
\(429\) 3.21640 0.155289
\(430\) 0 0
\(431\) 26.6111 1.28181 0.640906 0.767619i \(-0.278559\pi\)
0.640906 + 0.767619i \(0.278559\pi\)
\(432\) 0 0
\(433\) 10.4369i 0.501564i 0.968044 + 0.250782i \(0.0806878\pi\)
−0.968044 + 0.250782i \(0.919312\pi\)
\(434\) 0 0
\(435\) −0.273840 4.95302i −0.0131296 0.237479i
\(436\) 0 0
\(437\) 45.3025i 2.16711i
\(438\) 0 0
\(439\) −28.0916 −1.34074 −0.670370 0.742027i \(-0.733865\pi\)
−0.670370 + 0.742027i \(0.733865\pi\)
\(440\) 0 0
\(441\) 17.6962 0.842676
\(442\) 0 0
\(443\) 28.9146i 1.37378i −0.726764 0.686888i \(-0.758976\pi\)
0.726764 0.686888i \(-0.241024\pi\)
\(444\) 0 0
\(445\) 24.8552 1.37418i 1.17825 0.0651426i
\(446\) 0 0
\(447\) 10.3457i 0.489337i
\(448\) 0 0
\(449\) −27.9652 −1.31976 −0.659879 0.751372i \(-0.729392\pi\)
−0.659879 + 0.751372i \(0.729392\pi\)
\(450\) 0 0
\(451\) 5.78331 0.272325
\(452\) 0 0
\(453\) 9.34779i 0.439197i
\(454\) 0 0
\(455\) 11.0953 0.613429i 0.520154 0.0287580i
\(456\) 0 0
\(457\) 28.7251i 1.34370i 0.740685 + 0.671852i \(0.234501\pi\)
−0.740685 + 0.671852i \(0.765499\pi\)
\(458\) 0 0
\(459\) −0.448809 −0.0209486
\(460\) 0 0
\(461\) 5.81017 0.270607 0.135303 0.990804i \(-0.456799\pi\)
0.135303 + 0.990804i \(0.456799\pi\)
\(462\) 0 0
\(463\) 27.1743i 1.26290i 0.775418 + 0.631448i \(0.217539\pi\)
−0.775418 + 0.631448i \(0.782461\pi\)
\(464\) 0 0
\(465\) 0.270512 + 4.89282i 0.0125447 + 0.226899i
\(466\) 0 0
\(467\) 23.1290i 1.07028i 0.844763 + 0.535141i \(0.179742\pi\)
−0.844763 + 0.535141i \(0.820258\pi\)
\(468\) 0 0
\(469\) 13.6123 0.628558
\(470\) 0 0
\(471\) −0.987506 −0.0455019
\(472\) 0 0
\(473\) 20.0010i 0.919647i
\(474\) 0 0
\(475\) −35.9441 + 3.98671i −1.64923 + 0.182923i
\(476\) 0 0
\(477\) 1.16100i 0.0531586i
\(478\) 0 0
\(479\) 23.3243 1.06571 0.532856 0.846206i \(-0.321119\pi\)
0.532856 + 0.846206i \(0.321119\pi\)
\(480\) 0 0
\(481\) 8.26338 0.376778
\(482\) 0 0
\(483\) 31.1260i 1.41628i
\(484\) 0 0
\(485\) 1.03369 + 18.6967i 0.0469376 + 0.848973i
\(486\) 0 0
\(487\) 7.23466i 0.327834i −0.986474 0.163917i \(-0.947587\pi\)
0.986474 0.163917i \(-0.0524129\pi\)
\(488\) 0 0
\(489\) −11.0635 −0.500308
\(490\) 0 0
\(491\) 42.9453 1.93809 0.969047 0.246874i \(-0.0794035\pi\)
0.969047 + 0.246874i \(0.0794035\pi\)
\(492\) 0 0
\(493\) 0.995656i 0.0448421i
\(494\) 0 0
\(495\) 7.18113 0.397027i 0.322768 0.0178450i
\(496\) 0 0
\(497\) 20.4447i 0.917072i
\(498\) 0 0
\(499\) −18.0487 −0.807969 −0.403985 0.914766i \(-0.632375\pi\)
