Properties

Label 312.3.b.b
Level 312312
Weight 33
Character orbit 312.b
Self dual yes
Analytic conductor 8.5018.501
Analytic rank 00
Dimension 11
CM discriminant -312
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [312,3,Mod(77,312)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("312.77"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(312, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 1, 1])) N = Newforms(chi, 3, names="a")
 
Level: N N == 312=23313 312 = 2^{3} \cdot 3 \cdot 13
Weight: k k == 3 3
Character orbit: [χ][\chi] == 312.b (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,-2,3,4,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 8.501384248048.50138424804
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2q2+3q3+4q46q68q8+9q9+12q12+13q13+16q1618q18+14q1924q24+25q2526q26+27q2746q2932q32+36q36+98q98+O(q100) q - 2 q^{2} + 3 q^{3} + 4 q^{4} - 6 q^{6} - 8 q^{8} + 9 q^{9} + 12 q^{12} + 13 q^{13} + 16 q^{16} - 18 q^{18} + 14 q^{19} - 24 q^{24} + 25 q^{25} - 26 q^{26} + 27 q^{27} - 46 q^{29} - 32 q^{32} + 36 q^{36}+ \cdots - 98 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/312Z)×\left(\mathbb{Z}/312\mathbb{Z}\right)^\times.

nn 7979 145145 157157 209209
χ(n)\chi(n) 11 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
77.1
0
−2.00000 3.00000 4.00000 0 −6.00000 0 −8.00000 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
312.b odd 2 1 CM by Q(78)\Q(\sqrt{-78})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 312.3.b.b yes 1
3.b odd 2 1 312.3.b.c yes 1
8.b even 2 1 312.3.b.a 1
13.b even 2 1 312.3.b.d yes 1
24.h odd 2 1 312.3.b.d yes 1
39.d odd 2 1 312.3.b.a 1
104.e even 2 1 312.3.b.c yes 1
312.b odd 2 1 CM 312.3.b.b yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
312.3.b.a 1 8.b even 2 1
312.3.b.a 1 39.d odd 2 1
312.3.b.b yes 1 1.a even 1 1 trivial
312.3.b.b yes 1 312.b odd 2 1 CM
312.3.b.c yes 1 3.b odd 2 1
312.3.b.c yes 1 104.e even 2 1
312.3.b.d yes 1 13.b even 2 1
312.3.b.d yes 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S3new(312,[χ])S_{3}^{\mathrm{new}}(312, [\chi]):

T5 T_{5} Copy content Toggle raw display
T1914 T_{19} - 14 Copy content Toggle raw display
T29+46 T_{29} + 46 Copy content Toggle raw display
T4174 T_{41} - 74 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+2 T + 2 Copy content Toggle raw display
33 T3 T - 3 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T T Copy content Toggle raw display
1111 T T Copy content Toggle raw display
1313 T13 T - 13 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T14 T - 14 Copy content Toggle raw display
2323 T T Copy content Toggle raw display
2929 T+46 T + 46 Copy content Toggle raw display
3131 T T Copy content Toggle raw display
3737 T+22 T + 22 Copy content Toggle raw display
4141 T74 T - 74 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T62 T - 62 Copy content Toggle raw display
5353 T2 T - 2 Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T T Copy content Toggle raw display
6767 T+82 T + 82 Copy content Toggle raw display
7171 T14 T - 14 Copy content Toggle raw display
7373 T T Copy content Toggle raw display
7979 T+154 T + 154 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T+22 T + 22 Copy content Toggle raw display
9797 T T Copy content Toggle raw display
show more
show less