Properties

Label 312.6.q.a.217.4
Level $312$
Weight $6$
Character 312.217
Analytic conductor $50.040$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,6,Mod(217,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.217"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 0, 4])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 312.q (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,-72] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(50.0397517816\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} - 27696 x^{14} - 39172 x^{13} + 293413850 x^{12} + 1900944112 x^{11} + \cdots + 23\!\cdots\!33 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{26}\cdot 3^{2}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 217.4
Root \(-3.19246 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 312.217
Dual form 312.6.q.a.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.50000 + 7.79423i) q^{3} -8.30754 q^{5} +(-49.9909 - 86.5868i) q^{7} +(-40.5000 - 70.1481i) q^{9} +(188.412 - 326.339i) q^{11} +(525.236 + 308.902i) q^{13} +(37.3839 - 64.7509i) q^{15} +(-532.492 - 922.304i) q^{17} +(1374.49 + 2380.68i) q^{19} +899.836 q^{21} +(-778.742 + 1348.82i) q^{23} -3055.98 q^{25} +729.000 q^{27} +(-312.678 + 541.573i) q^{29} -3224.93 q^{31} +(1695.71 + 2937.05i) q^{33} +(415.302 + 719.324i) q^{35} +(2134.48 - 3697.03i) q^{37} +(-4771.21 + 2703.75i) q^{39} +(-6909.63 + 11967.8i) q^{41} +(-7108.66 - 12312.6i) q^{43} +(336.456 + 582.758i) q^{45} -14147.7 q^{47} +(3405.32 - 5898.18i) q^{49} +9584.86 q^{51} +36417.9 q^{53} +(-1565.24 + 2711.07i) q^{55} -24740.8 q^{57} +(-8314.37 - 14400.9i) q^{59} +(-16929.7 - 29323.2i) q^{61} +(-4049.26 + 7013.53i) q^{63} +(-4363.42 - 2566.22i) q^{65} +(-29001.5 + 50232.1i) q^{67} +(-7008.68 - 12139.4i) q^{69} +(-24974.9 - 43257.8i) q^{71} -25626.4 q^{73} +(13751.9 - 23819.0i) q^{75} -37675.5 q^{77} -50862.8 q^{79} +(-3280.50 + 5681.99i) q^{81} -75917.6 q^{83} +(4423.70 + 7662.08i) q^{85} +(-2814.10 - 4874.16i) q^{87} +(46625.4 - 80757.6i) q^{89} +(489.852 - 60920.8i) q^{91} +(14512.2 - 25135.8i) q^{93} +(-11418.6 - 19777.6i) q^{95} +(40034.5 + 69341.9i) q^{97} -30522.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 72 q^{3} - 188 q^{5} + 138 q^{7} - 648 q^{9} + 612 q^{11} - 228 q^{13} + 846 q^{15} + 1450 q^{17} + 1064 q^{19} - 2484 q^{21} + 1768 q^{23} + 7628 q^{25} + 11664 q^{27} - 3338 q^{29} - 3724 q^{31}+ \cdots - 99144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/312\mathbb{Z}\right)^\times\).

\(n\) \(79\) \(145\) \(157\) \(209\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −4.50000 + 7.79423i −0.288675 + 0.500000i
\(4\) 0 0
\(5\) −8.30754 −0.148610 −0.0743049 0.997236i \(-0.523674\pi\)
−0.0743049 + 0.997236i \(0.523674\pi\)
\(6\) 0 0
\(7\) −49.9909 86.5868i −0.385608 0.667892i 0.606245 0.795278i \(-0.292675\pi\)
−0.991853 + 0.127385i \(0.959342\pi\)
\(8\) 0 0
\(9\) −40.5000 70.1481i −0.166667 0.288675i
\(10\) 0 0
\(11\) 188.412 326.339i 0.469490 0.813180i −0.529902 0.848059i \(-0.677771\pi\)
0.999392 + 0.0348789i \(0.0111046\pi\)
\(12\) 0 0
\(13\) 525.236 + 308.902i 0.861977 + 0.506947i
\(14\) 0 0
\(15\) 37.3839 64.7509i 0.0429000 0.0743049i
\(16\) 0 0
\(17\) −532.492 922.304i −0.446880 0.774019i 0.551301 0.834306i \(-0.314132\pi\)
−0.998181 + 0.0602875i \(0.980798\pi\)
\(18\) 0 0
\(19\) 1374.49 + 2380.68i 0.873489 + 1.51293i 0.858364 + 0.513041i \(0.171481\pi\)
0.0151247 + 0.999886i \(0.495185\pi\)
\(20\) 0 0
\(21\) 899.836 0.445262
\(22\) 0 0
\(23\) −778.742 + 1348.82i −0.306955 + 0.531661i −0.977695 0.210032i \(-0.932643\pi\)
0.670740 + 0.741693i \(0.265977\pi\)
\(24\) 0 0
\(25\) −3055.98 −0.977915
\(26\) 0 0
\(27\) 729.000 0.192450
\(28\) 0 0
\(29\) −312.678 + 541.573i −0.0690401 + 0.119581i −0.898479 0.439016i \(-0.855327\pi\)
0.829439 + 0.558597i \(0.188660\pi\)
\(30\) 0 0
\(31\) −3224.93 −0.602720 −0.301360 0.953510i \(-0.597441\pi\)
−0.301360 + 0.953510i \(0.597441\pi\)
\(32\) 0 0
\(33\) 1695.71 + 2937.05i 0.271060 + 0.469490i
\(34\) 0 0
\(35\) 415.302 + 719.324i 0.0573051 + 0.0992554i
\(36\) 0 0
\(37\) 2134.48 3697.03i 0.256324 0.443965i −0.708931 0.705278i \(-0.750822\pi\)
0.965254 + 0.261313i \(0.0841554\pi\)
\(38\) 0 0
\(39\) −4771.21 + 2703.75i −0.502305 + 0.284646i
\(40\) 0 0
\(41\) −6909.63 + 11967.8i −0.641941 + 1.11188i 0.343057 + 0.939314i \(0.388537\pi\)
−0.984999 + 0.172561i \(0.944796\pi\)
\(42\) 0 0
\(43\) −7108.66 12312.6i −0.586295 1.01549i −0.994713 0.102698i \(-0.967253\pi\)
0.408417 0.912795i \(-0.366081\pi\)
\(44\) 0 0
\(45\) 336.456 + 582.758i 0.0247683 + 0.0429000i
\(46\) 0 0
\(47\) −14147.7 −0.934203 −0.467101 0.884204i \(-0.654702\pi\)
−0.467101 + 0.884204i \(0.654702\pi\)
\(48\) 0 0
\(49\) 3405.32 5898.18i 0.202613 0.350936i
\(50\) 0 0
\(51\) 9584.86 0.516013
\(52\) 0 0
\(53\) 36417.9 1.78084 0.890422 0.455136i \(-0.150409\pi\)
0.890422 + 0.455136i \(0.150409\pi\)
\(54\) 0 0
\(55\) −1565.24 + 2711.07i −0.0697708 + 0.120847i
\(56\) 0 0
\(57\) −24740.8 −1.00862
\(58\) 0 0
\(59\) −8314.37 14400.9i −0.310956 0.538592i 0.667613 0.744508i \(-0.267316\pi\)
−0.978570 + 0.205916i \(0.933983\pi\)
\(60\) 0 0
\(61\) −16929.7 29323.2i −0.582540 1.00899i −0.995177 0.0980932i \(-0.968726\pi\)
0.412637 0.910895i \(-0.364608\pi\)
\(62\) 0 0
\(63\) −4049.26 + 7013.53i −0.128536 + 0.222631i
\(64\) 0 0
