Properties

Label 3060.2.bs
Level $3060$
Weight $2$
Character orbit 3060.bs
Rep. character $\chi_{3060}(1631,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $864$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.bs (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 612 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 1312 864 448
Cusp forms 1280 864 416
Eisenstein series 32 0 32

Trace form

\( 864 q + 8 q^{9} + 20 q^{18} - 432 q^{25} + 72 q^{33} - 6 q^{34} - 40 q^{42} - 432 q^{49} + 24 q^{64} + 52 q^{66} - 108 q^{68} + 32 q^{69} - 60 q^{72} - 12 q^{76} - 48 q^{77} - 40 q^{81} + 76 q^{84} - 16 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(612, [\chi])\)\(^{\oplus 2}\)