Properties

Label 3060.2.dh
Level $3060$
Weight $2$
Character orbit 3060.dh
Rep. character $\chi_{3060}(769,\cdot)$
Character field $\Q(\zeta_{12})$
Dimension $432$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.dh (of order \(12\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 765 \)
Character field: \(\Q(\zeta_{12})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 2640 432 2208
Cusp forms 2544 432 2112
Eisenstein series 96 0 96

Trace form

\( 432 q + 4 q^{11} + 48 q^{21} + 8 q^{29} + 48 q^{35} + 4 q^{39} + 8 q^{41} + 26 q^{45} - 36 q^{51} - 34 q^{65} - 32 q^{69} + 40 q^{71} - 36 q^{75} - 12 q^{79} + 16 q^{81} - 24 q^{85} - 192 q^{89} + 24 q^{91}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(765, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1530, [\chi])\)\(^{\oplus 2}\)