−0.403985 + 0.914766i \(0.632375\pi\)
\(500\) 0 0
\(501\) 19.6373 0.877329
\(502\) 0 0
\(503\) 10.3252i 0.460376i −0.973146 0.230188i \(-0.926066\pi\)
0.973146 0.230188i \(-0.0739342\pi\)
\(504\) 0 0
\(505\) −12.2936 + 0.679681i −0.547057 + 0.0302454i
\(506\) 0 0
\(507\) 1.00000i 0.0444116i
\(508\) 0 0
\(509\) 8.57786 0.380207 0.190104 0.981764i \(-0.439118\pi\)
0.190104 + 0.981764i \(0.439118\pi\)
\(510\) 0 0
\(511\) 51.8663 2.29443
\(512\) 0 0
\(513\) 7.23291i 0.319341i
\(514\) 0 0
\(515\) 0.163040 + 2.94894i 0.00718440 + 0.129946i
\(516\) 0 0
\(517\) 5.35599i 0.235556i
\(518\) 0 0
\(519\) 15.4783 0.679423
\(520\) 0 0
\(521\) 8.44706 0.370072 0.185036 0.982732i \(-0.440760\pi\)
0.185036 + 0.982732i \(0.440760\pi\)
\(522\) 0 0
\(523\) 31.5650i 1.38024i 0.723694 + 0.690121i \(0.242443\pi\)
−0.723694 + 0.690121i \(0.757557\pi\)
\(524\) 0 0
\(525\) 24.6962 2.73916i 1.07783 0.119547i
\(526\) 0 0
\(527\) 0.983555i 0.0428443i
\(528\) 0 0
\(529\) −16.2300 −0.705651
\(530\) 0 0
\(531\) 5.88365 0.255329
\(532\) 0 0
\(533\) 1.79807i 0.0778829i
\(534\) 0 0
\(535\) −0.924582 16.7232i −0.0399732 0.723005i
\(536\) 0 0
\(537\) 3.10238i 0.133878i
\(538\) 0 0
\(539\) −56.9181 −2.45163
\(540\) 0 0
\(541\) 24.7478 1.06399 0.531995 0.846747i \(-0.321442\pi\)
0.531995 + 0.846747i \(0.321442\pi\)
\(542\) 0 0
\(543\) 12.8111i 0.549775i
\(544\) 0 0
\(545\) 31.3309 1.73221i 1.34207 0.0741997i
\(546\) 0 0
\(547\) 25.9207i 1.10829i 0.832420 + 0.554145i \(0.186955\pi\)
−0.832420 + 0.554145i \(0.813045\pi\)
\(548\) 0 0
\(549\) 1.76963 0.0755260
\(550\) 0 0
\(551\) −16.0458 −0.683573
\(552\) 0 0
\(553\) 5.23471i 0.222603i
\(554\) 0 0
\(555\) 18.4493 1.02002i 0.783130 0.0432973i
\(556\) 0 0
\(557\) 35.3538i 1.49799i −0.662577 0.748993i \(-0.730537\pi\)
0.662577 0.748993i \(-0.269463\pi\)
\(558\) 0 0
\(559\) 6.21844 0.263012
\(560\) 0 0
\(561\) 1.44355 0.0609468
\(562\) 0 0
\(563\) 22.3919i 0.943708i −0.881677 0.471854i \(-0.843585\pi\)
0.881677 0.471854i \(-0.156415\pi\)
\(564\) 0 0
\(565\) −1.38582 25.0657i −0.0583020 1.05452i
\(566\) 0 0
\(567\) 4.96953i 0.208700i
\(568\) 0 0
\(569\) −41.1034 −1.72314 −0.861572 0.507636i \(-0.830520\pi\)
−0.861572 + 0.507636i \(0.830520\pi\)
\(570\) 0 0
\(571\) −28.3848 −1.18787 −0.593933 0.804514i \(-0.702426\pi\)
−0.593933 + 0.804514i \(0.702426\pi\)
\(572\) 0 0
\(573\) 15.1780i 0.634071i
\(574\) 0 0
\(575\) −3.45232 31.1260i −0.143972 1.29805i
