Properties

Label 3060.2.du
Level $3060$
Weight $2$
Character orbit 3060.du
Rep. character $\chi_{3060}(73,\cdot)$
Character field $\Q(\zeta_{16})$
Dimension $360$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.du (of order \(16\) and degree \(8\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 85 \)
Character field: \(\Q(\zeta_{16})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 5376 360 5016
Cusp forms 4992 360 4632
Eisenstein series 384 0 384

Trace form

\( 360 q + 8 q^{25} + 32 q^{31} - 32 q^{37} - 40 q^{41} - 80 q^{47} - 40 q^{53} + 16 q^{55} - 80 q^{59} + 32 q^{67} - 16 q^{71} - 40 q^{73} - 16 q^{77} - 40 q^{83} + 88 q^{85} - 48 q^{91} + 112 q^{95} + 80 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(85, [\chi])\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(170, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(255, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(340, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(510, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1020, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1530, [\chi])\)\(^{\oplus 2}\)