Properties

Label 312.6.be
Level $312$
Weight $6$
Character orbit 312.be
Rep. character $\chi_{312}(191,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $0$
Newform subspaces $0$
Sturm bound $336$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 312.be (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 156 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 0 \)
Sturm bound: \(336\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(312, [\chi])\).

Total New Old
Modular forms 576 0 576
Cusp forms 544 0 544
Eisenstein series 32 0 32

Decomposition of \(S_{6}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(156, [\chi])\)\(^{\oplus 2}\)