\(576\) 0 0
\(577\) 5.44592i 0.226716i −0.993554 0.113358i \(-0.963839\pi\)
0.993554 0.113358i \(-0.0361608\pi\)
\(578\) 0 0
\(579\) −0.173496 −0.00721026
\(580\) 0 0
\(581\) −28.7040 −1.19084
\(582\) 0 0
\(583\) 3.73425i 0.154657i
\(584\) 0 0
\(585\) −0.123438 2.23266i −0.00510354 0.0923091i
\(586\) 0 0
\(587\) 18.7717i 0.774790i −0.921914 0.387395i \(-0.873375\pi\)
0.921914 0.387395i \(-0.126625\pi\)
\(588\) 0 0
\(589\) 15.8508 0.653119
\(590\) 0 0
\(591\) 4.27989 0.176051
\(592\) 0 0
\(593\) 39.9300i 1.63973i −0.572559 0.819863i \(-0.694049\pi\)
0.572559 0.819863i \(-0.305951\pi\)
\(594\) 0 0
\(595\) 4.97965 0.275313i 0.204146 0.0112867i
\(596\) 0 0
\(597\) 16.6843i 0.682841i
\(598\) 0 0
\(599\) 36.7310 1.50079 0.750393 0.660992i \(-0.229864\pi\)
0.750393 + 0.660992i \(0.229864\pi\)
\(600\) 0 0
\(601\) −25.7376 −1.04986 −0.524930 0.851146i \(-0.675908\pi\)
−0.524930 + 0.851146i \(0.675908\pi\)
\(602\) 0 0
\(603\) 2.73916i 0.111547i
\(604\) 0 0
\(605\) 1.46184 0.0808218i 0.0594324 0.00328587i
\(606\) 0 0
\(607\) 3.95975i 0.160721i 0.996766 + 0.0803606i \(0.0256072\pi\)
−0.996766 + 0.0803606i \(0.974393\pi\)
\(608\) 0 0
\(609\) 11.0246 0.446739
\(610\) 0 0
\(611\) −1.66521 −0.0673673
\(612\) 0 0
\(613\) 14.0707i 0.568311i 0.958778 + 0.284156i \(0.0917132\pi\)
−0.958778 + 0.284156i \(0.908287\pi\)
\(614\) 0 0
\(615\) −0.221950 4.01447i −0.00894990 0.161879i
\(616\) 0 0
\(617\) 31.6852i 1.27560i 0.770204 + 0.637798i \(0.220155\pi\)
−0.770204 + 0.637798i \(0.779845\pi\)
\(618\) 0 0
\(619\) 12.4566 0.500673 0.250337 0.968159i \(-0.419459\pi\)
0.250337 + 0.968159i \(0.419459\pi\)
\(620\) 0 0
\(621\) −6.26338 −0.251341
\(622\) 0 0
\(623\) 55.3236i 2.21649i
\(624\) 0 0
\(625\) 24.3924 5.47831i 0.975695 0.219133i
\(626\) 0 0
\(627\) 23.2639i 0.929073i
\(628\) 0 0
\(629\) 3.70868 0.147875
\(630\) 0 0
\(631\) 14.8500 0.591167 0.295584 0.955317i \(-0.404486\pi\)
0.295584 + 0.955317i \(0.404486\pi\)
\(632\) 0 0
\(633\) 24.3013i 0.965890i
\(634\) 0 0
\(635\) −0.185425 3.35384i −0.00735838 0.133093i
\(636\) 0 0
\(637\) 17.6962i 0.701149i
\(638\) 0 0
\(639\) 4.11402 0.162748
\(640\) 0 0
\(641\) 13.2878 0.524837 0.262418 0.964954i \(-0.415480\pi\)
0.262418 + 0.964954i \(0.415480\pi\)
\(642\) 0 0
\(643\) 18.7409i 0.739069i −0.929217 0.369535i \(-0.879517\pi\)
0.929217 0.369535i \(-0.120483\pi\)
\(644\) 0 0
\(645\) 13.8837 0.767593i 0.546668 0.0302240i
\(646\) 0 0
