Properties

Label 312.6.bt
Level $312$
Weight $6$
Character orbit 312.bt
Rep. character $\chi_{312}(19,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $560$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 312.bt (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(312, [\chi])\).

Total New Old
Modular forms 1136 560 576
Cusp forms 1104 560 544
Eisenstein series 32 0 32

Trace form

\( 560 q - 22680 q^{9} - 4960 q^{14} - 2552 q^{16} + 22020 q^{20} - 3372 q^{22} - 108 q^{24} + 23960 q^{26} - 12652 q^{28} + 17560 q^{32} - 28352 q^{34} + 31704 q^{40} + 9904 q^{41} + 22572 q^{42} + 94920 q^{44}+ \cdots - 477308 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(312, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)