\(65\) −4363.42 2566.22i −0.128098 0.0753373i
\(66\) 0 0
\(67\) −29001.5 + 50232.1i −0.789285 + 1.36708i 0.137121 + 0.990554i \(0.456215\pi\)
−0.926406 + 0.376527i \(0.877118\pi\)
\(68\) 0 0
\(69\) −7008.68 12139.4i −0.177220 0.306955i
\(70\) 0 0
\(71\) −24974.9 43257.8i −0.587973 1.01840i −0.994498 0.104760i \(-0.966593\pi\)
0.406524 0.913640i \(-0.366741\pi\)
\(72\) 0 0
\(73\) −25626.4 −0.562834 −0.281417 0.959586i \(-0.590804\pi\)
−0.281417 + 0.959586i \(0.590804\pi\)
\(74\) 0 0
\(75\) 13751.9 23819.0i 0.282300 0.488958i
\(76\) 0 0
\(77\) −37675.5 −0.724156
\(78\) 0 0
\(79\) −50862.8 −0.916923 −0.458461 0.888714i \(-0.651599\pi\)
−0.458461 + 0.888714i \(0.651599\pi\)
\(80\) 0 0
\(81\) −3280.50 + 5681.99i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) −75917.6 −1.20961 −0.604807 0.796372i \(-0.706750\pi\)
−0.604807 + 0.796372i \(0.706750\pi\)
\(84\) 0 0
\(85\) 4423.70 + 7662.08i 0.0664108 + 0.115027i
\(86\) 0 0
\(87\) −2814.10 4874.16i −0.0398603 0.0690401i
\(88\) 0 0
\(89\) 46625.4 80757.6i 0.623947 1.08071i −0.364797 0.931087i \(-0.618862\pi\)
0.988744 0.149620i \(-0.0478051\pi\)
\(90\) 0 0
\(91\) 489.852 60920.8i 0.00620100 0.771191i
\(92\) 0 0
\(93\) 14512.2 25135.8i 0.173990 0.301360i
\(94\) 0 0
\(95\) −11418.6 19777.6i −0.129809 0.224836i
\(96\) 0 0
\(97\) 40034.5 + 69341.9i 0.432022 + 0.748284i 0.997047 0.0767898i \(-0.0244671\pi\)
−0.565026 + 0.825073i \(0.691134\pi\)
\(98\) 0 0
\(99\) −30522.7 −0.312993
\(100\) 0 0
\(101\) −23603.8 + 40882.9i −0.230239 + 0.398785i −0.957878 0.287175i \(-0.907284\pi\)
0.727640 + 0.685960i \(0.240617\pi\)
\(102\) 0 0
\(103\) −91933.6 −0.853849 −0.426925 0.904287i \(-0.640403\pi\)
−0.426925 + 0.904287i \(0.640403\pi\)
\(104\) 0 0
\(105\) −7475.43 −0.0661703
\(106\) 0 0
\(107\) −60480.3 + 104755.i −0.510687 + 0.884536i 0.489236 + 0.872151i \(0.337276\pi\)
−0.999923 + 0.0123846i \(0.996058\pi\)
\(108\) 0 0
\(109\) −188986. −1.52357 −0.761787 0.647827i \(-0.775678\pi\)
−0.761787 + 0.647827i \(0.775678\pi\)
\(110\) 0 0
\(111\) 19210.4 + 33273.3i 0.147988 + 0.256324i
\(112\) 0 0
\(113\) −79649.4 137957.i −0.586795 1.01636i −0.994649 0.103312i \(-0.967056\pi\)
0.407854 0.913047i \(-0.366277\pi\)
\(114\) 0 0
\(115\) 6469.43 11205.4i 0.0456165 0.0790101i
\(116\) 0 0
\(117\) 396.852 49354.8i 0.00268018 0.333323i
\(118\) 0 0
\(119\) −53239.5 + 92213.6i −0.344641 + 0.596936i
\(120\) 0 0
\(121\) 9527.59 + 16502.3i 0.0591588 + 0.102466i
\(122\) 0 0
\(123\) −62186.7 107711.i −0.370625 0.641941i
\(124\) 0 0
\(125\) 51348.8 0.293938
\(126\) 0 0
\(127\) −143235. + 248090.i −0.788024 + 1.36490i 0.139151 + 0.990271i \(0.455563\pi\)
−0.927176 + 0.374627i \(0.877771\pi\)
\(128\) 0 0
\(129\) 127956. 0.676995
\(130\) 0 0
\(131\) −90405.3 −0.460273 −0.230136 0.973158i \(-0.573917\pi\)
−0.230136 + 0.973158i \(0.573917\pi\)
\(132\) 0 0
\(133\) 137424. 238025.i 0.673648 1.16679i
\(134\) 0 0
\(135\) −6056.20 −0.0286000
\(136\) 0 0
\(137\) −138697. 240230.i −0.631343 1.09352i −0.987277 0.159008i \(-0.949170\pi\)
0.355934 0.934511i \(-0.384163\pi\)
\(138\) 0 0
\(139\) 160749. + 278426.i 0.705687 + 1.22229i 0.966443 + 0.256881i \(0.0826948\pi\)
−0.260756 + 0.965405i \(0.583972\pi\)
\(140\) 0 0
\(141\) 63664.7 110270.i 0.269681 0.467101i
\(142\) 0 0
\(143\) 199767. 113204.i 0.816929 0.462936i
\(144\) 0 0
\(145\) 2597.58 4499.14i 0.0102600 0.0177709i
\(146\) 0 0
\(147\) 30647.9 + 53083.7i 0.116979 + 0.202613i
\(148\) 0 0
\(149\) 38971.4 + 67500.4i 0.143807 + 0.249081i 0.928927 0.370262i \(-0.120732\pi\)
−0.785120 + 0.619343i \(0.787399\pi\)
\(150\) 0 0
\(151\) −112154. −0.400288 −0.200144 0.979766i \(-0.564141\pi\)
−0.200144 + 0.979766i \(0.564141\pi\)
\(152\) 0 0
\(153\) −43131.9 + 74706.6i −0.148960 + 0.258006i
\(154\) 0 0
\(155\) 26791.2 0.0895701
\(156\) 0 0
\(157\) −486043. −1.57371 −0.786856 0.617137i \(-0.788293\pi\)
−0.786856 + 0.617137i \(0.788293\pi\)
\(158\) 0 0
\(159\) −163881. + 283850.i −0.514085 + 0.890422i
\(160\) 0 0
\(161\) 155720. 0.473456
\(162\) 0 0
\(163\) −186993. 323882.i −0.551261 0.954811i −0.998184 0.0602391i \(-0.980814\pi\)
0.446923 0.894572i \(-0.352520\pi\)
\(164\) 0 0
\(165\) −14087.1 24399.6i −0.0402822 0.0697708i
\(166\) 0 0
\(167\) −241984. + 419129.i −0.671423 + 1.16294i 0.306078 + 0.952007i \(0.400983\pi\)
−0.977501 + 0.210932i \(0.932350\pi\)
\(168\) 0 0
\(169\) 180452. + 324493.i 0.486009 + 0.873954i
\(170\) 0 0
\(171\) 111334. 192835.i 0.291163 0.504309i
\(172\) 0 0
\(173\) 342555. + 593322.i 0.870191 + 1.50722i 0.861798 + 0.507251i \(0.169338\pi\)
0.00839283 + 0.999965i \(0.497328\pi\)
\(174\) 0 0
\(175\) 152771. + 264608.i 0.377092 + 0.653142i
\(176\) 0 0
\(177\) 149659. 0.359061
\(178\) 0 0
\(179\) 304510. 527426.i 0.710343 1.23035i −0.254385 0.967103i \(-0.581873\pi\)
0.964728 0.263248i \(-0.0847937\pi\)
\(180\) 0 0
\(181\) −195779. −0.444190 −0.222095 0.975025i \(-0.571290\pi\)
−0.222095 + 0.975025i \(0.571290\pi\)
\(182\) 0 0
\(183\) 304735. 0.672659
\(184\) 0 0
\(185\) −17732.3 + 30713.3i −0.0380922 + 0.0659776i
\(186\) 0 0
\(187\) −401311. −0.839222
\(188\) 0 0
\(189\) −36443.4 63121.8i −0.0742103 0.128536i
\(190\) 0 0
\(191\) 11582.8 + 20062.0i 0.0229737 + 0.0397915i 0.877284 0.479972i \(-0.159353\pi\)
−0.854310 + 0.519764i \(0.826020\pi\)
\(192\) 0 0
\(193\) 412798. 714987.i 0.797709 1.38167i −0.123396 0.992358i \(-0.539378\pi\)
