Properties

Label 312.6.bb
Level $312$
Weight $6$
Character orbit 312.bb
Rep. character $\chi_{312}(61,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $280$
Sturm bound $336$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 312 = 2^{3} \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 312.bb (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 104 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(336\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(312, [\chi])\).

Total New Old
Modular forms 568 280 288
Cusp forms 552 280 272
Eisenstein series 16 0 16

Trace form

\( 280 q + 11340 q^{9} + 284 q^{10} - 792 q^{12} - 2480 q^{14} - 516 q^{16} - 404 q^{17} + 3020 q^{20} + 4200 q^{22} + 108 q^{24} - 168768 q^{25} - 30920 q^{26} - 3056 q^{28} - 684 q^{30} - 18520 q^{32} - 6232 q^{34}+ \cdots + 491648 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(312, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{6}^{\mathrm{old}}(312, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(312, [\chi]) \simeq \) \(S_{6}^{\mathrm{new}}(104, [\chi])\)\(^{\oplus 2}\)