\(647\) 30.9106i 1.21522i 0.794236 + 0.607610i \(0.207871\pi\)
−0.794236 + 0.607610i \(0.792129\pi\)
\(648\) 0 0
\(649\) −18.9242 −0.742840
\(650\) 0 0
\(651\) −10.8906 −0.426836
\(652\) 0 0
\(653\) 1.99040i 0.0778903i −0.999241 0.0389452i \(-0.987600\pi\)
0.999241 0.0389452i \(-0.0123998\pi\)
\(654\) 0 0
\(655\) 28.0147 1.54886i 1.09462 0.0605191i
\(656\) 0 0
\(657\) 10.4369i 0.407181i
\(658\) 0 0
\(659\) 38.5954 1.50346 0.751731 0.659470i \(-0.229219\pi\)
0.751731 + 0.659470i \(0.229219\pi\)
\(660\) 0 0
\(661\) −10.3150 −0.401206 −0.200603 0.979673i \(-0.564290\pi\)
−0.200603 + 0.979673i \(0.564290\pi\)
\(662\) 0 0
\(663\) 0.448809i 0.0174303i
\(664\) 0 0
\(665\) −4.43688 80.2510i −0.172055 3.11200i
\(666\) 0 0
\(667\) 13.8949i 0.538014i
\(668\) 0 0
\(669\) −0.821018 −0.0317424
\(670\) 0 0
\(671\) −5.69185 −0.219731
\(672\) 0 0
\(673\) 19.1024i 0.736343i 0.929758 + 0.368171i \(0.120016\pi\)
−0.929758 + 0.368171i \(0.879984\pi\)
\(674\) 0 0
\(675\) −0.551191 4.96953i −0.0212153 0.191277i
\(676\) 0 0
\(677\) 18.2482i 0.701336i 0.936500 + 0.350668i \(0.114045\pi\)
−0.936500 + 0.350668i \(0.885955\pi\)
\(678\) 0 0
\(679\) −41.6157 −1.59706
\(680\) 0 0
\(681\) 6.24591 0.239344
\(682\) 0 0
\(683\) 45.2264i 1.73054i −0.501306 0.865270i \(-0.667147\pi\)
0.501306 0.865270i \(-0.332853\pi\)
\(684\) 0 0
\(685\) 1.31828 + 23.8441i 0.0503689 + 0.911035i
\(686\) 0 0
\(687\) 20.5766i 0.785047i
\(688\) 0 0
\(689\) −1.16100 −0.0442307
\(690\) 0 0
\(691\) −12.4293 −0.472831 −0.236416 0.971652i \(-0.575973\pi\)
−0.236416 + 0.971652i \(0.575973\pi\)
\(692\) 0 0
\(693\) 15.9840i 0.607182i
\(694\) 0 0
\(695\) 46.2075 2.55470i 1.75275 0.0969053i
\(696\) 0 0
\(697\) 0.806989i 0.0305669i
\(698\) 0 0
\(699\) 5.19402 0.196456
\(700\) 0 0
\(701\) −30.9611 −1.16939 −0.584693 0.811254i \(-0.698785\pi\)
−0.584693 + 0.811254i \(0.698785\pi\)
\(702\) 0 0
\(703\) 59.7683i 2.25420i
\(704\) 0 0
\(705\) −3.71785 + 0.205551i −0.140022 + 0.00774149i
\(706\) 0 0
\(707\) 27.3634i 1.02911i
\(708\) 0 0
\(709\) −2.20069 −0.0826486 −0.0413243 0.999146i \(-0.513158\pi\)
−0.0413243 + 0.999146i \(0.513158\pi\)
\(710\) 0 0
\(711\) −1.05336 −0.0395042
\(712\) 0 0
\(713\) 13.7261i 0.514045i
\(714\) 0 0
\(715\) 0.397027 + 7.18113i 0.0148480 + 0.268559i
\(716\) 0 0
\(717\) 12.3229i 0.460206i
\(718\) 0 0
\(719\) −44.5913 −1.66297 −0.831487 0.555543i \(-0.812510\pi\)
−0.831487 + 0.555543i \(0.812510\pi\)
\(720\) 0 0
\(721\) −6.56386 −0.244451