0.921105 0.389315i \(-0.127288\pi\)
\(194\) 0 0
\(195\) 39637.1 22461.5i 0.0746475 0.0423011i
\(196\) 0 0
\(197\) 418929. 725607.i 0.769087 1.33210i −0.168972 0.985621i \(-0.554045\pi\)
0.938059 0.346477i \(-0.112622\pi\)
\(198\) 0 0
\(199\) 35950.1 + 62267.3i 0.0643527 + 0.111462i 0.896407 0.443233i \(-0.146168\pi\)
−0.832054 + 0.554695i \(0.812835\pi\)
\(200\) 0 0
\(201\) −261014. 452089.i −0.455694 0.789285i
\(202\) 0 0
\(203\) 62524.1 0.106490
\(204\) 0 0
\(205\) 57402.1 99423.3i 0.0953988 0.165236i
\(206\) 0 0
\(207\) 126156. 0.204636
\(208\) 0 0
\(209\) 1.03588e6 1.64038
\(210\) 0 0
\(211\) −511148. + 885334.i −0.790388 + 1.36899i 0.135339 + 0.990799i \(0.456788\pi\)
−0.925727 + 0.378193i \(0.876546\pi\)
\(212\) 0 0
\(213\) 449548. 0.678933
\(214\) 0 0
\(215\) 59055.5 + 102287.i 0.0871292 + 0.150912i
\(216\) 0 0
\(217\) 161217. + 279236.i 0.232413 + 0.402552i
\(218\) 0 0
\(219\) 115319. 199738.i 0.162476 0.281417i
\(220\) 0 0
\(221\) 5217.80 648915.i 0.00718632 0.893731i
\(222\) 0 0
\(223\) −317534. + 549985.i −0.427591 + 0.740609i −0.996658 0.0816816i \(-0.973971\pi\)
0.569068 + 0.822291i \(0.307304\pi\)
\(224\) 0 0
\(225\) 123767. + 214371.i 0.162986 + 0.282300i
\(226\) 0 0
\(227\) −99025.7 171518.i −0.127551 0.220925i 0.795176 0.606378i \(-0.207378\pi\)
−0.922727 + 0.385454i \(0.874045\pi\)
\(228\) 0 0
\(229\) 631542. 0.795818 0.397909 0.917425i \(-0.369736\pi\)
0.397909 + 0.917425i \(0.369736\pi\)
\(230\) 0 0
\(231\) 169540. 293651.i 0.209046 0.362078i
\(232\) 0 0
\(233\) −322934. −0.389694 −0.194847 0.980834i \(-0.562421\pi\)
−0.194847 + 0.980834i \(0.562421\pi\)
\(234\) 0 0
\(235\) 117533. 0.138832
\(236\) 0 0
\(237\) 228883. 396436.i 0.264693 0.458461i
\(238\) 0 0
\(239\) 58666.5 0.0664347 0.0332174 0.999448i \(-0.489425\pi\)
0.0332174 + 0.999448i \(0.489425\pi\)
\(240\) 0 0
\(241\) 476024. + 824497.i 0.527942 + 0.914422i 0.999469 + 0.0325704i \(0.0103693\pi\)
−0.471528 + 0.881851i \(0.656297\pi\)
\(242\) 0 0
\(243\) −29524.5 51137.9i −0.0320750 0.0555556i
\(244\) 0 0
\(245\) −28289.8 + 48999.4i −0.0301103 + 0.0521526i
\(246\) 0 0
\(247\) −13468.4 + 1.67500e6i −0.0140467 + 1.74692i
\(248\) 0 0
\(249\) 341629. 591719.i 0.349186 0.604807i
\(250\) 0 0
\(251\) 380656. + 659316.i 0.381372 + 0.660555i 0.991259 0.131933i \(-0.0421185\pi\)
−0.609887 + 0.792488i \(0.708785\pi\)
\(252\) 0 0
\(253\) 293448. + 508267.i 0.288224 + 0.499219i
\(254\) 0 0
\(255\) −79626.6 −0.0766846
\(256\) 0 0
\(257\) 213274. 369401.i 0.201421 0.348871i −0.747566 0.664188i \(-0.768777\pi\)
0.948986 + 0.315317i \(0.102111\pi\)
\(258\) 0 0
\(259\) −426819. −0.395362
\(260\) 0 0
\(261\) 50653.8 0.0460268
\(262\) 0 0
\(263\) 1.03918e6 1.79991e6i 0.926407 1.60458i 0.137124 0.990554i \(-0.456214\pi\)
0.789283 0.614030i \(-0.210453\pi\)
\(264\) 0 0
\(265\) −302544. −0.264651
\(266\) 0 0
\(267\) 419629. + 726818.i 0.360236 + 0.623947i
\(268\) 0 0
\(269\) −155737. 269744.i −0.131223 0.227285i 0.792925 0.609319i \(-0.208557\pi\)
−0.924148 + 0.382034i \(0.875224\pi\)
\(270\) 0 0
\(271\) 117293. 203158.i 0.0970176 0.168039i −0.813431 0.581661i \(-0.802403\pi\)
0.910449 + 0.413622i \(0.135736\pi\)
\(272\) 0 0
\(273\) 472626. + 277961.i 0.383805 + 0.225724i
\(274\) 0 0
\(275\) −575783. + 997286.i −0.459121 + 0.795221i
\(276\) 0 0
\(277\) −71004.3 122983.i −0.0556013 0.0963043i 0.836885 0.547379i \(-0.184374\pi\)
−0.892486 + 0.451074i \(0.851041\pi\)
\(278\) 0 0
\(279\) 130609. + 226222.i 0.100453 + 0.173990i
\(280\) 0 0
\(281\) 876257. 0.662012 0.331006 0.943629i \(-0.392612\pi\)
0.331006 + 0.943629i \(0.392612\pi\)
\(282\) 0 0
\(283\) −484527. + 839226.i −0.359627 + 0.622892i −0.987898 0.155102i \(-0.950429\pi\)
0.628272 + 0.777994i \(0.283763\pi\)
\(284\) 0 0
\(285\) 205535. 0.149891
\(286\) 0 0
\(287\) 1.38168e6 0.990151
\(288\) 0 0
\(289\) 142833. 247393.i 0.100596 0.174238i
\(290\) 0 0
\(291\) −720622. −0.498856
\(292\) 0 0
\(293\) 674250. + 1.16784e6i 0.458830 + 0.794717i 0.998899 0.0469033i \(-0.0149353\pi\)
−0.540069 + 0.841621i \(0.681602\pi\)
\(294\) 0 0
\(295\) 69072.0 + 119636.i 0.0462112 + 0.0800401i
\(296\) 0 0
\(297\) 137352. 237901.i 0.0903533 0.156497i
\(298\) 0 0
\(299\) −825677. + 467894.i −0.534112 + 0.302670i
\(300\) 0 0
\(301\) −710736. + 1.23103e6i −0.452160 + 0.783164i
\(302\) 0 0
\(303\) −212434. 367947.i −0.132928 0.230239i
\(304\) 0 0
\(305\) 140645. + 243603.i 0.0865712 + 0.149946i
\(306\) 0 0
\(307\) −750919. −0.454723 −0.227362 0.973810i \(-0.573010\pi\)
−0.227362 + 0.973810i \(0.573010\pi\)
\(308\) 0 0
\(309\) 413701. 716551.i 0.246485 0.426925i
\(310\) 0 0
\(311\) −819434. −0.480411 −0.240205 0.970722i \(-0.577215\pi\)
−0.240205 + 0.970722i \(0.577215\pi\)
\(312\) 0 0
\(313\) −702427. −0.405266 −0.202633 0.979255i \(-0.564950\pi\)
−0.202633 + 0.979255i \(0.564950\pi\)
\(314\) 0 0
\(315\) 33639.4 58265.2i 0.0191017 0.0330851i
\(316\) 0 0
\(317\) 2.12416e6 1.18724 0.593621 0.804744i \(-0.297698\pi\)
0.593621 + 0.804744i \(0.297698\pi\)
\(318\) 0 0
\(319\) 117824. + 204077.i 0.0648273 + 0.112284i
\(320\) 0 0
\(321\) −544323. 942795.i −0.294845 0.510687i
\(322\) 0 0
\(323\) 1.46381e6 2.53539e6i 0.780689 1.35219i
\(324\) 0 0
\(325\) −1.60511e6 944001.i −0.842940 0.495751i
\(326\) 0 0
\(327\) 850438. 1.47300e6i 0.439818 0.761787i
\(328\) 0 0
\(329\) 707256. + 1.22500e6i 0.360236 + 0.623947i
