Properties

Label 3060.2.ew
Level $3060$
Weight $2$
Character orbit 3060.ew
Rep. character $\chi_{3060}(121,\cdot)$
Character field $\Q(\zeta_{24})$
Dimension $576$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.ew (of order \(24\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 153 \)
Character field: \(\Q(\zeta_{24})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 5280 576 4704
Cusp forms 5088 576 4512
Eisenstein series 192 0 192

Trace form

\( 576 q - 8 q^{9} + 8 q^{11} + 8 q^{15} - 24 q^{23} - 32 q^{33} + 64 q^{35} + 8 q^{39} - 48 q^{41} - 24 q^{43} - 16 q^{45} - 24 q^{51} - 64 q^{53} + 24 q^{57} - 24 q^{59} + 104 q^{63} + 8 q^{65} - 64 q^{69}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(306, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1530, [\chi])\)\(^{\oplus 2}\)