\(722\) 0 0
\(723\) 2.41597i 0.0898508i
\(724\) 0 0
\(725\) 11.0246 1.22278i 0.409443 0.0454130i
\(726\) 0 0
\(727\) 34.7808i 1.28995i −0.764204 0.644974i \(-0.776868\pi\)
0.764204 0.644974i \(-0.223132\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 0 0
\(731\) 2.79089 0.103225
\(732\) 0 0
\(733\) 31.0158i 1.14560i −0.819697 0.572798i \(-0.805858\pi\)
0.819697 0.572798i \(-0.194142\pi\)
\(734\) 0 0
\(735\) 2.18439 + 39.5095i 0.0805723 + 1.45733i
\(736\) 0 0
\(737\) 8.81023i 0.324529i
\(738\) 0 0
\(739\) 37.9029 1.39428 0.697141 0.716934i \(-0.254455\pi\)
0.697141 + 0.716934i \(0.254455\pi\)
\(740\) 0 0
\(741\) −7.23291 −0.265708
\(742\) 0 0
\(743\) 14.6939i 0.539066i −0.962991 0.269533i \(-0.913131\pi\)
0.962991 0.269533i \(-0.0868694\pi\)
\(744\) 0 0
\(745\) −23.0985 + 1.27706i −0.846264 + 0.0467879i
\(746\) 0 0
\(747\) 5.77601i 0.211333i
\(748\) 0 0
\(749\) 37.2230 1.36010
\(750\) 0 0
\(751\) 32.5622 1.18821 0.594106 0.804387i \(-0.297506\pi\)
0.594106 + 0.804387i \(0.297506\pi\)
\(752\) 0 0
\(753\) 21.6428i 0.788708i
\(754\) 0 0
\(755\) 20.8704 1.15387i 0.759552 0.0419938i
\(756\) 0 0
\(757\) 15.2365i 0.553779i 0.960902 + 0.276889i \(0.0893035\pi\)
−0.960902 + 0.276889i \(0.910696\pi\)
\(758\) 0 0
\(759\) 20.1456 0.731238
\(760\) 0 0
\(761\) 51.5327 1.86806 0.934030 0.357194i \(-0.116266\pi\)
0.934030 + 0.357194i \(0.116266\pi\)
\(762\) 0 0
\(763\) 69.7374i 2.52466i
\(764\) 0 0
\(765\) −0.0554002 1.00204i −0.00200300 0.0362287i
\(766\) 0 0
\(767\) 5.88365i 0.212446i
\(768\) 0 0
\(769\) −28.7148 −1.03548 −0.517741 0.855538i \(-0.673227\pi\)
−0.517741 + 0.855538i \(0.673227\pi\)
\(770\) 0 0
\(771\) −16.9027 −0.608736
\(772\) 0 0
\(773\) 34.5120i 1.24131i −0.784084 0.620655i \(-0.786867\pi\)
0.784084 0.620655i \(-0.213133\pi\)
\(774\) 0 0
\(775\) −10.8906 + 1.20792i −0.391202 + 0.0433898i
\(776\) 0 0
\(777\) 41.0651i 1.47320i
\(778\) 0 0
\(779\) −13.0053 −0.465962
\(780\) 0 0
\(781\) −13.2323 −0.473491
\(782\) 0 0
\(783\) 2.21844i 0.0792806i
\(784\) 0 0
\(785\) −0.121896 2.20476i −0.00435065 0.0786914i
\(786\) 0 0
\(787\) 34.2046i 1.21926i 0.792685 + 0.609631i \(0.208682\pi\)
−0.792685 + 0.609631i \(0.791318\pi\)
\(788\) 0 0
\(789\) −20.1864 −0.718656
\(790\) 0 0
\(791\) 55.7922 1.98374
\(792\) 0 0
\(793\) 1.76963i 0.0628414i
\(794\) 0 0
\(795\) −2.59212 + 0.143312i −0.0919331 + 0.00508276i
\(796\) 0 0
\(797\) 42.9365i 1.52089i −0.649402 0.760445i \(-0.724981\pi\)