\(330\) 0 0
\(331\) 516569. + 894723.i 0.259154 + 0.448868i 0.966016 0.258484i \(-0.0832229\pi\)
−0.706861 + 0.707352i \(0.749890\pi\)
\(332\) 0 0
\(333\) −345786. −0.170882
\(334\) 0 0
\(335\) 240931. 417305.i 0.117295 0.203162i
\(336\) 0 0
\(337\) 376704. 0.180687 0.0903433 0.995911i \(-0.471204\pi\)
0.0903433 + 0.995911i \(0.471204\pi\)
\(338\) 0 0
\(339\) 1.43369e6 0.677573
\(340\) 0 0
\(341\) −607614. + 1.05242e6i −0.282971 + 0.490120i
\(342\) 0 0
\(343\) −2.36133e6 −1.08373
\(344\) 0 0
\(345\) 58224.9 + 100849.i 0.0263367 + 0.0456165i
\(346\) 0 0
\(347\) −822897. 1.42530e6i −0.366878 0.635452i 0.622197 0.782860i \(-0.286240\pi\)
−0.989076 + 0.147409i \(0.952907\pi\)
\(348\) 0 0
\(349\) −1.55893e6 + 2.70014e6i −0.685113 + 1.18665i 0.288288 + 0.957544i \(0.406914\pi\)
−0.973401 + 0.229107i \(0.926419\pi\)
\(350\) 0 0
\(351\) 382897. + 225190.i 0.165888 + 0.0975620i
\(352\) 0 0
\(353\) 1.21763e6 2.10900e6i 0.520091 0.900824i −0.479636 0.877467i \(-0.659231\pi\)
0.999727 0.0233565i \(-0.00743527\pi\)
\(354\) 0 0
\(355\) 207480. + 359366.i 0.0873787 + 0.151344i
\(356\) 0 0
\(357\) −479156. 829922.i −0.198979 0.344641i
\(358\) 0 0
\(359\) −4.01124e6 −1.64264 −0.821320 0.570468i \(-0.806762\pi\)
−0.821320 + 0.570468i \(0.806762\pi\)
\(360\) 0 0
\(361\) −2.54039e6 + 4.40009e6i −1.02597 + 1.77702i
\(362\) 0 0
\(363\) −171497. −0.0683107
\(364\) 0 0
\(365\) 212892. 0.0836426
\(366\) 0 0
\(367\) −995892. + 1.72494e6i −0.385964 + 0.668510i −0.991902 0.127002i \(-0.959465\pi\)
0.605938 + 0.795512i \(0.292798\pi\)
\(368\) 0 0
\(369\) 1.11936e6 0.427961
\(370\) 0 0
\(371\) −1.82057e6 3.15331e6i −0.686707 1.18941i
\(372\) 0 0
\(373\) −1.82220e6 3.15614e6i −0.678146 1.17458i −0.975539 0.219828i \(-0.929450\pi\)
0.297392 0.954755i \(-0.403883\pi\)
\(374\) 0 0
\(375\) −231070. + 400224.i −0.0848525 + 0.146969i
\(376\) 0 0
\(377\) −331523. + 187867.i −0.120132 + 0.0680764i
\(378\) 0 0
\(379\) 2.30901e6 3.99931e6i 0.825709 1.43017i −0.0756678 0.997133i \(-0.524109\pi\)
0.901376 0.433036i \(-0.142558\pi\)
\(380\) 0 0
\(381\) −1.28911e6 2.23281e6i −0.454966 0.788024i
\(382\) 0 0
\(383\) 563056. + 975241.i 0.196135 + 0.339715i 0.947272 0.320431i \(-0.103828\pi\)
−0.751137 + 0.660146i \(0.770494\pi\)
\(384\) 0 0
\(385\) 312991. 0.107617
\(386\) 0 0
\(387\) −575801. + 997317.i −0.195432 + 0.338498i
\(388\) 0 0
\(389\) −5.15193e6 −1.72622 −0.863110 0.505016i \(-0.831487\pi\)
−0.863110 + 0.505016i \(0.831487\pi\)
\(390\) 0 0
\(391\) 1.65870e6 0.548688
\(392\) 0 0
\(393\) 406824. 704639.i 0.132869 0.230136i
\(394\) 0 0
\(395\) 422545. 0.136264
\(396\) 0 0
\(397\) −1.89873e6 3.28870e6i −0.604627 1.04725i −0.992110 0.125368i \(-0.959989\pi\)
0.387483 0.921877i \(-0.373345\pi\)
\(398\) 0 0
\(399\) 1.23682e6 + 2.14223e6i 0.388931 + 0.673648i
\(400\) 0 0
\(401\) −944546. + 1.63600e6i −0.293334 + 0.508069i −0.974596 0.223971i \(-0.928098\pi\)
0.681262 + 0.732040i \(0.261431\pi\)
\(402\) 0 0
\(403\) −1.69385e6 996187.i −0.519531 0.305547i
\(404\) 0 0
\(405\) 27252.9 47203.4i 0.00825610 0.0143000i
\(406\) 0 0
\(407\) −804323. 1.39313e6i −0.240683 0.416874i
\(408\) 0 0
\(409\) −1.92001e6 3.32556e6i −0.567540 0.983007i −0.996808 0.0798306i \(-0.974562\pi\)
0.429269 0.903177i \(-0.358771\pi\)
\(410\) 0 0
\(411\) 2.49655e6 0.729013
\(412\) 0 0
\(413\) −831286. + 1.43983e6i −0.239814 + 0.415371i
\(414\) 0 0
\(415\) 630688. 0.179761
\(416\) 0 0
\(417\) −2.89349e6 −0.814857
\(418\) 0 0
\(419\) 2.14644e6 3.71775e6i 0.597289 1.03453i −0.395931 0.918280i \(-0.629578\pi\)
0.993219 0.116254i \(-0.0370887\pi\)
\(420\) 0 0
\(421\) −6.06716e6 −1.66832 −0.834161 0.551521i \(-0.814048\pi\)
−0.834161 + 0.551521i \(0.814048\pi\)
\(422\) 0 0
\(423\) 572982. + 992434.i 0.155700 + 0.269681i
\(424\) 0 0
\(425\) 1.62729e6 + 2.81855e6i 0.437011 + 0.756925i
\(426\) 0 0
\(427\) −1.69267e6 + 2.93178e6i −0.449264 + 0.778148i
\(428\) 0 0
\(429\) −16615.9 + 2.06645e6i −0.00435894 + 0.542103i
\(430\) 0 0
\(431\) 1.93348e6 3.34888e6i 0.501356 0.868374i −0.498643 0.866808i \(-0.666168\pi\)
0.999999 0.00156664i \(-0.000498676\pi\)
\(432\) 0 0
\(433\) 47573.8 + 82400.2i 0.0121940 + 0.0211207i 0.872058 0.489402i \(-0.162785\pi\)
−0.859864 + 0.510523i \(0.829452\pi\)
\(434\) 0 0
\(435\) 23378.2 + 40492.3i 0.00592364 + 0.0102600i
\(436\) 0 0
\(437\) −4.28149e6 −1.07249
\(438\) 0 0
\(439\) 54806.8 94928.2i 0.0135729 0.0235090i −0.859159 0.511708i \(-0.829013\pi\)
0.872732 + 0.488199i \(0.162346\pi\)
\(440\) 0 0
\(441\) −551662. −0.135075
\(442\) 0 0
\(443\) −5.92396e6 −1.43418 −0.717088 0.696982i \(-0.754526\pi\)
−0.717088 + 0.696982i \(0.754526\pi\)
\(444\) 0 0
\(445\) −387343. + 670897.i −0.0927246 + 0.160604i
\(446\) 0 0
\(447\) −701485. −0.166054
\(448\) 0 0
\(449\) −164091. 284215.i −0.0384123 0.0665320i 0.846180 0.532897i \(-0.178897\pi\)
−0.884592 + 0.466365i \(0.845563\pi\)
\(450\) 0 0
\(451\) 2.60371e6 + 4.50976e6i 0.602770 + 1.04403i
\(452\) 0 0
\(453\) 504694. 874155.i 0.115553 0.200144i
\(454\) 0 0
\(455\) −4069.47 + 506102.i −0.000921529 + 0.114607i
\(456\) 0 0
\(457\) −562990. + 975127.i −0.126098 + 0.218409i −0.922162 0.386804i \(-0.873579\pi\)
0.796063 + 0.605213i \(0.206912\pi\)
\(458\) 0 0
\(459\) −388187. 672359.i −0.0860021 0.148960i
\(460\) 0 0
\(461\) 3.81440e6 + 6.60674e6i 0.835939 + 1.44789i 0.893264 + 0.449533i \(0.148409\pi\)
