Defining parameters
| Level: | \( N \) | \(=\) | \( 312 = 2^{3} \cdot 3 \cdot 13 \) |
| Weight: | \( k \) | \(=\) | \( 6 \) |
| Character orbit: | \([\chi]\) | \(=\) | 312.be (of order \(6\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 156 \) |
| Character field: | \(\Q(\zeta_{6})\) | ||
| Newform subspaces: | \( 0 \) | ||
| Sturm bound: | \(336\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{6}(312, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 576 | 0 | 576 |
| Cusp forms | 544 | 0 | 544 |
| Eisenstein series | 32 | 0 | 32 |
Decomposition of \(S_{6}^{\mathrm{old}}(312, [\chi])\) into lower level spaces
\( S_{6}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)