0.649402 0.760445i \(-0.275019\pi\)
\(798\) 0 0
\(799\) −0.747362 −0.0264398
\(800\) 0 0
\(801\) 11.1326 0.393350
\(802\) 0 0
\(803\) 33.5692i 1.18463i
\(804\) 0 0
\(805\) 69.4938 3.84214i 2.44934 0.135418i
\(806\) 0 0
\(807\) 29.6277i 1.04294i
\(808\) 0 0
\(809\) 8.42320 0.296144 0.148072 0.988977i \(-0.452693\pi\)
0.148072 + 0.988977i \(0.452693\pi\)
\(810\) 0 0
\(811\) −39.8090 −1.39788 −0.698941 0.715180i \(-0.746345\pi\)
−0.698941 + 0.715180i \(0.746345\pi\)
\(812\) 0 0
\(813\) 22.2703i 0.781052i
\(814\) 0 0
\(815\) −1.36566 24.7010i −0.0478369 0.865238i
\(816\) 0 0
\(817\) 44.9774i 1.57356i
\(818\) 0 0
\(819\) 4.96953 0.173649
\(820\) 0 0
\(821\) −29.3494 −1.02430 −0.512151 0.858895i \(-0.671151\pi\)
−0.512151 + 0.858895i \(0.671151\pi\)
\(822\) 0 0
\(823\) 4.65419i 0.162235i 0.996705 + 0.0811174i \(0.0258489\pi\)
−0.996705 + 0.0811174i \(0.974151\pi\)
\(824\) 0 0
\(825\) 1.77285 + 15.9840i 0.0617228 + 0.556491i
\(826\) 0 0
\(827\) 53.8430i 1.87231i −0.351593 0.936153i \(-0.614360\pi\)
0.351593 0.936153i \(-0.385640\pi\)
\(828\) 0 0
\(829\) 4.58070 0.159094 0.0795471 0.996831i \(-0.474653\pi\)
0.0795471 + 0.996831i \(0.474653\pi\)
\(830\) 0 0
\(831\) 1.88512 0.0653942
\(832\) 0 0
\(833\) 7.94221i 0.275181i
\(834\) 0 0
\(835\) 2.42399 + 43.8433i 0.0838857 + 1.51726i
\(836\) 0 0
\(837\) 2.19148i 0.0757485i
\(838\) 0 0
\(839\) 21.2754 0.734509 0.367254 0.930121i \(-0.380298\pi\)
0.367254 + 0.930121i \(0.380298\pi\)
\(840\) 0 0
\(841\) −24.0785 −0.830294
\(842\) 0 0
\(843\) 8.84827i 0.304751i
\(844\) 0 0
\(845\) 2.23266 0.123438i 0.0768058 0.00424640i
\(846\) 0 0
\(847\) 3.25382i 0.111803i
\(848\) 0 0
\(849\) 24.0219 0.824430
\(850\) 0 0
\(851\) 51.7567 1.77420
\(852\) 0 0
\(853\) 15.5689i 0.533070i −0.963825 0.266535i \(-0.914121\pi\)
0.963825 0.266535i \(-0.0858789\pi\)
\(854\) 0 0
\(855\) −16.1486 + 0.892818i −0.552271 + 0.0305337i
\(856\) 0 0
\(857\) 18.5524i 0.633737i 0.948469 + 0.316869i \(0.102631\pi\)
−0.948469 + 0.316869i \(0.897369\pi\)
\(858\) 0 0
\(859\) −26.2980 −0.897275 −0.448638 0.893714i \(-0.648091\pi\)
−0.448638 + 0.893714i \(0.648091\pi\)
\(860\) 0 0
\(861\) 8.93554 0.304522
\(862\) 0 0
\(863\) 0.537842i 0.0183083i 0.999958 + 0.00915417i \(0.00291390\pi\)
−0.999958 + 0.00915417i \(0.997086\pi\)
\(864\) 0 0
\(865\) 1.91062 + 34.5578i 0.0649629 + 1.17500i
\(866\) 0 0
\(867\) 16.7986i 0.570509i
\(868\) 0 0
\(869\) 3.38804 0.114931
\(870\) 0 0