−0.0573252 + 0.998356i \(0.518257\pi\)
\(462\) 0 0
\(463\) −2.59151e6 −0.561823 −0.280912 0.959734i \(-0.590637\pi\)
−0.280912 + 0.959734i \(0.590637\pi\)
\(464\) 0 0
\(465\) −120560. + 208817.i −0.0258567 + 0.0447850i
\(466\) 0 0
\(467\) 7.27838e6 1.54434 0.772169 0.635417i \(-0.219172\pi\)
0.772169 + 0.635417i \(0.219172\pi\)
\(468\) 0 0
\(469\) 5.79925e6 1.21742
\(470\) 0 0
\(471\) 2.18719e6 3.78833e6i 0.454291 0.786856i
\(472\) 0 0
\(473\) −5.35741e6 −1.10104
\(474\) 0 0
\(475\) −4.20042e6 7.27534e6i −0.854198 1.47951i
\(476\) 0 0
\(477\) −1.47493e6 2.55465e6i −0.296807 0.514085i
\(478\) 0 0
\(479\) 1.29053e6 2.23526e6i 0.256998 0.445133i −0.708439 0.705772i \(-0.750600\pi\)
0.965436 + 0.260640i \(0.0839334\pi\)
\(480\) 0 0
\(481\) 2.26313e6 1.28247e6i 0.446012 0.252746i
\(482\) 0 0
\(483\) −700741. + 1.21372e6i −0.136675 + 0.236728i
\(484\) 0 0
\(485\) −332589. 576061.i −0.0642027 0.111202i
\(486\) 0 0
\(487\) 2.55808e6 + 4.43073e6i 0.488756 + 0.846550i 0.999916 0.0129351i \(-0.00411750\pi\)
−0.511160 + 0.859485i \(0.670784\pi\)
\(488\) 0 0
\(489\) 3.36588e6 0.636541
\(490\) 0 0
\(491\) 3.43600e6 5.95132e6i 0.643204 1.11406i −0.341509 0.939879i \(-0.610938\pi\)
0.984713 0.174184i \(-0.0557287\pi\)
\(492\) 0 0
\(493\) 665993. 0.123411
\(494\) 0 0
\(495\) 253569. 0.0465139
\(496\) 0 0
\(497\) −2.49703e6 + 4.32499e6i −0.453454 + 0.785406i
\(498\) 0 0
\(499\) 2.51797e6 0.452688 0.226344 0.974047i \(-0.427323\pi\)
0.226344 + 0.974047i \(0.427323\pi\)
\(500\) 0 0
\(501\) −2.17786e6 3.77216e6i −0.387646 0.671423i
\(502\) 0 0
\(503\) −1.59007e6 2.75408e6i −0.280218 0.485351i 0.691221 0.722644i \(-0.257073\pi\)
−0.971438 + 0.237293i \(0.923740\pi\)
\(504\) 0 0
\(505\) 196089. 339637.i 0.0342157 0.0592634i
\(506\) 0 0
\(507\) −3.34120e6 53735.4i −0.577276 0.00928412i
\(508\) 0 0
\(509\) 280620. 486048.i 0.0480092 0.0831543i −0.841022 0.541001i \(-0.818046\pi\)
0.889031 + 0.457846i \(0.151379\pi\)
\(510\) 0 0
\(511\) 1.28109e6 + 2.21891e6i 0.217033 + 0.375912i
\(512\) 0 0
\(513\) 1.00200e6 + 1.73552e6i 0.168103 + 0.291163i
\(514\) 0 0
\(515\) 763742. 0.126890
\(516\) 0 0
\(517\) −2.66559e6 + 4.61694e6i −0.438599 + 0.759675i
\(518\) 0 0
\(519\) −6.16599e6 −1.00481
\(520\) 0 0
\(521\) 6.78351e6 1.09486 0.547432 0.836850i \(-0.315606\pi\)
0.547432 + 0.836850i \(0.315606\pi\)
\(522\) 0 0
\(523\) −5.09937e6 + 8.83236e6i −0.815196 + 1.41196i 0.0939915 + 0.995573i \(0.470037\pi\)
−0.909187 + 0.416387i \(0.863296\pi\)
\(524\) 0 0
\(525\) −2.74989e6 −0.435428
\(526\) 0 0
\(527\) 1.71725e6 + 2.97436e6i 0.269343 + 0.466517i
\(528\) 0 0
\(529\) 2.00529e6 + 3.47327e6i 0.311558 + 0.539634i
\(530\) 0 0
\(531\) −673464. + 1.16647e6i −0.103652 + 0.179531i
\(532\) 0 0
\(533\) −7.32608e6 + 4.15153e6i −1.11700 + 0.632981i
\(534\) 0 0
\(535\) 502443. 870257.i 0.0758931 0.131451i
\(536\) 0 0
\(537\) 2.74059e6 + 4.74683e6i 0.410117 + 0.710343i
\(538\) 0 0
\(539\) −1.28320e6 2.22257e6i −0.190250 0.329522i
\(540\) 0 0
\(541\) −3.76162e6 −0.552563 −0.276282 0.961077i \(-0.589102\pi\)
−0.276282 + 0.961077i \(0.589102\pi\)
\(542\) 0 0
\(543\) 881004. 1.52594e6i 0.128227 0.222095i
\(544\) 0 0
\(545\) 1.57001e6 0.226418
\(546\) 0 0
\(547\) 6.27984e6 0.897388 0.448694 0.893685i \(-0.351889\pi\)
0.448694 + 0.893685i \(0.351889\pi\)
\(548\) 0 0
\(549\) −1.37131e6 + 2.37518e6i −0.194180 + 0.336330i
\(550\) 0 0
\(551\) −1.71909e6 −0.241223
\(552\) 0 0
\(553\) 2.54268e6 + 4.40405e6i 0.353573 + 0.612406i
\(554\) 0 0
\(555\) −159591. 276419.i −0.0219925 0.0380922i
\(556\) 0 0
\(557\) −1.72957e6 + 2.99571e6i −0.236211 + 0.409130i −0.959624 0.281286i \(-0.909239\pi\)
0.723413 + 0.690416i \(0.242572\pi\)
\(558\) 0 0
\(559\) 69656.5 8.66287e6i 0.00942827 1.17255i
\(560\) 0 0
\(561\) 1.80590e6 3.12791e6i 0.242263 0.419611i
\(562\) 0 0
\(563\) 391261. + 677683.i 0.0520230 + 0.0901064i 0.890864 0.454270i \(-0.150100\pi\)
−0.838841 + 0.544376i \(0.816766\pi\)
\(564\) 0 0
\(565\) 661691. + 1.14608e6i 0.0872035 + 0.151041i
\(566\) 0 0
\(567\) 655981. 0.0856906
\(568\) 0 0
\(569\) −822631. + 1.42484e6i −0.106518 + 0.184495i −0.914358 0.404908i \(-0.867304\pi\)
0.807839 + 0.589403i \(0.200637\pi\)
\(570\) 0 0
\(571\) 1.14533e7 1.47007 0.735037 0.678026i \(-0.237165\pi\)
0.735037 + 0.678026i \(0.237165\pi\)
\(572\) 0 0
\(573\) −208490. −0.0265277
\(574\) 0 0
\(575\) 2.37982e6 4.12198e6i 0.300176 0.519919i
\(576\) 0 0
\(577\) −205235. −0.0256632 −0.0128316 0.999918i \(-0.504085\pi\)
−0.0128316 + 0.999918i \(0.504085\pi\)
\(578\) 0 0
\(579\) 3.71518e6 + 6.43489e6i 0.460557 + 0.797709i
\(580\) 0 0
\(581\) 3.79519e6 + 6.57346e6i 0.466437 + 0.807893i
\(582\) 0 0
\(583\) 6.86157e6 1.18846e7i 0.836088 1.44815i
\(584\) 0 0
\(585\) −3296.87 + 410017.i −0.000398301 + 0.0495350i
\(586\) 0 0
\(587\) 1.04789e6 1.81500e6i 0.125522 0.217410i −0.796415 0.604751i \(-0.793273\pi\)
0.921937 + 0.387340i \(0.126606\pi\)
\(588\) 0 0
\(589\) −4.43262e6 7.67753e6i −0.526469 0.911871i
\(590\) 0 0
\(591\) 3.77037e6 + 6.53046e6i 0.444032 + 0.769087i
\(592\) 0 0
\(593\) 1.52323e7 1.77880 0.889402 0.457126i \(-0.151121\pi\)
0.889402 + 0.457126i \(0.151121\pi\)
\(594\) 0 0
\(595\) 442290. 766068.i 0.0512170 0.0887105i
\(596\) 0 0
\(597\) −647101. −0.0743081
\(598\) 0 0
\(599\) 3.59165e6 0.409004 0.204502 0.978866i \(-0.434443\pi\)
