Properties

Label 310.2.w
Level $310$
Weight $2$
Character orbit 310.w
Rep. character $\chi_{310}(3,\cdot)$
Character field $\Q(\zeta_{60})$
Dimension $256$
Newform subspaces $1$
Sturm bound $96$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 310 = 2 \cdot 5 \cdot 31 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 310.w (of order \(60\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 155 \)
Character field: \(\Q(\zeta_{60})\)
Newform subspaces: \( 1 \)
Sturm bound: \(96\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(310, [\chi])\).

Total New Old
Modular forms 832 256 576
Cusp forms 704 256 448
Eisenstein series 128 0 128

Trace form

\( 256 q - 24 q^{7} - 8 q^{10} + 64 q^{16} + 4 q^{20} + 32 q^{21} - 52 q^{22} + 20 q^{23} + 20 q^{25} - 180 q^{27} + 4 q^{28} + 8 q^{31} - 44 q^{33} + 48 q^{35} + 128 q^{36} - 108 q^{37} - 52 q^{38} - 32 q^{41}+ \cdots - 112 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(310, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
310.2.w.a 310.w 155.x $256$ $2.475$ None 310.2.w.a \(0\) \(0\) \(0\) \(-24\) $\mathrm{SU}(2)[C_{60}]$

Decomposition of \(S_{2}^{\mathrm{old}}(310, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(310, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(155, [\chi])\)\(^{\oplus 2}\)