\(871\) 2.73916 0.0928128
\(872\) 0 0
\(873\) 8.37418i 0.283423i
\(874\) 0 0
\(875\) 9.16406 + 54.8000i 0.309802 + 1.85258i
\(876\) 0 0
\(877\) 49.9065i 1.68522i −0.538523 0.842611i \(-0.681018\pi\)
0.538523 0.842611i \(-0.318982\pi\)
\(878\) 0 0
\(879\) −22.6019 −0.762343
\(880\) 0 0
\(881\) 41.0327 1.38243 0.691213 0.722651i \(-0.257076\pi\)
0.691213 + 0.722651i \(0.257076\pi\)
\(882\) 0 0
\(883\) 6.59753i 0.222025i −0.993819 0.111012i \(-0.964591\pi\)
0.993819 0.111012i \(-0.0354093\pi\)
\(884\) 0 0
\(885\) 0.726268 + 13.1362i 0.0244132 + 0.441568i
\(886\) 0 0
\(887\) 9.02521i 0.303037i 0.988454 + 0.151519i \(0.0484163\pi\)
−0.988454 + 0.151519i \(0.951584\pi\)
\(888\) 0 0
\(889\) 7.46508 0.250371
\(890\) 0 0
\(891\) 3.21640 0.107754
\(892\) 0 0
\(893\) 12.0443i 0.403048i
\(894\) 0 0
\(895\) 6.92656 0.382952i 0.231529 0.0128007i
\(896\) 0 0
\(897\) 6.26338i 0.209128i
\(898\) 0 0
\(899\) −4.86166 −0.162145
\(900\) 0 0
\(901\) −0.521069 −0.0173593
\(902\) 0 0
\(903\) 30.9027i 1.02838i
\(904\) 0 0
\(905\) −28.6027 + 1.58138i −0.950787 + 0.0525667i
\(906\) 0 0
\(907\) 15.5850i 0.517493i 0.965945 + 0.258746i \(0.0833094\pi\)
−0.965945 + 0.258746i \(0.916691\pi\)
\(908\) 0 0
\(909\) −5.50625 −0.182631
\(910\) 0 0
\(911\) −2.86303 −0.0948564 −0.0474282 0.998875i \(-0.515103\pi\)
−0.0474282 + 0.998875i \(0.515103\pi\)
\(912\) 0 0
\(913\) 18.5780i 0.614841i
\(914\) 0 0
\(915\) 0.218440 + 3.95098i 0.00722141 + 0.130615i
\(916\) 0 0
\(917\) 62.3560i 2.05918i
\(918\) 0 0
\(919\) −53.0874 −1.75119 −0.875596 0.483045i \(-0.839531\pi\)
−0.875596 + 0.483045i \(0.839531\pi\)
\(920\) 0 0
\(921\) −2.90858 −0.0958409
\(922\) 0 0
\(923\) 4.11402i 0.135415i
\(924\) 0 0
\(925\) 4.55470 + 41.0651i 0.149758 + 1.35021i
\(926\) 0 0
\(927\) 1.32082i 0.0433815i
\(928\) 0 0
\(929\) −25.0925 −0.823259 −0.411630 0.911351i \(-0.635040\pi\)
−0.411630 + 0.911351i \(0.635040\pi\)
\(930\) 0 0
\(931\) 127.995 4.19486
\(932\) 0 0
\(933\) 7.13290i 0.233521i
\(934\) 0 0
\(935\) 0.178189 + 3.22296i 0.00582742 + 0.105402i
\(936\) 0 0
\(937\) 54.5029i 1.78053i −0.455441 0.890266i \(-0.650518\pi\)
0.455441 0.890266i \(-0.349482\pi\)
\(938\) 0 0
\(939\) 26.8418 0.875947
\(940\) 0 0
\(941\) 32.3538 1.05470 0.527351 0.849647i \(-0.323185\pi\)
0.527351 + 0.849647i \(0.323185\pi\)
\(942\) 0 0
\(943\) 11.2620i 0.366741i
\(944\) 0 0
\(945\) 11.0953 0.613429i 0.360929 0.0199549i
\(946\) 0 0