0.204502 + 0.978866i \(0.434443\pi\)
\(600\) 0 0
\(601\) 6.32328e6 1.09522e7i 0.714095 1.23685i −0.249212 0.968449i \(-0.580172\pi\)
0.963307 0.268400i \(-0.0864950\pi\)
\(602\) 0 0
\(603\) 4.69825e6 0.526190
\(604\) 0 0
\(605\) −79150.8 137093.i −0.00879158 0.0152275i
\(606\) 0 0
\(607\) −5.57200e6 9.65099e6i −0.613818 1.06316i −0.990591 0.136858i \(-0.956299\pi\)
0.376773 0.926306i \(-0.377034\pi\)
\(608\) 0 0
\(609\) −281359. + 487327.i −0.0307409 + 0.0532448i
\(610\) 0 0
\(611\) −7.43088e6 4.37026e6i −0.805262 0.473592i
\(612\) 0 0
\(613\) 6.97128e6 1.20746e7i 0.749310 1.29784i −0.198844 0.980031i \(-0.563719\pi\)
0.948154 0.317812i \(-0.102948\pi\)
\(614\) 0 0
\(615\) 516619. + 894810.i 0.0550785 + 0.0953988i
\(616\) 0 0
\(617\) 3.68600e6 + 6.38435e6i 0.389801 + 0.675155i 0.992423 0.122872i \(-0.0392105\pi\)
−0.602622 + 0.798027i \(0.705877\pi\)
\(618\) 0 0
\(619\) 8.41512e6 0.882742 0.441371 0.897325i \(-0.354492\pi\)
0.441371 + 0.897325i \(0.354492\pi\)
\(620\) 0 0
\(621\) −567703. + 983291.i −0.0590734 + 0.102318i
\(622\) 0 0
\(623\) −9.32338e6 −0.962395
\(624\) 0 0
\(625\) 9.12337e6 0.934233
\(626\) 0 0
\(627\) −4.66146e6 + 8.07388e6i −0.473536 + 0.820188i
\(628\) 0 0
\(629\) −4.54638e6 −0.458184
\(630\) 0 0
\(631\) 6.90214e6 + 1.19549e7i 0.690097 + 1.19528i 0.971806 + 0.235783i \(0.0757656\pi\)
−0.281709 + 0.959500i \(0.590901\pi\)
\(632\) 0 0
\(633\) −4.60033e6 7.96800e6i −0.456331 0.790388i
\(634\) 0 0
\(635\) 1.18993e6 2.06102e6i 0.117108 0.202837i
\(636\) 0 0
\(637\) 3.61056e6 2.04603e6i 0.352554 0.199785i
\(638\) 0 0
\(639\) −2.02297e6 + 3.50388e6i −0.195991 + 0.339467i
\(640\) 0 0
\(641\) 2.93781e6 + 5.08843e6i 0.282409 + 0.489146i 0.971977 0.235074i \(-0.0755333\pi\)
−0.689569 + 0.724220i \(0.742200\pi\)
\(642\) 0 0
\(643\) 2.41054e6 + 4.17518e6i 0.229926 + 0.398243i 0.957786 0.287483i \(-0.0928184\pi\)
−0.727860 + 0.685725i \(0.759485\pi\)
\(644\) 0 0
\(645\) −1.06300e6 −0.100608
\(646\) 0 0
\(647\) −430432. + 745530.i −0.0404244 + 0.0700172i −0.885530 0.464583i \(-0.846204\pi\)
0.845105 + 0.534600i \(0.179538\pi\)
\(648\) 0 0
\(649\) −6.26610e6 −0.583963
\(650\) 0 0
\(651\) −2.90190e6 −0.268368
\(652\) 0 0
\(653\) −2.06822e6 + 3.58227e6i −0.189808 + 0.328757i −0.945186 0.326532i \(-0.894120\pi\)
0.755378 + 0.655289i \(0.227453\pi\)
\(654\) 0 0
\(655\) 751046. 0.0684011
\(656\) 0 0
\(657\) 1.03787e6 + 1.79764e6i 0.0938056 + 0.162476i
\(658\) 0 0
\(659\) 1.75204e6 + 3.03463e6i 0.157156 + 0.272203i 0.933842 0.357686i \(-0.116434\pi\)
−0.776686 + 0.629888i \(0.783101\pi\)
\(660\) 0 0
\(661\) 5.81850e6 1.00779e7i 0.517974 0.897157i −0.481808 0.876277i \(-0.660020\pi\)
0.999782 0.0208801i \(-0.00664683\pi\)
\(662\) 0 0
\(663\) 5.03431e6 + 2.96078e6i 0.444791 + 0.261591i
\(664\) 0 0
\(665\) −1.14166e6 + 1.97740e6i −0.100111 + 0.173397i
\(666\) 0 0
\(667\) −486990. 843492.i −0.0423844 0.0734119i
\(668\) 0 0
\(669\) −2.85781e6 4.94987e6i −0.246870 0.427591i
\(670\) 0 0
\(671\) −1.27590e7 −1.09399
\(672\) 0 0
\(673\) 5.33070e6 9.23304e6i 0.453677 0.785791i −0.544934 0.838479i \(-0.683445\pi\)
0.998611 + 0.0526877i \(0.0167788\pi\)
\(674\) 0 0
\(675\) −2.22781e6 −0.188200
\(676\) 0 0
\(677\) −5.00878e6 −0.420011 −0.210005 0.977700i \(-0.567348\pi\)
−0.210005 + 0.977700i \(0.567348\pi\)
\(678\) 0 0
\(679\) 4.00273e6 6.93293e6i 0.333182 0.577088i
\(680\) 0 0
\(681\) 1.78246e6 0.147283
\(682\) 0 0
\(683\) 6.51439e6 + 1.12833e7i 0.534346 + 0.925514i 0.999195 + 0.0401239i \(0.0127753\pi\)
−0.464849 + 0.885390i \(0.653891\pi\)
\(684\) 0 0
\(685\) 1.15223e6 + 1.99572e6i 0.0938239 + 0.162508i
\(686\) 0 0
\(687\) −2.84194e6 + 4.92238e6i −0.229733 + 0.397909i
\(688\) 0 0
\(689\) 1.91280e7 + 1.12496e7i 1.53505 + 0.902794i
\(690\) 0 0
\(691\) −2.93345e6 + 5.08088e6i −0.233713 + 0.404803i −0.958898 0.283751i \(-0.908421\pi\)
0.725185 + 0.688554i \(0.241754\pi\)
\(692\) 0 0
\(693\) 1.52586e6 + 2.64286e6i 0.120693 + 0.209046i
\(694\) 0 0
\(695\) −1.33543e6 2.31304e6i −0.104872 0.181644i
\(696\) 0 0
\(697\) 1.47173e7 1.14748
\(698\) 0 0
\(699\) 1.45320e6 2.51702e6i 0.112495 0.194847i
\(700\) 0 0
\(701\) −1.61845e7 −1.24396 −0.621978 0.783034i \(-0.713671\pi\)
−0.621978 + 0.783034i \(0.713671\pi\)
\(702\) 0 0
\(703\) 1.17353e7 0.895583
\(704\) 0 0
\(705\) −528897. + 916076.i −0.0400773 + 0.0694159i
\(706\) 0 0
\(707\) 4.71990e6 0.355127
\(708\) 0 0
\(709\) 1.73222e6 + 3.00030e6i 0.129416 + 0.224155i 0.923451 0.383718i \(-0.125356\pi\)
−0.794034 + 0.607873i \(0.792023\pi\)
\(710\) 0 0
\(711\) 2.05994e6 + 3.56793e6i 0.152820 + 0.264693i
\(712\) 0 0
\(713\) 2.51139e6 4.34985e6i 0.185008 0.320443i
\(714\) 0 0
\(715\) −1.65957e6 + 940446.i −0.121404 + 0.0687969i
\(716\) 0 0
\(717\) −263999. + 457260.i −0.0191781 + 0.0332174i
\(718\) 0 0
\(719\) −379117. 656650.i −0.0273496 0.0473709i 0.852027 0.523498i \(-0.175373\pi\)
−0.879376 + 0.476128i \(0.842040\pi\)
\(720\) 0 0
\(721\) 4.59584e6 + 7.96024e6i 0.329251 + 0.570280i
\(722\) 0 0
\(723\) −8.56842e6 −0.609614
\(724\) 0 0
\(725\) 955538. 1.65504e6i 0.0675154 0.116940i
\(726\) 0 0
\(727\) −1.56063e7 −1.09512 −0.547561 0.836766i \(-0.684444\pi\)
−0.547561 + 0.836766i \(0.684444\pi\)
\(728\) 0 0
\(729\) 531441. 0.0370370
\(730\) 0 0
\(731\) −7.57061e6 + 1.31127e7i −0.524007 + 0.907607i
\(732\) 0 0
\(733\) −1.53145e7 −1.05280 −0.526398 0.850238i \(-0.676458\pi\)
