Properties

Label 3060.2.dn
Level $3060$
Weight $2$
Character orbit 3060.dn
Rep. character $\chi_{3060}(103,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $2304$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.dn (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 180 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 2624 2304 320
Cusp forms 2560 2304 256
Eisenstein series 64 0 64

Trace form

\( 2304 q + 56 q^{18} + 16 q^{21} + 64 q^{26} + 20 q^{30} - 20 q^{32} + 32 q^{36} + 56 q^{38} - 40 q^{42} - 28 q^{48} - 40 q^{50} + 96 q^{53} + 56 q^{56} + 32 q^{57} - 40 q^{60} - 32 q^{65} + 8 q^{66} - 20 q^{72}+ \cdots - 304 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)