Properties

Label 3060.1.cr.c
Level $3060$
Weight $1$
Character orbit 3060.cr
Analytic conductor $1.527$
Analytic rank $0$
Dimension $8$
Projective image $D_{8}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,1,Mod(19,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 0, 4, 7])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.19"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3060.cr (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.52713893866\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of 8.2.1772663067360000.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{16}^{5} q^{2} - \zeta_{16}^{2} q^{4} - \zeta_{16}^{7} q^{5} - \zeta_{16}^{7} q^{8} + \zeta_{16}^{4} q^{10} + \zeta_{16}^{4} q^{16} - \zeta_{16}^{3} q^{17} + (\zeta_{16}^{4} - 1) q^{19} - \zeta_{16} q^{20} + \cdots + \zeta_{16}^{7} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{19} + 8 q^{34} + 8 q^{61} + 8 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(-\zeta_{16}^{6}\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.923880 + 0.382683i
−0.923880 0.382683i
−0.382683 + 0.923880i
0.382683 0.923880i
−0.382683 0.923880i
0.382683 + 0.923880i
0.923880 0.382683i
−0.923880 + 0.382683i
−0.382683 + 0.923880i 0 −0.707107 0.707107i 0.923880 0.382683i 0 0 0.923880 0.382683i 0 1.00000i
19.2 0.382683 0.923880i 0 −0.707107 0.707107i −0.923880 + 0.382683i 0 0 −0.923880 + 0.382683i 0 1.00000i
559.1 −0.923880 0.382683i 0 0.707107 + 0.707107i −0.382683 0.923880i 0 0 −0.382683 0.923880i 0 1.00000i
559.2 0.923880 + 0.382683i 0 0.707107 + 0.707107i 0.382683 + 0.923880i 0 0 0.382683 + 0.923880i 0 1.00000i
739.1 −0.923880 + 0.382683i 0 0.707107 0.707107i −0.382683 + 0.923880i 0 0 −0.382683 + 0.923880i 0 1.00000i
739.2 0.923880 0.382683i 0 0.707107 0.707107i 0.382683 0.923880i 0 0 0.382683 0.923880i 0 1.00000i
2899.1 −0.382683 0.923880i 0 −0.707107 + 0.707107i 0.923880 + 0.382683i 0 0 0.923880 + 0.382683i 0 1.00000i
2899.2 0.382683 + 0.923880i 0 −0.707107 + 0.707107i −0.923880 0.382683i 0 0 −0.923880 0.382683i 0 1.00000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
68.g odd 8 1 inner
204.p even 8 1 inner
340.ba odd 8 1 inner
1020.cd even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3060.1.cr.c 8
3.b odd 2 1 inner 3060.1.cr.c 8
4.b odd 2 1 3060.1.cr.d yes 8
5.b even 2 1 inner 3060.1.cr.c 8
12.b even 2 1 3060.1.cr.d yes 8
15.d odd 2 1 CM 3060.1.cr.c 8
17.d even 8 1 3060.1.cr.d yes 8
20.d odd 2 1 3060.1.cr.d yes 8
51.g odd 8 1 3060.1.cr.d yes 8
60.h even 2 1 3060.1.cr.d yes 8
68.g odd 8 1 inner 3060.1.cr.c 8
85.m even 8 1 3060.1.cr.d yes 8
204.p even 8 1 inner 3060.1.cr.c 8
255.y odd 8 1 3060.1.cr.d yes 8
340.ba odd 8 1 inner 3060.1.cr.c 8
1020.cd even 8 1 inner 3060.1.cr.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3060.1.cr.c 8 1.a even 1 1 trivial
3060.1.cr.c 8 3.b odd 2 1 inner
3060.1.cr.c 8 5.b even 2 1 inner
3060.1.cr.c 8 15.d odd 2 1 CM
3060.1.cr.c 8 68.g odd 8 1 inner
3060.1.cr.c 8 204.p even 8 1 inner
3060.1.cr.c 8 340.ba odd 8 1 inner
3060.1.cr.c 8 1020.cd even 8 1 inner
3060.1.cr.d yes 8 4.b odd 2 1
3060.1.cr.d yes 8 12.b even 2 1
3060.1.cr.d yes 8 17.d even 8 1
3060.1.cr.d yes 8 20.d odd 2 1
3060.1.cr.d yes 8 51.g odd 8 1
3060.1.cr.d yes 8 60.h even 2 1
3060.1.cr.d yes 8 85.m even 8 1
3060.1.cr.d yes 8 255.y odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3060, [\chi])\):

\( T_{13} \) Copy content Toggle raw display
\( T_{19}^{2} + 2T_{19} + 2 \) Copy content Toggle raw display
\( T_{37} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( T^{8} + 1 \) Copy content Toggle raw display
$7$ \( T^{8} \) Copy content Toggle raw display
$11$ \( T^{8} \) Copy content Toggle raw display
$13$ \( T^{8} \) Copy content Toggle raw display
$17$ \( T^{8} + 1 \) Copy content Toggle raw display
$19$ \( (T^{2} + 2 T + 2)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} + 256 \) Copy content Toggle raw display
$29$ \( T^{8} \) Copy content Toggle raw display
$31$ \( (T^{4} + 2 T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} \) Copy content Toggle raw display
$41$ \( T^{8} \) Copy content Toggle raw display
$43$ \( T^{8} \) Copy content Toggle raw display
$47$ \( (T^{4} + 4 T^{2} + 2)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$59$ \( T^{8} \) Copy content Toggle raw display
$61$ \( (T^{4} - 4 T^{3} + 6 T^{2} + \cdots + 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( T^{8} \) Copy content Toggle raw display
$79$ \( (T^{4} + 2 T^{2} + 4 T + 2)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 12T^{4} + 4 \) Copy content Toggle raw display
$89$ \( T^{8} \) Copy content Toggle raw display
$97$ \( T^{8} \) Copy content Toggle raw display
show more
show less