−0.526398 + 0.850238i \(0.676458\pi\)
\(734\) 0 0
\(735\) −254608. 440995.i −0.0173842 0.0301103i
\(736\) 0 0
\(737\) 1.09284e7 + 1.89286e7i 0.741122 + 1.28366i
\(738\) 0 0
\(739\) −3.65859e6 + 6.33687e6i −0.246435 + 0.426839i −0.962534 0.271160i \(-0.912593\pi\)
0.716099 + 0.697999i \(0.245926\pi\)
\(740\) 0 0
\(741\) −1.29948e7 7.64249e6i −0.869406 0.511316i
\(742\) 0 0
\(743\) 1.34797e7 2.33475e7i 0.895792 1.55156i 0.0629707 0.998015i \(-0.479943\pi\)
0.832821 0.553542i \(-0.186724\pi\)
\(744\) 0 0
\(745\) −323756. 560763.i −0.0213711 0.0370159i
\(746\) 0 0
\(747\) 3.07466e6 + 5.32547e6i 0.201602 + 0.349186i
\(748\) 0 0
\(749\) 1.20939e7 0.787700
\(750\) 0 0
\(751\) 1.19385e6 2.06781e6i 0.0772413 0.133786i −0.824817 0.565399i \(-0.808722\pi\)
0.902059 + 0.431613i \(0.142055\pi\)
\(752\) 0 0
\(753\) −6.85181e6 −0.440370
\(754\) 0 0
\(755\) 931725. 0.0594868
\(756\) 0 0
\(757\) 939670. 1.62756e6i 0.0595986 0.103228i −0.834687 0.550725i \(-0.814351\pi\)
0.894285 + 0.447497i \(0.147685\pi\)
\(758\) 0 0
\(759\) −5.28207e6 −0.332812
\(760\) 0 0
\(761\) 1.26795e6 + 2.19615e6i 0.0793668 + 0.137467i 0.902977 0.429689i \(-0.141377\pi\)
−0.823610 + 0.567156i \(0.808043\pi\)
\(762\) 0 0
\(763\) 9.44759e6 + 1.63637e7i 0.587502 + 1.01758i
\(764\) 0 0
\(765\) 358320. 620628.i 0.0221369 0.0383423i
\(766\) 0 0
\(767\) 81471.0 1.01322e7i 0.00500051 0.621892i
\(768\) 0 0
\(769\) 7.57651e6 1.31229e7i 0.462012 0.800228i −0.537049 0.843551i \(-0.680461\pi\)
0.999061 + 0.0433227i \(0.0137944\pi\)
\(770\) 0 0
\(771\) 1.91946e6 + 3.32461e6i 0.116290 + 0.201421i
\(772\) 0 0
\(773\) −1.03514e7 1.79292e7i −0.623091 1.07923i −0.988907 0.148538i \(-0.952543\pi\)
0.365815 0.930687i \(-0.380790\pi\)
\(774\) 0 0
\(775\) 9.85532e6 0.589409
\(776\) 0 0
\(777\) 1.92069e6 3.32673e6i 0.114131 0.197681i
\(778\) 0 0
\(779\) −3.79889e7 −2.24291
\(780\) 0 0
\(781\) −1.88222e7 −1.10419
\(782\) 0 0
\(783\) −227942. + 394807.i −0.0132868 + 0.0230134i
\(784\) 0 0
\(785\) 4.03782e6 0.233869
\(786\) 0 0
\(787\) −1.53208e7 2.65364e7i −0.881748 1.52723i −0.849396 0.527756i \(-0.823034\pi\)
−0.0323516 0.999477i \(-0.510300\pi\)
\(788\) 0 0
\(789\) 9.35263e6 + 1.61992e7i 0.534861 + 0.926407i
\(790\) 0 0
\(791\) −7.96349e6 + 1.37932e7i −0.452546 + 0.783832i
\(792\) 0 0
\(793\) 165891. 2.06312e7i 0.00936788 1.16504i
\(794\) 0 0
\(795\) 1.36145e6 2.35809e6i 0.0763981 0.132325i
\(796\) 0 0
\(797\) −9.75940e6 1.69038e7i −0.544224 0.942623i −0.998655 0.0518412i \(-0.983491\pi\)
0.454432 0.890782i \(-0.349842\pi\)
\(798\) 0 0
\(799\) 7.53354e6 + 1.30485e7i 0.417477 + 0.723091i
\(800\) 0 0
\(801\) −7.55331e6 −0.415965
\(802\) 0 0
\(803\) −4.82831e6 + 8.36287e6i −0.264245 + 0.457685i
\(804\) 0 0
\(805\) −1.29365e6 −0.0703603
\(806\) 0 0
\(807\) 2.80326e6 0.151523
\(808\) 0 0
\(809\) −1.70191e7 + 2.94779e7i −0.914250 + 1.58353i −0.106253 + 0.994339i \(0.533885\pi\)
−0.807996 + 0.589187i \(0.799448\pi\)
\(810\) 0 0
\(811\) 1.17295e7 0.626219 0.313109 0.949717i \(-0.398629\pi\)
0.313109 + 0.949717i \(0.398629\pi\)
\(812\) 0 0
\(813\) 1.05564e6 + 1.82842e6i 0.0560131 + 0.0970176i
\(814\) 0 0
\(815\) 1.55345e6 + 2.69066e6i 0.0819228 + 0.141894i
\(816\) 0 0
\(817\) 1.95415e7 3.38469e7i 1.02424 1.77404i
\(818\) 0 0
\(819\) −4.29331e6 + 2.43293e6i −0.223657 + 0.126742i
\(820\) 0 0
\(821\) 7.30418e6 1.26512e7i 0.378193 0.655049i −0.612606 0.790388i \(-0.709879\pi\)
0.990799 + 0.135339i \(0.0432122\pi\)
\(822\) 0 0
\(823\) 7.66251e6 + 1.32719e7i 0.394340 + 0.683018i 0.993017 0.117973i \(-0.0376398\pi\)
−0.598676 + 0.800991i \(0.704306\pi\)
\(824\) 0 0
\(825\) −5.18205e6 8.97557e6i −0.265074 0.459121i
\(826\) 0 0
\(827\) −2.11573e6 −0.107571 −0.0537857 0.998552i \(-0.517129\pi\)
−0.0537857 + 0.998552i \(0.517129\pi\)
\(828\) 0 0
\(829\) 670755. 1.16178e6i 0.0338983 0.0587135i −0.848579 0.529069i \(-0.822541\pi\)
0.882477 + 0.470356i \(0.155874\pi\)
\(830\) 0 0
\(831\) 1.27808e6 0.0642029
\(832\) 0 0
\(833\) −7.25322e6 −0.362175
\(834\) 0 0
\(835\) 2.01030e6 3.48193e6i 0.0997801 0.172824i
\(836\) 0 0
\(837\) −2.35097e6 −0.115993
\(838\) 0 0
\(839\) −3.73309e6 6.46589e6i −0.183089 0.317120i 0.759842 0.650108i \(-0.225276\pi\)
−0.942931 + 0.332988i \(0.891943\pi\)
\(840\) 0 0
\(841\) 1.00600e7 + 1.74245e7i 0.490467 + 0.849514i
\(842\) 0 0
\(843\) −3.94316e6 + 6.82975e6i −0.191106 + 0.331006i
\(844\) 0 0
\(845\) −1.49911e6 2.69574e6i −0.0722258 0.129878i
\(846\) 0 0
\(847\) 952585. 1.64993e6i 0.0456242 0.0790234i
\(848\) 0 0
\(849\) −4.36075e6 7.55303e6i −0.207631 0.359627i
\(850\) 0 0
\(851\) 3.32443e6 + 5.75807e6i 0.157359 + 0.272554i
\(852\) 0 0
\(853\) −6.24744e6 −0.293988 −0.146994 0.989137i \(-0.546960\pi\)
−0.146994 + 0.989137i \(0.546960\pi\)
\(854\) 0 0
\(855\) −924909. + 1.60199e6i −0.0432697 + 0.0749453i
\(856\) 0 0
\(857\) 1.57515e7 0.732605 0.366303 0.930496i \(-0.380624\pi\)
0.366303 + 0.930496i \(0.380624\pi\)
\(858\) 0 0
\(859\) −1.02670e7 −0.474746 −0.237373 0.971419i \(-0.576286\pi\)
−0.237373 + 0.971419i \(0.576286\pi\)
\(860\) 0 0
\(861\) −6.21754e6 + 1.07691e7i −0.285832 + 0.495075i
\(862\) 0 0
\(863\) −3.21516e7 −1.46952 −0.734760 0.678327i \(-0.762705\pi\)
−0.734760 + 0.678327i \(0.762705\pi\)
\(864\) 0 0
\(865\) −2.84579e6 4.92905e6i −0.129319 0.223987i
\(866\) 0 0
\(867\) 1.28549e6 + 2.22654e6i 0.0580794 + 0.100596i