\(947\) 36.3069i 1.17981i 0.807471 + 0.589907i \(0.200836\pi\)
−0.807471 + 0.589907i \(0.799164\pi\)
\(948\) 0 0
\(949\) 10.4369 0.338795
\(950\) 0 0
\(951\) 8.19000 0.265579
\(952\) 0 0
\(953\) 13.3176i 0.431399i −0.976460 0.215699i \(-0.930797\pi\)
0.976460 0.215699i \(-0.0692031\pi\)
\(954\) 0 0
\(955\) 33.8873 1.87355i 1.09657 0.0606266i
\(956\) 0 0
\(957\) 7.13540i 0.230655i
\(958\) 0 0
\(959\) −53.0730 −1.71382
\(960\) 0 0
\(961\) −26.1974 −0.845078
\(962\) 0 0
\(963\) 7.49024i 0.241370i
\(964\) 0 0
\(965\) −0.0214161 0.387358i −0.000689408 0.0124695i
\(966\) 0 0
\(967\) 46.9352i 1.50933i −0.656108 0.754667i \(-0.727798\pi\)
0.656108 0.754667i \(-0.272202\pi\)
\(968\) 0 0
\(969\) −3.24620 −0.104283
\(970\) 0 0
\(971\) 22.5340 0.723151 0.361575 0.932343i \(-0.382239\pi\)
0.361575 + 0.932343i \(0.382239\pi\)
\(972\) 0 0
\(973\) 102.850i 3.29723i
\(974\) 0 0
\(975\) 4.96953 0.551191i 0.159152 0.0176522i
\(976\) 0 0
\(977\) 59.9345i 1.91747i −0.284296 0.958737i \(-0.591760\pi\)
0.284296 0.958737i \(-0.408240\pi\)
\(978\) 0 0
\(979\) −35.8068 −1.14439
\(980\) 0 0
\(981\) 14.0330 0.448040
\(982\) 0 0
\(983\) 52.0879i 1.66135i −0.556760 0.830673i \(-0.687956\pi\)
0.556760 0.830673i \(-0.312044\pi\)
\(984\) 0 0
\(985\) 0.528302 + 9.55553i 0.0168331 + 0.304465i
\(986\) 0 0
\(987\) 8.27531i 0.263406i
\(988\) 0 0
\(989\) 38.9485 1.23849
\(990\) 0 0
\(991\) −18.6973 −0.593940 −0.296970 0.954887i \(-0.595976\pi\)
−0.296970 + 0.954887i \(0.595976\pi\)
\(992\) 0 0
\(993\) 4.75599i 0.150927i
\(994\) 0 0
\(995\) −37.2503 + 2.05948i −1.18091 + 0.0652898i
\(996\) 0 0
\(997\) 18.9805i 0.601118i 0.953763 + 0.300559i \(0.0971732\pi\)
−0.953763 + 0.300559i \(0.902827\pi\)
\(998\) 0 0
\(999\) 8.26338 0.261442
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3120.2.l.p.1249.6 10
4.3 odd 2 195.2.c.b.79.9 yes 10
5.4 even 2 inner 3120.2.l.p.1249.1 10
12.11 even 2 585.2.c.c.469.2 10
20.3 even 4 975.2.a.s.1.5 5
20.7 even 4 975.2.a.r.1.1 5
20.19 odd 2 195.2.c.b.79.2 10
60.23 odd 4 2925.2.a.bm.1.1 5
60.47 odd 4 2925.2.a.bl.1.5 5
60.59 even 2 585.2.c.c.469.9 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
195.2.c.b.79.2 10 20.19 odd 2
195.2.c.b.79.9 yes 10 4.3 odd 2
585.2.c.c.469.2 10 12.11 even 2
585.2.c.c.469.9 10 60.59 even 2
975.2.a.r.1.1 5 20.7 even 4
975.2.a.s.1.5 5 20.3 even 4
2925.2.a.bl.1.5 5 60.47 odd 4
2925.2.a.bm.1.1 5 60.23 odd 4
3120.2.l.p.1249.1 10 5.4 even 2 inner
3120.2.l.p.1249.6 10 1.1 even 1 trivial