gp: [N,k,chi] = [312,3,Mod(77,312)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("312.77");
S:= CuspForms(chi, 3);
N := Newforms(S);
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(312, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
N = Newforms(chi, 3, names="a")
Newform invariants
sage: traces = [1,-2,3,4,0,-6]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Character values
We give the values of χ \chi χ on generators for ( Z / 312 Z ) × \left(\mathbb{Z}/312\mathbb{Z}\right)^\times ( Z / 3 1 2 Z ) × .
n n n
79 79 7 9
145 145 1 4 5
157 157 1 5 7
209 209 2 0 9
χ ( n ) \chi(n) χ ( n )
1 1 1
− 1 -1 − 1
− 1 -1 − 1
− 1 -1 − 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 3 n e w ( 312 , [ χ ] ) S_{3}^{\mathrm{new}}(312, [\chi]) S 3 n e w ( 3 1 2 , [ χ ] ) :
T 5 T_{5} T 5
T5
T 19 − 14 T_{19} - 14 T 1 9 − 1 4
T19 - 14
T 29 + 46 T_{29} + 46 T 2 9 + 4 6
T29 + 46
T 41 − 74 T_{41} - 74 T 4 1 − 7 4
T41 - 74
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T + 2 T + 2 T + 2
T + 2
3 3 3
T − 3 T - 3 T − 3
T - 3
5 5 5
T T T
T
7 7 7
T T T
T
11 11 1 1
T T T
T
13 13 1 3
T − 13 T - 13 T − 1 3
T - 13
17 17 1 7
T T T
T
19 19 1 9
T − 14 T - 14 T − 1 4
T - 14
23 23 2 3
T T T
T
29 29 2 9
T + 46 T + 46 T + 4 6
T + 46
31 31 3 1
T T T
T
37 37 3 7
T + 22 T + 22 T + 2 2
T + 22
41 41 4 1
T − 74 T - 74 T − 7 4
T - 74
43 43 4 3
T T T
T
47 47 4 7
T − 62 T - 62 T − 6 2
T - 62
53 53 5 3
T − 2 T - 2 T − 2
T - 2
59 59 5 9
T T T
T
61 61 6 1
T T T
T
67 67 6 7
T + 82 T + 82 T + 8 2
T + 82
71 71 7 1
T − 14 T - 14 T − 1 4
T - 14
73 73 7 3
T T T
T
79 79 7 9
T + 154 T + 154 T + 1 5 4
T + 154
83 83 8 3
T T T
T
89 89 8 9
T + 22 T + 22 T + 2 2
T + 22
97 97 9 7
T T T
T
show more
show less