Properties

Label 311.10.a.a
Level 311311
Weight 1010
Character orbit 311.a
Self dual yes
Analytic conductor 160.176160.176
Analytic rank 11
Dimension 107107
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [311,10,Mod(1,311)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(311, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("311.1"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: N N == 311 311
Weight: k k == 10 10
Character orbit: [χ][\chi] == 311.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [107] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 160.176145047160.176145047
Analytic rank: 11
Dimension: 107107
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 107q49q2251q3+24831q43013q59786q625917q741559q8+580870q9151606q10197170q11243835q12451437q13664654q14540384q15+1262875708q99+O(q100) 107 q - 49 q^{2} - 251 q^{3} + 24831 q^{4} - 3013 q^{5} - 9786 q^{6} - 25917 q^{7} - 41559 q^{8} + 580870 q^{9} - 151606 q^{10} - 197170 q^{11} - 243835 q^{12} - 451437 q^{13} - 664654 q^{14} - 540384 q^{15}+ \cdots - 1262875708 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1 −44.5278 −55.2296 1470.73 −690.991 2459.25 2049.63 −42690.2 −16632.7 30768.3
1.2 −43.5905 −219.543 1388.13 −897.333 9570.00 5057.90 −38191.1 28516.2 39115.2
1.3 −42.6069 242.746 1303.35 −1603.97 −10342.7 365.343 −33716.8 39242.6 68340.3
1.4 −42.0612 −170.126 1257.14 1585.05 7155.68 −5967.85 −31341.6 9259.73 −66669.1
1.5 −41.7690 −46.4893 1232.65 2237.07 1941.81 2415.31 −30101.0 −17521.7 −93440.2
1.6 −41.4202 −106.385 1203.63 1625.64 4406.47 1796.44 −28647.5 −8365.31 −67334.4
1.7 −40.4398 162.289 1123.38 1517.99 −6562.95 4627.84 −24723.9 6654.85 −61387.1
1.8 −39.9322 −52.4632 1082.58 −2352.44 2094.97 −1232.89 −22784.5 −16930.6 93937.9
1.9 −39.5238 168.701 1050.13 −936.297 −6667.70 6534.76 −21269.0 8776.95 37006.0
1.10 −38.2934 165.104 954.387 −2210.36 −6322.40 −8697.27 −16940.5 7576.34 84642.1
1.11 −38.2239 −174.737 949.069 −1891.58 6679.13 62.6736 −16706.5 10849.9 72303.5
1.12 −38.1590 42.8105 944.110 1930.82 −1633.61 8892.78 −16488.9 −17850.3 −73678.1
1.13 −36.7147 268.893 835.971 −443.367 −9872.32 −5286.21 −11894.5 52620.3 16278.1
1.14 −35.6137 −35.0200 756.334 −202.742 1247.19 −1713.33 −8701.64 −18456.6 7220.39
1.15 −34.1914 261.106 657.055 2198.16 −8927.59 −6416.42 −4959.63 48493.3 −75158.1
1.16 −34.1654 24.5007 655.276 −156.610 −837.077 7082.52 −4895.07 −19082.7 5350.65
1.17 −33.8875 12.6214 636.365 2326.34 −427.707 −8895.77 −4214.41 −19523.7 −78833.8
1.18 −33.6420 170.794 619.781 272.801 −5745.83 3002.29 −3625.96 9487.49 −9177.55
1.19 −33.4737 −43.8242 608.486 −757.345 1466.96 −6617.76 −3229.75 −17762.4 25351.1
1.20 −33.2237 −183.672 591.816 1174.29 6102.26 −10870.6 −2651.77 14052.3 −39014.3
See next 80 embeddings (of 107 total)
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.107
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
311311 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 311.10.a.a 107
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
311.10.a.a 107 1.a even 1 1 trivial