Properties

Label 3060.1.ck.c
Level $3060$
Weight $1$
Character orbit 3060.ck
Analytic conductor $1.527$
Analytic rank $0$
Dimension $4$
Projective image $D_{8}$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3060,1,Mod(467,3060)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3060, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 4, 2, 5])) N = Newforms(chi, 1, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3060.467"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3060 = 2^{2} \cdot 3^{2} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3060.ck (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(29)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.52713893866\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{8}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{8} - \cdots)\)

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{8}^{2} q^{2} - q^{4} + \zeta_{8}^{3} q^{5} + \zeta_{8}^{2} q^{8} + \zeta_{8} q^{10} - 2 \zeta_{8} q^{13} + q^{16} + \zeta_{8} q^{17} - \zeta_{8}^{3} q^{20} - \zeta_{8}^{2} q^{25} + 2 \zeta_{8}^{3} q^{26} + \cdots + \zeta_{8}^{3} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} + 4 q^{16} + 4 q^{29} - 4 q^{50} - 4 q^{61} - 4 q^{64} + 8 q^{65} - 4 q^{73} - 4 q^{74} - 4 q^{82} - 4 q^{85} + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3060\mathbb{Z}\right)^\times\).

\(n\) \(1261\) \(1361\) \(1531\) \(1837\)
\(\chi(n)\) \(\zeta_{8}\) \(-1\) \(-1\) \(\zeta_{8}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
467.1
−0.707107 0.707107i
0.707107 0.707107i
−0.707107 + 0.707107i
0.707107 + 0.707107i
1.00000i 0 −1.00000 0.707107 0.707107i 0 0 1.00000i 0 −0.707107 0.707107i
1583.1 1.00000i 0 −1.00000 −0.707107 0.707107i 0 0 1.00000i 0 0.707107 0.707107i
2123.1 1.00000i 0 −1.00000 0.707107 + 0.707107i 0 0 1.00000i 0 −0.707107 + 0.707107i
2627.1 1.00000i 0 −1.00000 −0.707107 + 0.707107i 0 0 1.00000i 0 0.707107 + 0.707107i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
255.v even 8 1 inner
1020.bu odd 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3060.1.ck.c yes 4
3.b odd 2 1 3060.1.ck.b 4
4.b odd 2 1 CM 3060.1.ck.c yes 4
5.c odd 4 1 3060.1.cn.a yes 4
12.b even 2 1 3060.1.ck.b 4
15.e even 4 1 3060.1.cn.c yes 4
17.d even 8 1 3060.1.cn.c yes 4
20.e even 4 1 3060.1.cn.a yes 4
51.g odd 8 1 3060.1.cn.a yes 4
60.l odd 4 1 3060.1.cn.c yes 4
68.g odd 8 1 3060.1.cn.c yes 4
85.n odd 8 1 3060.1.ck.b 4
204.p even 8 1 3060.1.cn.a yes 4
255.v even 8 1 inner 3060.1.ck.c yes 4
340.w even 8 1 3060.1.ck.b 4
1020.bu odd 8 1 inner 3060.1.ck.c yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3060.1.ck.b 4 3.b odd 2 1
3060.1.ck.b 4 12.b even 2 1
3060.1.ck.b 4 85.n odd 8 1
3060.1.ck.b 4 340.w even 8 1
3060.1.ck.c yes 4 1.a even 1 1 trivial
3060.1.ck.c yes 4 4.b odd 2 1 CM
3060.1.ck.c yes 4 255.v even 8 1 inner
3060.1.ck.c yes 4 1020.bu odd 8 1 inner
3060.1.cn.a yes 4 5.c odd 4 1
3060.1.cn.a yes 4 20.e even 4 1
3060.1.cn.a yes 4 51.g odd 8 1
3060.1.cn.a yes 4 204.p even 8 1
3060.1.cn.c yes 4 15.e even 4 1
3060.1.cn.c yes 4 17.d even 8 1
3060.1.cn.c yes 4 60.l odd 4 1
3060.1.cn.c yes 4 68.g odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3060, [\chi])\):

\( T_{13}^{4} + 16 \) Copy content Toggle raw display
\( T_{29}^{4} - 4T_{29}^{3} + 6T_{29}^{2} - 4T_{29} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} + 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 1 \) Copy content Toggle raw display
$19$ \( T^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$31$ \( T^{4} \) Copy content Toggle raw display
$37$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$41$ \( T^{4} + 2 T^{2} + \cdots + 2 \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} - 2)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( T^{4} + 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} + 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 4 T^{3} + \cdots + 2 \) Copy content Toggle raw display
show more
show less