Defining parameters
| Level: | \( N \) | = | \( 310 = 2 \cdot 5 \cdot 31 \) |
| Weight: | \( k \) | = | \( 2 \) |
| Nonzero newspaces: | \( 12 \) | ||
| Newform subspaces: | \( 31 \) | ||
| Sturm bound: | \(11520\) | ||
| Trace bound: | \(4\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(310))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 3120 | 881 | 2239 |
| Cusp forms | 2641 | 881 | 1760 |
| Eisenstein series | 479 | 0 | 479 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(310))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(310))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_1(310)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(31))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(62))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(155))\)\(^{\oplus 2}\)