Properties

Label 3060.2.ce
Level $3060$
Weight $2$
Character orbit 3060.ce
Rep. character $\chi_{3060}(791,\cdot)$
Character field $\Q(\zeta_{8})$
Dimension $576$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.ce (of order \(8\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 204 \)
Character field: \(\Q(\zeta_{8})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 2656 576 2080
Cusp forms 2528 576 1952
Eisenstein series 128 0 128

Trace form

\( 576 q + 96 q^{22} - 96 q^{28} - 16 q^{34} - 32 q^{46} - 128 q^{58} - 128 q^{61} - 128 q^{76} + 192 q^{82} + 128 q^{88} + 176 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(204, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(1020, [\chi])\)\(^{\oplus 2}\)