Properties

Label 3120.1.dl.c
Level $3120$
Weight $1$
Character orbit 3120.dl
Analytic conductor $1.557$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
CM discriminant -39
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3120,1,Mod(467,3120)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3120, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2, 1, 2])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3120.467"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3120 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3120.dl (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,-2,2,-2,0,0,-2,0,2,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.55708283941\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.389376000.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - i q^{2} - i q^{3} - q^{4} + q^{5} - q^{6} + i q^{8} - q^{9} - i q^{10} + ( - i + 1) q^{11} + i q^{12} + q^{13} - i q^{15} + q^{16} + i q^{18} - q^{20} + ( - i - 1) q^{22} + q^{24} + q^{25} + \cdots + (i - 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 2 q^{5} - 2 q^{6} - 2 q^{9} + 2 q^{11} + 2 q^{13} + 2 q^{16} - 2 q^{20} - 2 q^{22} + 2 q^{24} + 2 q^{25} - 2 q^{30} - 2 q^{33} + 2 q^{36} + 4 q^{43} - 2 q^{44} - 2 q^{45} - 2 q^{47} - 2 q^{52}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3120\mathbb{Z}\right)^\times\).

\(n\) \(1951\) \(2081\) \(2341\) \(2497\) \(2641\)
\(\chi(n)\) \(-1\) \(-1\) \(i\) \(-i\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
467.1
1.00000i
1.00000i
1.00000i 1.00000i −1.00000 1.00000 −1.00000 0 1.00000i −1.00000 1.00000i
1403.1 1.00000i 1.00000i −1.00000 1.00000 −1.00000 0 1.00000i −1.00000 1.00000i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
39.d odd 2 1 CM by \(\Q(\sqrt{-39}) \)
80.j even 4 1 inner
3120.dl odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3120.1.dl.c yes 2
3.b odd 2 1 3120.1.dl.b 2
5.c odd 4 1 3120.1.dq.d yes 2
13.b even 2 1 3120.1.dl.b 2
15.e even 4 1 3120.1.dq.a yes 2
16.f odd 4 1 3120.1.dq.d yes 2
39.d odd 2 1 CM 3120.1.dl.c yes 2
48.k even 4 1 3120.1.dq.a yes 2
65.h odd 4 1 3120.1.dq.a yes 2
80.j even 4 1 inner 3120.1.dl.c yes 2
195.s even 4 1 3120.1.dq.d yes 2
208.o odd 4 1 3120.1.dq.a yes 2
240.bd odd 4 1 3120.1.dl.b 2
624.v even 4 1 3120.1.dq.d yes 2
1040.y even 4 1 3120.1.dl.b 2
3120.dl odd 4 1 inner 3120.1.dl.c yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3120.1.dl.b 2 3.b odd 2 1
3120.1.dl.b 2 13.b even 2 1
3120.1.dl.b 2 240.bd odd 4 1
3120.1.dl.b 2 1040.y even 4 1
3120.1.dl.c yes 2 1.a even 1 1 trivial
3120.1.dl.c yes 2 39.d odd 2 1 CM
3120.1.dl.c yes 2 80.j even 4 1 inner
3120.1.dl.c yes 2 3120.dl odd 4 1 inner
3120.1.dq.a yes 2 15.e even 4 1
3120.1.dq.a yes 2 48.k even 4 1
3120.1.dq.a yes 2 65.h odd 4 1
3120.1.dq.a yes 2 208.o odd 4 1
3120.1.dq.d yes 2 5.c odd 4 1
3120.1.dq.d yes 2 16.f odd 4 1
3120.1.dq.d yes 2 195.s even 4 1
3120.1.dq.d yes 2 624.v even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3120, [\chi])\):

\( T_{11}^{2} - 2T_{11} + 2 \) Copy content Toggle raw display
\( T_{41}^{2} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( (T - 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$13$ \( (T - 1)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + 4 \) Copy content Toggle raw display
$43$ \( (T - 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$61$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T + 2)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( (T + 2)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less