Properties

Label 306.2.j
Level $306$
Weight $2$
Character orbit 306.j
Rep. character $\chi_{306}(67,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $36$
Newform subspaces $3$
Sturm bound $108$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 306.j (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 153 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 3 \)
Sturm bound: \(108\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(306, [\chi])\).

Total New Old
Modular forms 116 36 80
Cusp forms 100 36 64
Eisenstein series 16 0 16

Trace form

\( 36 q + 2 q^{2} - 18 q^{4} - 4 q^{8} - 18 q^{9} - 20 q^{15} - 18 q^{16} + 14 q^{17} - 8 q^{18} + 12 q^{19} + 52 q^{21} + 18 q^{25} - 16 q^{26} - 24 q^{30} + 2 q^{32} + 14 q^{33} + 3 q^{34} - 56 q^{35} + 6 q^{36}+ \cdots + 100 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(306, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
306.2.j.a 306.j 153.h $4$ $2.443$ \(\Q(\zeta_{12})\) None 306.2.j.a \(2\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q+(1-\zeta_{12}^{2})q^{2}+(\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\)
306.2.j.b 306.j 153.h $16$ $2.443$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 306.2.j.b \(-8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{5}q^{2}-\beta _{1}q^{3}+(-1+\beta _{5})q^{4}+(-\beta _{6}+\cdots)q^{5}+\cdots\)
306.2.j.c 306.j 153.h $16$ $2.443$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 306.2.j.c \(8\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$ \(q-\beta _{1}q^{2}+\beta _{10}q^{3}+(-1-\beta _{1})q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(306, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(306, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)