Defining parameters
Level: | \( N \) | \(=\) | \( 306 = 2 \cdot 3^{2} \cdot 17 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 306.j (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 153 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(108\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(306, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 116 | 36 | 80 |
Cusp forms | 100 | 36 | 64 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(306, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
306.2.j.a | $4$ | $2.443$ | \(\Q(\zeta_{12})\) | None | \(2\) | \(0\) | \(0\) | \(0\) | \(q+(1-\zeta_{12}^{2})q^{2}+(\zeta_{12}+\zeta_{12}^{3})q^{3}+\cdots\) |
306.2.j.b | $16$ | $2.443$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(-8\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{5}q^{2}-\beta _{1}q^{3}+(-1+\beta _{5})q^{4}+(-\beta _{6}+\cdots)q^{5}+\cdots\) |
306.2.j.c | $16$ | $2.443$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(8\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+\beta _{10}q^{3}+(-1-\beta _{1})q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(306, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(306, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(153, [\chi])\)\(^{\oplus 2}\)