Properties

Label 3060.2.bq
Level $3060$
Weight $2$
Character orbit 3060.bq
Rep. character $\chi_{3060}(239,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $1152$
Sturm bound $1296$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3060.bq (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 180 \)
Character field: \(\Q(\zeta_{6})\)
Sturm bound: \(1296\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(3060, [\chi])\).

Total New Old
Modular forms 1312 1152 160
Cusp forms 1280 1152 128
Eisenstein series 32 0 32

Trace form

\( 1152 q + 42 q^{20} - 8 q^{21} + 44 q^{24} + 24 q^{29} + 24 q^{30} - 4 q^{36} + 24 q^{45} - 576 q^{49} + 40 q^{54} - 84 q^{56} + 34 q^{60} + 48 q^{65} - 60 q^{66} + 40 q^{69} - 84 q^{74} - 24 q^{81} - 88 q^{84}+ \cdots - 84 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(3060, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.

Decomposition of \(S_{2}^{\mathrm{old}}(3060, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(3060, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(180, [\chi])\)\(^{\oplus 2}\)