Properties

Label 306.3.c.a
Level $306$
Weight $3$
Character orbit 306.c
Analytic conductor $8.338$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [306,3,Mod(35,306)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("306.35"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(306, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 306.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-8,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.33789608943\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-17})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 16x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 2 q^{4} + (\beta_{3} - 2 \beta_1) q^{5} + (\beta_{2} - 2) q^{7} + 2 \beta_1 q^{8} + (\beta_{2} - 4) q^{10} + ( - \beta_{3} + 2 \beta_1) q^{11} + (2 \beta_{2} + 3) q^{13} + ( - 2 \beta_{3} + 2 \beta_1) q^{14}+ \cdots + (8 \beta_{3} + 11 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{4} - 8 q^{7} - 16 q^{10} + 12 q^{13} + 16 q^{16} + 36 q^{19} + 16 q^{22} + 16 q^{28} - 64 q^{31} - 24 q^{37} + 32 q^{40} - 68 q^{43} - 44 q^{49} - 24 q^{52} + 100 q^{55} - 80 q^{58} - 88 q^{61}+ \cdots - 144 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 16x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - 7\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{3} + 25\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{2} - 8 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + 8 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 7\beta_{2} + 25\beta_1 ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/306\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(137\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
35.1
−2.91548 + 0.707107i
2.91548 + 0.707107i
2.91548 0.707107i
−2.91548 0.707107i
1.41421i 0 −2.00000 6.95153i 0 −7.83095 2.82843i 0 −9.83095
35.2 1.41421i 0 −2.00000 1.29468i 0 3.83095 2.82843i 0 1.83095
35.3 1.41421i 0 −2.00000 1.29468i 0 3.83095 2.82843i 0 1.83095
35.4 1.41421i 0 −2.00000 6.95153i 0 −7.83095 2.82843i 0 −9.83095
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.3.c.a 4
3.b odd 2 1 inner 306.3.c.a 4
4.b odd 2 1 2448.3.g.b 4
12.b even 2 1 2448.3.g.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
306.3.c.a 4 1.a even 1 1 trivial
306.3.c.a 4 3.b odd 2 1 inner
2448.3.g.b 4 4.b odd 2 1
2448.3.g.b 4 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{2} + 4T_{7} - 30 \) acting on \(S_{3}^{\mathrm{new}}(306, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2)^{2} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + 50T^{2} + 81 \) Copy content Toggle raw display
$7$ \( (T^{2} + 4 T - 30)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 50T^{2} + 81 \) Copy content Toggle raw display
$13$ \( (T^{2} - 6 T - 127)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 17)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 18 T - 55)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 153)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 944T^{2} + 5184 \) Copy content Toggle raw display
$31$ \( (T^{2} + 32 T - 50)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 12 T - 814)^{2} \) Copy content Toggle raw display
$41$ \( T^{4} + 4370 T^{2} + 269361 \) Copy content Toggle raw display
$43$ \( (T^{2} + 34 T - 255)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 7812 T^{2} + 980100 \) Copy content Toggle raw display
$53$ \( T^{4} + 5220 T^{2} + 5225796 \) Copy content Toggle raw display
$59$ \( T^{4} + 3528 T^{2} + 291600 \) Copy content Toggle raw display
$61$ \( (T^{2} + 44 T - 2270)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} - 56 T - 5880)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 2448)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 168 T + 5390)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 36 T - 1852)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 9188 T^{2} + 16892100 \) Copy content Toggle raw display
$89$ \( T^{4} + 13932 T^{2} + 16402500 \) Copy content Toggle raw display
$97$ \( (T^{2} + 72 T - 12304)^{2} \) Copy content Toggle raw display
show more
show less