Properties

Label 3060.2.n
Level $3060$
Weight $2$
Character orbit 3060.n
Rep. character $\chi_{3060}(1259,\cdot)$
Character field $\Q$
Dimension $192$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.n (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 60 \)
Character field: \(\Q\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 664 192 472
Cusp forms 632 192 440
Eisenstein series 32 0 32

Trace form

\( 192 q - 16 q^{10} + 32 q^{16} + 16 q^{25} + 56 q^{40} - 80 q^{46} + 224 q^{49} - 120 q^{64} - 112 q^{70} + 24 q^{76} + 56 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1020, [\chi])\)\(^{\oplus 2}\)