Properties

Label 3060.1.f.c
Level $3060$
Weight $1$
Character orbit 3060.f
Self dual yes
Analytic conductor $1.527$
Analytic rank $0$
Dimension $1$
Projective image $D_{2}$
CM/RM discs -15, -340, 204
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,1,Mod(2719,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1, 1])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.2719"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3060.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [1,1,0,1,-1,0,0,1,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.52713893866\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{2}\)
Projective field: Galois closure of \(\Q(\sqrt{-15}, \sqrt{51})\)
Artin image: $D_4$
Artin field: Galois closure of 4.0.45900.2
Stark unit: Root of $x^{4} - 4228636x^{3} - 7891770x^{2} - 4228636x + 1$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + q^{2} + q^{4} - q^{5} + q^{8} - q^{10} + q^{16} + q^{17} - q^{20} + q^{25} + 2 q^{31} + q^{32} + q^{34} - q^{40} - 2 q^{47} + q^{49} + q^{50} + 2 q^{62} + q^{64} + q^{68} - 2 q^{79}+ \cdots + q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2719.1
0
1.00000 0 1.00000 −1.00000 0 0 1.00000 0 −1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
204.h even 2 1 RM by \(\Q(\sqrt{51}) \)
340.d odd 2 1 CM by \(\Q(\sqrt{-85}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3060.1.f.c yes 1
3.b odd 2 1 3060.1.f.b yes 1
4.b odd 2 1 3060.1.f.a 1
5.b even 2 1 3060.1.f.b yes 1
12.b even 2 1 3060.1.f.d yes 1
15.d odd 2 1 CM 3060.1.f.c yes 1
17.b even 2 1 3060.1.f.d yes 1
20.d odd 2 1 3060.1.f.d yes 1
51.c odd 2 1 3060.1.f.a 1
60.h even 2 1 3060.1.f.a 1
68.d odd 2 1 3060.1.f.b yes 1
85.c even 2 1 3060.1.f.a 1
204.h even 2 1 RM 3060.1.f.c yes 1
255.h odd 2 1 3060.1.f.d yes 1
340.d odd 2 1 CM 3060.1.f.c yes 1
1020.b even 2 1 3060.1.f.b yes 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3060.1.f.a 1 4.b odd 2 1
3060.1.f.a 1 51.c odd 2 1
3060.1.f.a 1 60.h even 2 1
3060.1.f.a 1 85.c even 2 1
3060.1.f.b yes 1 3.b odd 2 1
3060.1.f.b yes 1 5.b even 2 1
3060.1.f.b yes 1 68.d odd 2 1
3060.1.f.b yes 1 1020.b even 2 1
3060.1.f.c yes 1 1.a even 1 1 trivial
3060.1.f.c yes 1 15.d odd 2 1 CM
3060.1.f.c yes 1 204.h even 2 1 RM
3060.1.f.c yes 1 340.d odd 2 1 CM
3060.1.f.d yes 1 12.b even 2 1
3060.1.f.d yes 1 17.b even 2 1
3060.1.f.d yes 1 20.d odd 2 1
3060.1.f.d yes 1 255.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3060, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{29} \) Copy content Toggle raw display
\( T_{31} - 2 \) Copy content Toggle raw display
\( T_{37} \) Copy content Toggle raw display
\( T_{47} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 1 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T - 1 \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 2 \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T + 2 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T \) Copy content Toggle raw display
$79$ \( T + 2 \) Copy content Toggle raw display
$83$ \( T + 2 \) Copy content Toggle raw display
$89$ \( T \) Copy content Toggle raw display
$97$ \( T \) Copy content Toggle raw display
show more
show less