\(868\) 0 0
\(869\) −9.58315e6 + 1.65985e7i −0.430486 + 0.745623i
\(870\) 0 0
\(871\) −3.07494e7 + 1.74251e7i −1.37338 + 0.778267i
\(872\) 0 0
\(873\) 3.24280e6 5.61669e6i 0.144007 0.249428i
\(874\) 0 0
\(875\) −2.56697e6 4.44613e6i −0.113345 0.196319i
\(876\) 0 0
\(877\) −5.22870e6 9.05637e6i −0.229559 0.397608i 0.728118 0.685451i \(-0.240395\pi\)
−0.957677 + 0.287843i \(0.907062\pi\)
\(878\) 0 0
\(879\) −1.21365e7 −0.529812
\(880\) 0 0
\(881\) 1.91590e6 3.31844e6i 0.0831637 0.144044i −0.821444 0.570290i \(-0.806831\pi\)
0.904607 + 0.426246i \(0.140164\pi\)
\(882\) 0 0
\(883\) −4.25402e7 −1.83610 −0.918052 0.396459i \(-0.870239\pi\)
−0.918052 + 0.396459i \(0.870239\pi\)
\(884\) 0 0
\(885\) −1.24330e6 −0.0533600
\(886\) 0 0
\(887\) −9.80665e6 + 1.69856e7i −0.418516 + 0.724890i −0.995790 0.0916595i \(-0.970783\pi\)
0.577275 + 0.816550i \(0.304116\pi\)
\(888\) 0 0
\(889\) 2.86418e7 1.21547
\(890\) 0 0
\(891\) 1.23617e6 + 2.14111e6i 0.0521655 + 0.0903533i
\(892\) 0 0
\(893\) −1.94459e7 3.36812e7i −0.816016 1.41338i
\(894\) 0 0
\(895\) −2.52973e6 + 4.38162e6i −0.105564 + 0.182842i
\(896\) 0 0
\(897\) 68676.8 8.54104e6i 0.00284990 0.354429i
\(898\) 0 0
\(899\) 1.00836e6 1.74653e6i 0.0416119 0.0720738i
\(900\) 0 0
\(901\) −1.93923e7 3.35884e7i −0.795824 1.37841i
\(902\) 0 0
\(903\) −6.39663e6 1.10793e7i −0.261055 0.452160i
\(904\) 0 0
\(905\) 1.62644e6 0.0660110
\(906\) 0 0
\(907\) 1.14355e7 1.98069e7i 0.461571 0.799465i −0.537468 0.843284i \(-0.680619\pi\)
0.999039 + 0.0438194i \(0.0139526\pi\)
\(908\) 0 0
\(909\) 3.82381e6 0.153492
\(910\) 0 0
\(911\) −9.53579e6 −0.380681 −0.190340 0.981718i \(-0.560959\pi\)
−0.190340 + 0.981718i \(0.560959\pi\)
\(912\) 0 0
\(913\) −1.43038e7 + 2.47748e7i −0.567902 + 0.983635i
\(914\) 0 0
\(915\) −2.53160e6 −0.0999638
\(916\) 0 0
\(917\) 4.51944e6 + 7.82790e6i 0.177485 + 0.307413i
\(918\) 0 0
\(919\) 1.05394e6 + 1.82547e6i 0.0411648 + 0.0712995i 0.885874 0.463926i \(-0.153560\pi\)
−0.844709 + 0.535226i \(0.820226\pi\)
\(920\) 0 0
\(921\) 3.37914e6 5.85284e6i 0.131267 0.227362i
\(922\) 0 0
\(923\) 244725. 3.04353e7i 0.00945525 1.17591i
\(924\) 0 0
\(925\) −6.52295e6 + 1.12981e7i −0.250663 + 0.434161i
\(926\) 0 0
\(927\) 3.72331e6 + 6.44896e6i 0.142308 + 0.246485i
\(928\) 0 0
\(929\) −3.72642e6 6.45434e6i −0.141662 0.245365i 0.786461 0.617640i \(-0.211911\pi\)
−0.928122 + 0.372275i \(0.878578\pi\)
\(930\) 0 0
\(931\) 1.87223e7 0.707921
\(932\) 0 0
\(933\) 3.68745e6 6.38685e6i 0.138683 0.240205i
\(934\) 0 0
\(935\) 3.33391e6 0.124717
\(936\) 0 0
\(937\) 1.38470e7 0.515238 0.257619 0.966247i \(-0.417062\pi\)
0.257619 + 0.966247i \(0.417062\pi\)
\(938\) 0 0
\(939\) 3.16092e6 5.47488e6i 0.116990 0.202633i
\(940\) 0 0
\(941\) −4.47011e6 −0.164567 −0.0822837 0.996609i \(-0.526221\pi\)
−0.0822837 + 0.996609i \(0.526221\pi\)
\(942\) 0 0
\(943\) −1.07616e7 1.86397e7i −0.394094 0.682590i
\(944\) 0 0
\(945\) 302755. + 524387.i 0.0110284 + 0.0191017i
\(946\) 0 0
\(947\) 1.23846e7 2.14508e7i 0.448754 0.777264i −0.549551 0.835460i \(-0.685201\pi\)
0.998305 + 0.0581955i \(0.0185347\pi\)
\(948\) 0 0
\(949\) −1.34599e7 7.91604e6i −0.485150 0.285327i
\(950\) 0 0
\(951\) −9.55873e6 + 1.65562e7i −0.342727 + 0.593621i
\(952\) 0 0
\(953\) −1.82023e6 3.15273e6i −0.0649222 0.112449i 0.831737 0.555169i \(-0.187347\pi\)
−0.896659 + 0.442721i \(0.854013\pi\)
\(954\) 0 0
\(955\) −96224.6 166666.i −0.00341411 0.00591341i
\(956\) 0 0
\(957\) −2.12084e6 −0.0748561
\(958\) 0 0
\(959\) −1.38672e7 + 2.40187e7i −0.486902 + 0.843339i
\(960\) 0 0
\(961\) −1.82290e7 −0.636729
\(962\) 0 0
\(963\) 9.79782e6 0.340458
\(964\) 0 0
\(965\) −3.42934e6 + 5.93979e6i −0.118547 + 0.205330i
\(966\) 0 0
\(967\) −1.27353e7 −0.437970 −0.218985 0.975728i \(-0.570275\pi\)
−0.218985 + 0.975728i \(0.570275\pi\)
\(968\) 0 0
\(969\) 1.31743e7 + 2.28185e7i 0.450731 + 0.780689i
\(970\) 0 0
\(971\) −2.80611e6 4.86033e6i −0.0955119 0.165431i 0.814310 0.580430i \(-0.197115\pi\)
−0.909822 + 0.414998i \(0.863782\pi\)
\(972\) 0 0
\(973\) 1.60720e7 2.78375e7i 0.544237 0.942646i
\(974\) 0 0
\(975\) 1.45808e7 8.26261e6i 0.491212 0.278359i
\(976\) 0 0
\(977\) 1.16834e7 2.02363e7i 0.391593 0.678258i −0.601067 0.799199i \(-0.705258\pi\)
0.992660 + 0.120940i \(0.0385909\pi\)
\(978\) 0 0
\(979\) −1.75695e7 3.04313e7i −0.585873 1.01476i
\(980\) 0 0
\(981\) 7.65394e6 + 1.32570e7i 0.253929 + 0.439818i
\(982\) 0 0
\(983\) 1.02853e7 0.339496 0.169748 0.985488i \(-0.445705\pi\)
0.169748 + 0.985488i \(0.445705\pi\)
\(984\) 0 0
\(985\) −3.48027e6 + 6.02801e6i −0.114294 + 0.197963i
\(986\) 0 0
\(987\) −1.27306e7 −0.415965
\(988\) 0 0
\(989\) 2.21432e7 0.719864
\(990\) 0 0
\(991\) −9.12437e6 + 1.58039e7i −0.295134 + 0.511187i −0.975016 0.222135i \(-0.928698\pi\)
0.679882 + 0.733321i \(0.262031\pi\)
\(992\) 0 0
\(993\) −9.29824e6 −0.299245
\(994\) 0 0
\(995\) −298657. 517289.i −0.00956345 0.0165644i
\(996\) 0 0
\(997\) 6.88342e6 + 1.19224e7i 0.219314 + 0.379863i 0.954598 0.297896i \(-0.0962848\pi\)
−0.735284 + 0.677759i \(0.762951\pi\)
\(998\) 0 0
\(999\) 1.55604e6 2.69514e6i 0.0493295 0.0854412i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 312.6.q.a.217.4 16
13.3 even 3 inner 312.6.q.a.289.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
312.6.q.a.217.4 16 1.1 even 1 trivial
312.6.q.a.289.4 yes 16 13.3 even 3 inner