Properties

Label 3060.2.ex
Level $3060$
Weight $2$
Character orbit 3060.ex
Rep. character $\chi_{3060}(491,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $3456$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.ex (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 612 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 5248 3456 1792
Cusp forms 5120 3456 1664
Eisenstein series 128 0 128

Trace form

\( 3456 q - 16 q^{9} + 80 q^{24} - 24 q^{34} + 80 q^{42} + 48 q^{46} + 40 q^{54} - 112 q^{57} + 104 q^{66} + 128 q^{69} - 336 q^{74} + 80 q^{84} - 208 q^{96} + 48 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 2}\)