Properties

Label 3060.2.fb
Level $3060$
Weight $2$
Character orbit 3060.fb
Rep. character $\chi_{3060}(97,\cdot)$
Character field $\Q(\zeta_{48})$
Dimension $1728$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.fb (of order \(48\) and degree \(16\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 765 \)
Character field: \(\Q(\zeta_{48})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 10560 1728 8832
Cusp forms 10176 1728 8448
Eisenstein series 384 0 384

Trace form

\( 1728 q - 24 q^{15} - 48 q^{27} - 32 q^{39} - 40 q^{57} - 96 q^{59} + 48 q^{63} - 56 q^{75} + 40 q^{87} + 96 q^{91} - 56 q^{93} - 80 q^{95} - 96 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1530, [\chi])\)\(^{\oplus 2}\)